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Abstract

Quantum information processing with ultracold neutral atoms is quite promising,

due to the long decoherence times, and the ability to precisely prepare them in

the Mott insulator phase of an optical lattice. Ultracold ions, prepared in the

ground state of a trapping potential, can be individually addressed with lasers and,

because of tight trapping potentials, can be rapidly transported. In accordance

with ongoing experiments we propose to unite atoms and ions in one setup to

combine their advantages. A possible setup for quantum computation consists of

a register of atom-qubits stored in an optical lattice with a movable ion carrying

information and creating long distance entanglement between the atoms. The basic

ingredient for this scheme is the ability to perform controlled atom-ion interaction

in traps. We investigate the controlled collisions between a single trapped atom

and a single trapped ion.

We model the atom-ion interaction by the long-range 1/r4 polarization poten-

tial combined with a quantum-defect parameter as a boundary condition at the

origin. The quantum-defect parameter represents the phase accumulated by the

wavefunction at small distances. The essential parameters for the quantum-defect

theory are the singlet and triplet scattering lengths. These quantities are not yet

known but can in principle be measured in upcoming experiments. Typical cases

are discussed in this thesis. In general a Multichannel Quantum-Defect Theory

(MQDT) is needed for describing the system. For specific scattering lengths we

formulate an effective single channel model.

The goal of this work is to realize a two-qubit phase gate and therefore provide

the basic ingredient of quantum computation for the system under consideration.

For one realistic combination of singlet and triplet scattering length an adiabatic

quantum gate process is calculated numerically. This process is optimized and

accelerated with the help of optimal control techniques.
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1 Introduction

During the last few decades, techniques were developed that allow preparation and

manipulation of single ultracold atoms and ions in the laboratory. Single atoms

are stored and laser-cooled in dipole traps [1]. Arrays of atoms can be prepared

in optical lattices [2] in a Mott insulator phase and evaporative cooling is used to

reach the vibrational ground state. Similar techniques are being pursued in the

context of atom chips [3, 4]. External electromagnetic fields can be used to control

the atomic two-particle interaction. Magnetic fields are widely used in the context

of Feshbach resonances, that allow to manipulate the interaction strength. Pure

electric fields are interesting for experiments, since they are already available in

most of the mentioned setups. Single ions and arrays of ions can be confined in

Paul or Penning traps [5] and sideband laser cooling allows to prepare them in the

ground state of these trapping potentials. The coulomb potential prevents ions

from approaching each other, so that interaction of ions must take place via an

auxiliary collective mode.

Ultracold ions as well as neutral atoms confined in traps and controlled by lasers

and external fields allow studies of fundamental aspects of quantum mechanics,

but they are promising for applications such as quantum information as well. A

combination of ultracold ions and atoms in one setup is currently being explored [6,

7]. Theoretical studies on the interaction properties as well as ongoing experiments

open up this new field of research. Atom and ion trapping potentials, although

both consisting of electromagnetic fields, do not interfere, since the frequencies

typically differ by orders of magnitude.

Atom and ion can be of the same or of different species; one speaks of homonu-

clear and heteronuclear collisions, respectively. Both have advantages in different

respects. One loss mechanism for the heteronuclear atom-ion collision is the ra-

diative charge transfer in which the ion’s charge is transferred to the atom and
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1 Introduction

thereby a photon is emitted. Both particles are lost in this process. In homonu-

clear systems, the charge transfer leads to a physically equivalent situation and

therefore it is not a loss mechanism. A heteronuclear alkali atom plus alkaline

earth ion system has the advantage that the level structure is less complicated,

since only the two outer electrons are relevant. Examples used in experiment are

the homonuclear Yb+ - Yb system [8] and the heteronuclear Ba+ Rb system [9].

The combination of ultracold neutral atoms and ions in one experiment on the

one hand leads to new insights on the quantum mechanical properties of atom-

ion interaction. E.g. trap-induced shape resonances between unbound trap states

and molecular states can be observed when changing the distance between atom

and ion trap under the precondition that atom and ion are ultracold and close to

the trap vibrational ground state [10]. These trap-induced resonances enhance and

influence the interaction and can be seen as an alternative to Feshbach resonances.

Ideas of sympathetically cooling trapped atoms by a laser-cooled trapped ion or

of cooling trapped ions by ultracold atoms exist [11, 12, 13].

On the other hand, in the context of quantum information one can combine the

advantages of atoms and ions. Good addressability of single trapped ions with

lasers and fast transport due to tight Paul traps are some of the advantages of

ions. The possibility to prepare an array of atoms in the Mott insulator phase in

an optical lattice is a reason to use atoms as a storage of quantum information.

Furthermore, the two-particle interaction of atom and ion is stronger than for two

neutral atoms, which allows faster gate operations.

Qubits can be stored in internal degrees of freedom (hyperfine states), and the

two particle interaction is made qubit dependent with the help of Feshbach or trap-

induced resonances. Single qubit operations on hyperfine states can be performed

with laser driven Raman transitions (see e.g. [14, 15]).

The present work deals with heteronuclear atom-ion collisions. The existing

multichannel quantum-defect theory for the free ultracold collision of an alkali

atom and an alkaline earth ion [7] is specialized to the case of trapping potentials.

The central aspect of this thesis is the application of the ultracold controlled atom-

ion collision to quantum information processing.

A possible setup for quantum computation is schematically depicted in Fig-

18



ure 1.1. Atoms are stored in an optical lattice in a Mott insulator phase such that

each lattice site is occupied by exactly one atom. One movable ion can be used

to entangle the atoms and perform quantum gates. It is also possible to leave

one site unoccupied between two atoms in the lattice to enhance the addressabil-

ity of the atoms with the ion. The basic ingredient of this idea is the controlled

and qubit sensitive interaction of a single atom with a single ion. The goal of

this thesis is to find a way of realizing a two-qubit phase gate of an atom and an

ion. Being equivalent to the CNOT gate, the phase gate is a universal gate for

quantum algorithms [16]. Trap-induced shape resonances are used to enhance the

interaction; no magnetic field is included in the present approach 1. This thesis

Atoms in Optical Lattice
�
�
�
��

Ion in RF Trap
�
�
��

Figure 1.1: Concept for quantum computation with atoms and ions: Atoms are

prepared in an optical lattice in Mott insulator phase. A movable ion

entangles the atoms and can also be used for sympathetic cooling.

is organized as follows. Chapter 2 introduces important terminology and the en-

coding of qubits into hyperfine states. Further the basic model for the collision as

well as the atom-ion interaction are explained. Chapter 3 describes the formalism

of multichannel quantum-defect theory for trapped atom ion collision. A single

channel effective model is derived and the numerical solution of the time indepen-

1The combination of trap-induced resonances and Feshbach resonances is expected to allow

more precise control of the system and will be a subject of future investigations.
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1 Introduction

dent single channel Schrödinger equation is discussed. The essential parameters

to characterize the interaction are the singlet and triplet scattering lengths. They

are not yet experimentally accessible and are difficult to calculate ab initio. After

formulating the general theory, we choose specific isotopes for atom and ion and

assume realistic singlet and triplet scattering lengths. These are used in further

numerical calculations. Important features of the controlled collision in the con-

sidered atom-ion system are discussed in Chapter 4. Finally, Chapter 5 presents

the explicit numerical simulation of a two-qubit phase gate using a 135Ba+ ion and

a 87Rb atom. An adiabatic gate process is shown and this process is optimized

with the help of optimal control techniques. Chapter 6 summarizes the results and

gives an outlook.

In the Appendix A we explain the used numerical algorithms. These are the

Numerov method for solving the time independent Schrödinger equation and the

Crank-Nicholson method for time evolution. Appendix B explains the optimal

control algorithm used for the gate process.

20



2 Quantum Computing with Atom-Ion

Collision

This diploma thesis builds on the investigations of controlled atom-ion collision in

[10]. The goal is the application of the relatively strong atom-ion interaction for

quantum information, especially to realize a two-qubit phase gate with a single

atom and a single ion. This work makes use of several simplifications and assump-

tions that reduce the complexity of the calculations. In doing so the principle of

an atom-ion quantum gate can be demonstrated. Because we have to assume typ-

ical singlet and triplet scattering lengths, the calculated numerical values may not

describe a real physical system. The calculations performed serve as an example

of how to solve the system dynamics, once the correct parameters are known.

2.1 Model for Trapped Atom-Ion Collision

As a first approach to controlled atom-ion collisions we consider a single atom

and a single ion. Both are guided by effective trapping potentials. The trap for

the atom could be realized with optical tweezers or optical lattices [1, 2]. The ion

could be trapped in a Paul trap using radio-frequency (RF) electric fields [5]. Atom

and ion are assumed to be cooled to the vibrational ground state and therefore

harmonic traps provide a good approximation to the real trapping potential.1 The

controlled collision of an atom and an ion guided by movable trapping potentials

is illustrated in Figure 2.1. The effective Hamiltonian of the system is composed

of the kinetic energy terms pν/2mν for ν = i (ion) and ν = a (atom) and the

harmonic trapping potentials 1
2mνω

2
ν(rν − dν)2 centered at dν , and the atom-ion

1Future work will have to deal with anharmonicities and other effects like micromotion.
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2 Quantum Computing with Atom-Ion Collision

(a)

Atom Ion

(b)

(c)

Figure 2.1: Schematic drawing of the controlled collision of a single atom and a

single ion, whose center-of-mass wavepackets are guided by time de-

pendent traps. Different phases of the process are shown: (a) initially

the atom and the ion are prepared in the vibrational ground state; (b)

collision (overlap of the wavepackets); (c) after trap separation, the

goal is to obtain the atom and the ion in their vibrational ground state

again.

interaction potential V (r).

H =
p2
i

2mi
+

p2
a

2ma
+

1
2
miω

2
i (ri − di)2 +

1
2
maω

2
a(ra − da)2 + V (|ri − ra|). (2.1)

Different trap geometries can be considered. In the laboratory, atomic traps (e.g.

optical lattices) can be made spherically symmetric. Ion traps are usually cigar

shaped, but in principle can also be built spherically symmetric. In this work

we assume spherically symmetric traps for both atom and ion. The trapping

frequencies are set to be equal, i.e. ωi = ωa = ω, so that relative motion decouples

from center-of-mass motion. Thereby the dimension of the problem is reduced

from six to three. This is not the most general choice, but it captures the most

important features of the system 2.

We introduce relative coordinates r = ri−ra and RCOM = (miri+mara)/(mi+

ma). For simplicity, we choose the coordinate frame such that the vector of trap
2Different geometries like cigar shaped traps will be a subject of future work.
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2.2 Atom-Ion Interaction

separation d = di −da = d ez points in the z direction. In conclusion the relative

Hamiltonian takes the form

H
(d)
rel = − ~2

2µ
∆r +

1
2
µω2(x2 + y2) +

1
2
µω2(z − d)2 + V (r), (2.2)

where µ = mima/(mi +ma) is the reduced mass of the atom-ion system and the

momentum operator p = −i~∇r is substituted. The Laplace operator ∆ = ∇2
r is

introduced. It is useful to remark that the Hamiltonian can be written as H(0)
rel for

d = 0 plus some extra terms containing the dependence on d:

H
(d)
rel = H

(0)
rel +

1
2
µω2d2 − µω2 d z. (2.3)

2.2 Atom-Ion Interaction

The attraction or repulsion of two atoms (or an atom and an ion) can be described

by an effective potential that depends on the relative distance of the atomic cores.

The potential for the interaction between an ion and an atom can be understood

in the following way. The ion charge polarizes the electron cloud of the atom and

the induced dipole and the charge then attract each other.

The Born-Oppenheimer approximation allows to separate the motion of the

electrons from the motion of the atom cores, since the electrons move on a much

faster time scale. Assuming that the core distance is fixed, the potential energy is

obtained by solving the time independent Schrödinger equation for all electrons in

the system. This procedure can be repeated for all core distances and the resulting

energy curve is called a Born-Oppenheimer potential. Figure 2.2 schematically

shows the corresponding effective potential.

With the help of perturbation theory one can find that the long range part of

this potential for atom and ion in their electronic ground state is proportional to

−1/r4:

lim
r→∞

V (r) = −C4

r4
. (2.4)

The interaction constant C4 = αpole
2/2 is proportional to the electric dipole po-

larizability αpol of the atom in the electronic ground state (S-state). The 1/r4 law

is only valid if the the atom is in an S-state. As soon as excited electronic states
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2 Quantum Computing with Atom-Ion Collision

V

Ion Polarized Atom

Hard Core

r

R∗rmin

∼ −1/r4

Figure 2.2: Schematic depiction of the atom-ion polarization potential with a hard

core at r = 0 and the long range ∼ 1/r4 part. No trapping potential is

drawn, so in the limit of r →∞ the potential approaches the molecular

dissociation energy threshold. The characteristic range of the interac-

tion is given by R∗ (see text for details). rmin denotes the location of

the potential minimum.

(P, D,. . . ) are populated, the Born-Oppenheimer potential substantially changes

its shape, because permanent higher order electric moments play a role.

One can define a characteristic length scale R∗ of the polarization potential by

equating the potential to the kinetic energy:

~2

2µ(R∗)2
=

C4

(R∗)4
⇒ R∗ =

√
2C4

~2
, (2.5)

where µ is the reduced mass of the two-body system. R∗ can be interpreted as

the range of the potential. A characteristic energy scale

E∗ =
~2

2µ(R∗)2
(2.6)

can also be defined. This energy defines the height of the centrifugal barrier for

l = 1 (see e.g. Equation (3.5) and Figure 3.1). For particles of relative kinetic
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2.2 Atom-Ion Interaction

energy much smaller than E∗, only the part of the incoming wavefunction corre-

sponding to l = 0 (S-wave) is affected by the interaction, because for components

corresponding to higher l the interaction potential is screened by the centrifugal

barrier. Example values of characteristic energies for different atom-ion combina-

tions are given in Table 2.1.

2.2.1 Pseudopotential Approximation

The pseudopotential approximation includes all scattering information in a single

parameter: the s-wave scattering length as. Effectively, the complicated scattering

potential V (r) is replaced by a δ-function

V (r)→ V0δ(r), (2.7)

where V0 ∼ as. The pseudopotential approximation very much simplifies the inte-

gration of Schrödinger’s equation. In neutral atom collisions the pseudopotential

model has been applied very effectively. In traps like optical lattices, the effective

description of the interaction by the scattering length enters the Bose-Hubbard

model [17, 2].

However, the pseudopotential description can only be valid if the range of the

potential is very short in comparison to other relevant length scales, so that the

interaction can be described by a δ-function. In harmonic traps, this scale is given

by the oscillator length lν =
√

~/ωνmν of the trapped particles, with ν = i, a.

Neutral atoms interact on short range, with a van der Waals-like interaction po-

tential Vneutral ∼ 1/r6, and the range of the neutral atom potential is very small

in comparison to typical trap scales. In contrast the range of the atom-ion 1/r4

potential can be comparable to or even larger than the trap scale. Therefore,

assuming typical trapping frequencies of 10 to 100kHz the pseudopotential is not

applicable in atom-ion collisions. Characteristic scales for different atom-ion com-

binations are given in Table 2.1. Only in the special situation of a small interaction

constant C4 combined with weak traps can the range R∗ be much smaller than the

harmonic oscillator length, so that a pseudopotential description can be applied.

A small C4 is obtained for small atom polarizability and light particles, and a weak

trap has a small trapping frequency ω. As a criterion we introduce a dimensionless
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2 Quantum Computing with Atom-Ion Collision

Atom-Ion System R∗(a0) l0(a0) E∗(µK)
135Ba+ + 87Rb 5544 826 0,0533
40Ca+ + 87Rb 3989 1178 0,198
40Ca+ + 23Na 2081 1572 1,37

Table 2.1: Characteristic length and energy scale for example systems. Oscillator

lengths are calculated with ω = 2π × 100kHz.

parameter

α =
(
R∗

l0

)4

=
(

~ω
2E∗

)2

(2.8)

that compares the characteristic range of the potential to the trap scale, and

which can also be obtained by comparing the oscillator ground state energy to the

characteristic energy of atom-ion interaction. The parameter α depends on the

mass µ of the colliding particles and the trapping frequency ω that is assumed

to be the same for both particles. The relative harmonic oscillator length is l0 =√
~/µω. In the case of weak traps and weak interaction, α is small and for α� 1

a pseudopotential approximation is applicable. Under these circumstances, the

Schrödinger equation can be solved analytically, which can help in understanding

certain aspects of the system (see [18]).

Weak interactions and weak traps are, however, not interesting for quantum

information, because gates would be slow. Fast gates require strong interaction

and tight traps. In this case α is big (α � 1), because the interaction range

is comparable or larger than the trap scale. Since the pseudopotential approx-

imation does not hold in this case, one has to include the explicit shape of the

interaction potential and solve Schrödinger’s equation numerically. In this thesis,

a multichannel quantum-defect theory is used for this purpose.

2.3 Basics of the Physics of Atomic Collisions

For a better understanding of the following sections a basic introduction to the

physics of cold collisions is given here. In particular the term ‘scattering channel’

is explained, since it is used throughout this thesis.
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2.3 Basics of the Physics of Atomic Collisions

Name Notation Definition

Interaction constant C4 αpole
2/2

Characteristic range

of the polarization potential R∗
√

2C4/~2

Characteristic Energy

of the polarization potential E∗ ~2/(2µ(R∗)2)

Relative oscillator length l0
√

~/µω

Parameter of atom-ion collision in traps α (R∗/l0)4 = (~ω/(2E∗))2

Table 2.2: Terminology of constants and parameters used throughout this thesis.

For two colliding particles the time independent Schrödinger equation(
p2

1

2m1
+

p2
2

2m2
+ V (r1, r2)

)
Ψ12(r1, r2) = EΨ12(r1, r2) (2.9)

with the scattering potential V is studied. In general collision problems the poten-

tial only depends on the relative distance of the colliding particles r = r1 − r2, so

that V ≡ V (r). The collision of two charged particles is described by the Coulomb

potential V (r) = q1q2/r, for example.

The properties of the collision of two atoms strongly depends on the spin states

of the colliding particles. In the following we specify to the collision of hydro-

gen like atoms that only have one unpaired electron. The state of the atoms is

then determined by the angular momenta of the two nuclei and of the two outer

electrons. We assume that both electrons are in an S-state in which the orbital

angular momentum of the electrons vanish; then their angular momenta are solely

determined by their spin. Now the nuclei approach each other. The Pauli exclu-

sion principle states that, if the electron spins are in a symmetric state (triplet

configuration) it is not allowed that both electrons occupy the ground state. That

means that one electron must be excited. This leads to repulsion, because the

excitation of one electron costs energy. However, in an antisymmetric (singlet)

spin configuration, both electrons can remain in the ground state, which results in

a different interaction between the atoms. At small distances between the nuclei,

one has to include the full electron cloud in the calculation in order to predict the
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2 Quantum Computing with Atom-Ion Collision

values of singlet and triplet scattering properties. The collision potential strongly

depends on the symmetry of the electron spin configuration at small distances.

It is convenient to describe the quantum state of the incoming particles in the

basis of hyperfine states. Hyperfine states are characterized by the total angular

momentum fν = iν + sν and its projection mfν for particle ν ∈ {1, 2}, where

iν denotes the nuclear spin and sν is the electron spin. The hyperfine basis is

often called the asymptotic basis, since it diagonalizes the Hamiltonian of the

scattering particles at large distances (r → ∞) where the interaction potential is

negligible. In the ultracold regime the hyperfine splitting is much larger than the

kinetic energy of the particles. Taking into account the angular momentum l of

relative motion and its projection ml, the full set of quantum numbers describing

the incoming state β = {f1,mf1 , f2,mf2 , l,ml} is called a scattering channel.

At short distance the eigenstates of the system are not given by the asymptotic

channels, since the electron clouds overlap and electronic interaction dominates

the hyperfine energies. The spin eigenbasis at small distances is called the is

basis. It is characterized by the total nuclear spin i = i1 + i2 and the total

electron spin s = s1 + s2, where s can take the values 0 and 1, corresponding

to singlet and triplet states respectively. Additionally this basis is characterized

by the total angular momentum f = f1 + f2, its projection mf on the axis of

quantization, and the angular momentum l of relative motion and its projection

ml. The full set of quantum numbers describing a channel in is representation

is then γ = {f1,mf1 , f2,mf2 , l,ml}. A unitary transformation between the two

representation is called frame transformation and will be used in Section 3.2.2.

Figure 2.3 schematically shows potential curves for the collision of an i = 3/2

alkali atom with an i = 3/2 alkaline earth ion for the mf1 +mf2 = 3 subspace. On

large distances the potential curves are associated to the hyperfine basis states,

whereas at small distances the potential curves are associated to the is basis.

A hyperfine state β can be written as a linear combination of is states. This

linear combination is different for each hyperfine state and therefore the scattering

properties depend on the incoming channel. The dissociation energy (the potential

value for r →∞) is determined by the hyperfine energy of the channel. The long

range behavior of the potential is the same for all channels: ∼ 1/r6 for neutral

28



2.4 Qubit States

V

triplet

singlet

r

EHF
2

EHF
1

|f1 =2, f2 =2〉
|f1 =2, f2 =1〉

|f1 =1, f2 =1〉

∼ −1/r4

Figure 2.3: Schematic depiction of scattering potentials for the collision of an

i1 = 3/2 alkali atom with an i2 = 3/2 alkaline earth ion. At small

distances the potentials can be associated to singlet and triplet spin

configuration. The eigenbasis is the is basis. At large distances the

curves are associated to the hyperfine basis. The zoom shows the hy-

perfine splitting and the asymptotic ∼ −1/r4 behavior of the curves.

For clarity, the state |f1 =1, f2 =2〉 is omitted, since the potential curve

nearly is the same as for the |f1 =2, f2 =1〉) state. In this example the

singlet potential is deeper than the triplet potential, but it could also

be the other way around. In the special case of the collision of two
87Rb atoms the potential curves lie on top of each other.

atoms and ∼ 1/r4 for atom-ion collision. Reference [19] is recommended for further

reading about atomic collisions.

2.4 Qubit States

For the application in quantum information, qubit states |0〉 and |1〉) need to

be encoded in internal states of both atom and ion. It is not possible to use
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2 Quantum Computing with Atom-Ion Collision

electronic states for that purpose (e.g. |0〉 ≡ S-state and |1〉 ≡ P-state), because

electronic excitation leads to a substantial change of the interaction potential (c.f.

Section 2.2), which is undesirable for controlling the collision. Instead, specific

hyperfine states are chosen to build the computational basis (see Figure 2.4).

Single qubit operations can then be performed without exciting the electron in

the shell. As described in Section 2.3, the hyperfine states are labeled with the

quantum numbers (fν ,mfν ). The qubit states of the atom(a) and ion(i) are e.g.

|0〉i/a = |fi/a = 1,mfi/a = 1〉,

|1〉i/a = |fi/a = 2,mfi/a = 2〉.
(2.10)

The corresponding 2-qubit states then are

|00〉i,a = |fi = 1,mfi = 1, fa = 1,mfa = 1〉,

|01〉i,a = |fi = 1,mfi = 1, fa = 2,mfa = 2〉,

|10〉i,a = |fi = 1,mfi = 1, fa = 2,mfa = 2〉,

|11〉i,a = |fi = 2,mfi = 2, fa = 2,mfa = 2〉.

(2.11)

Note that by this choice of qubit encoding the interaction is intrinsically qubit

dependent, since in the ultracold regime the collision properties strongly depend

on the spin state in which atom and ion are prepared initially.

Figure 2.4: Hyperfine states of an ion and an atom with nuclear spins ii = 3/2

and ia = 3/2. The qubit states |0〉i,a and |1〉i,a are specific hyperfine

states.
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2.5 Enhancement of the Interaction by Resonances

2.5 Enhancement of the Interaction by Resonances

We use resonances to enhance and control the qubit dependent interaction. Two

major types of resonances are discussed: magnetic field induced Feshbach reso-

nances and trap-induced shape resonances. In later sections, only trap-induced

shape resonances are used, but one can always keep Feshbach resonances in mind

as another possibility. In general, a resonance of two states ψ1 and ψ2 is possible,

if the states are coupled by any kind of interaction. This happens, if the Hamil-

tonian matrix element H12 = 〈ψ1|H|ψ2〉 does not vanish. In the case of atom-ion

collision, the coupling is caused by the interaction potential. The resonance then

occurs where the energy levels of the two states cross when varying some external

parameter. Such a situation is depicted in Figure 2.5. For simplicity, let the energy

E1 of one state be constant, while the energy E2(t) of the second state depends

on time. At some point t0, both energies are equal, i.e. E1 = E2(t0). Now, since

the two states are coupled, the instantaneous eigenstates of the system are not

ψ1 and ψ2, but some linear combination of both. The energy levels of these new

eigenstates form an avoided crossing. By this avoided crossing, the eigenenergies

keep their order, which means the lower energy level remains low and the higher

level remains the higher one at all times. Crossing would mean changing this or-

der. As a consequence an energy gap ∆E is formed at the avoided crossing. The

stronger the coupling is, the bigger the gap.

The theorem of adiabaticity states that during a very slow process (compared

to inherent time scales of the system), the quantum numbers of a state do not

change. If the eigenstates are numbered by their energy in ascending order, this

order is preserved in an adiabatic process. Details on adiabaticity can be found

in [20]; a proof is given in [21]. If now the crossing point (at t = t0) is passed

slowly, the system always stays in the adiabatic eigenstate, which means that ψ1

evolves to ψ′2 and vice versa. In Figure 2.5 the solid lines are followed. During a

very fast passage of the energy level crossing the system has no time to follow the

adiabatic eigenstates. This results in an evolution of ψ1 to ψ′1 and ψ2 to ψ′2 and is

called diabatic (or nonadiabatic) passage. The probability Pna of the nonadiabatic
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∆E

t

E |ψ1〉

|ψ2〉

|ψ′1〉

|ψ′2〉

Figure 2.5: Schematic drawing of an avoided crossing of the energy levels of two

states |ψ1〉 and |ψ2〉. The energy splitting ∆E is related to the matrix

element H12 = 〈ψ1|H|ψ2〉.

passage can be estimated with the Landau-Zener formula

Pna = exp
(
−2π

|H12|2
~|∂(E1(t)− E2(t))/∂t|

)
, (2.12)

where |E1(t) − E2(t)| is the difference of the slopes of the diabatic energy levels

(dashed lines in Figure 2.5) and H12 is the coupling matrix element. For further

reading about this formula we recommend [22]. The formula specified on trapped

atom-ion collision is given and applied in Section 4.3.

Resonances to Molecular Bound States

The interaction potential of Figure 2.2 supports discrete bound states that are

located around rmin and have an energy below the dissociation energy V (r →
∞). Above the dissociation energy an energy continuum of free space states is

supported. This continuum is replaced by discrete trap states if an additional

trapping potential is present. We refer to the states below the dissociation energy

as (molecular) bound states. States with energy above the dissociation energy are

referred to as unbound states or, in the case of a trap, vibrational states or trap

states.
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2.5 Enhancement of the Interaction by Resonances

Of special interest in ultracold collision are the resonances of unbound states

to bound states. Molecules can be formed via an adiabatic transition from a

unbound to a molecular state. This is interesting in chemistry and molecular

physics. But also the strength of the interaction is enhanced, which is useful in

quantum computation. While forming a molecular state, colliding particles are

close, and are affected by a much deeper potential then unbound states are.

Feshbach Resonances

Emol.(B)

r

E

open channel

closed channel

Figure 2.6: Feshbach resonance in a free ultracold gas in which atoms have ki-

netic energy slightly above molecular dissociation energy (dashed line):

Sweeping Emol(B) with a magnetic field over the dissociation energy

of the open channel from above causes the formation of Feshbach

molecules in the closed channel. This also works in trapped gases

or with only two trapped particles.

The principle of a magnetic Feshbach resonance is to bring the energy of a

molecular bound state of one channel to equal the energy of a state prepared in

another channel by applying a static external magnetic field.

The magnetic moment of a the atom-ion complex in the electronic ground state

is a combination of the magnetic moments due to unpaired electron spins and the
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2 Quantum Computing with Atom-Ion Collision

magnetic moments of the nuclear spins. The magnetic moment of one electron is

proportional to the spin

µel = −gsµB(s/~), (2.13)

where µB is the Bohr magneton and gs is the Landé factor of the electron. The

magnetic moment of the nuclei is obtained equivalently. The potential energy in

a magnetic field is proportional to the magnetic moment µ

Umag ∼ −µ ·B. (2.14)

Since the magnetic moment depends on the spin configuration and on the Landé

factors, the magnetic field energy of unlike channels are different. Especially the

energies of two channels β and γ are shifted with respect to each other when B

varies.
∂Eβ(B)
∂B

− ∂Eγ(B)
∂B

6= 0. (2.15)

Let Eβ be zero and Eγ be larger than Eβ by the hyperfine splitting. Atom and

ion are prepared in the channel β with small, positive energy. Since the energy E

is larger than the dissociation energy Eβ , β is referred to as an open channel. Now

E can still be smaller than the dissociation energy of channel γ. In this case γ is

called a closed channel. In general the potential of channel γ supports bound states

corresponding to an energy lower than Eγ . These bound states usually do not have

the same energy as the particles prepared in channel β have. By variation of the

background magnetic field it is possible to change the relative distance between the

potential curves of the two channels β and γ (see Figure 2.6). A molecular bound

state of the closed channel γ can now become resonant to an unbound state, since

the energy of the molecular state is swept over the energy of the unbound state.

The particles can be prepared in channel β in free space or in a trap vibrational

state. In both cases, a Feshbach resonance may be applicable. A more detailed

review on Feshbach resonances is given in [19].

Trap Induced Shape Resonance

In contrast to Feshbach resonances, for a trap-induced shape resonance only one

spin configuration (one channel) is considered and no magnetic field is needed.
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E

Emol(d) Evib

Vibrational StateMolecular State

d r(θ = 0)

1
2µω

2(~r − ~d)2 + V (r)

Figure 2.7: Trap-induced shape resonance: The energy of a molecular bound state

in the combined potential depends on d. When it becomes equal to a

vibrational level, a transfer from a vibrational state (separated parti-

cles) to a molecular bound state (connected particles) is possible.

The total potential (here in the relative coordinate r) is depicted in Figure 2.7.

The relative distance of the two trap minima is denoted as d. We assume that

in the relative coordinate frame the harmonic traps are displaced by d in the

z-direction. Around r = 0 the interaction potential dominates. This potential

supports molecular bound states, which have wavefunctions with a big amplitude

at small atom-ion distance. At large r the external trap is dominant, and so here

vibrational states in the harmonic potential exist. Vibrational states are localized

at larger atom-ion distances. The barrier between the two wells is strongly modified

by changing d, and therefore Emol depends on d. Since the harmonic oscillator

energy Evib is not changed, one can let the energy of a molecular state cross

the energy of a vibrational state by changing the trap displacement. If the level
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coupling is strong, one can bring the atom and the ion from a trap vibrational

state to a molecular bound state by sweeping d. Since at small relative distances

the potential is very deep and the molecular state has a big amplitude there, this

procedure enhances interaction.

The position of bound states strongly depends on the spin state of the atom and

the ion, and therefore the resonance is dependent on the qubit state. Molecular

state energies approximately behave like Emol(d) ∼ Emol(0)+ 1
2µω

2d2. For further

explanations see Equations (2.16) and (2.17) and the corresponding text in the

next chapter.

2.6 Energy Spectrum

Many features of the system can be explained with the help of the spectrum of

energy levels as a function of the trap displacement d. Such a spectrum is also

known as a correlation diagram. In Figure 2.8 we show an example spectrum taken

from [10]. Here the harmonic oscillator length is l0 ∼ 3.48R∗, which corresponds to

α = 146.046. At large distances the energy levels are equidistant. This is because

the atom and the ion are each localized in their traps and, since these traps are

well separated, the interaction is very weak. Therefore one observes harmonic

oscillator levels and states that are slightly shifted by the polarization potential.

Going to small distances, the oscillator levels meet bound state energies. At these

points trap-induced shape resonances occur. They can be seen as avoided crossings

in the spectrum. It is possible to use the avoided crossings to form molecular

ions. In Chapter 5 we use qubit dependent trap-induced resonances to perform a

quantum gate based on the fact that the position of the energy of the molecular

state depends on the qubit channel. For larger energies and small d the spectrum

has a complicated structure, but in our work we focus on the levels that are near

the threshold. When d approaches zero, the interaction term dominates and big

resonances appear. The energy of molecular bound states can be approximated

with a quadratic function in d (blue, thick curve in Figure 2.8). This can be
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Figure 2.8: Example correlation diagram for l0 = 3.48R∗. The molecular states

have an approximately quadratic d-dependence. For large d, energy

levels are equidistant, since the problem passes over to two harmonic

oscillators without particle interaction. See text for details.

understood by looking at the Hamiltonian Equation (2.3):

Emol(d) = 〈Ψmol|H(d)|Ψmol〉

= E
(0)
mol +

1
2
µω2d2 − µω2d

∫
d3rΨ∗mol r cos θΨmol,

(2.16)

and since molecular states are located in a narrow region around r = 0, the last

term ∫
d3rΨ∗mol(r) r cos θΨmol(r) ≈ 0 (2.17)

can be neglected.
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3 Quantum Defect Theory for Atom-Ion

Collision

3.1 Basic Idea of a Multichannel Quantum-Defect

Theory

The long range 1/r4 part of the polarization potential is known very well, but the

short-range part of the potential is not yet directly experimentally accessible and

also cannot yet be calculated precisely,because the number of electrons is quite big

for atoms and ions relevant in experiments.

Quantum-defect theory attempts to solve Schrödinger’s equation for the scat-

tering problem with a reference potential that has the same long-range behavior

as the actual potential, but otherwise can be arbitrary. The short-range scattering

information is put into a parameter of the wavefunction, e.g. a phase shift. This

quantum-defect parameter weakly depends on energy and remains analytic across

the dissociation threshold, i.e. it is well defined for bound states as well as for

unbound states. In the ultracold domain the short-range potential depth is orders

of magnitude larger than variations of kinetic energy. Therefore the quantum-

defect parameter is usually independent of energy. This makes it very useful for

predicting the system properties across the threshold.

On the other hand, a molecule can dissociate to a number of channel states that

are all included in a multichannel formalism. In this problem of higher dimensions,

a set of quantum-defect parameters is needed.

In Section 3.2 a multichannel formalism is specified for atom-ion collision. The

following sections describe how an effective single channel model can be extracted

from the multichannel formalism. The Schrödinger equation for trapped atom-ion
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collisions is solved in the single channel model in Section 3.4.

3.2 Closed Coupled N-Channel Model for Atom-Ion

Collisions

This section formulates the multichannel atom-ion scattering problem and derives

an equation for determining bound states and energy eigenlevels of the system. For

details of the multichannel quantum-defect theory (MQDT) used here for atom-

ion collisions we refer the reader to [23, 7]. The methods of the cited paper are

developed for the free particle situation and are specified for the situation of an

additional harmonic trapping potential, in what follows.

Multichannel Schrödinger Equation

An atom-ion collision is described by a N -channel closed coupled Schrödinger

equation:

− ~2

2µ
∆Ψ(r) + (W(r) + U(r)− E) Ψ(r) = 0. (3.1)

Here µ = mima/(mi + ma) denotes the reduced mass, E is the energy, W is the

interaction matrix and Ψ is the matrix of wavefunction solutions, which has N

components, one for each channel of the coupled subspace. N linearly independent

solutions are combined to form the matrix Ψ, which is convenient for calculations.

Since the interaction term only depends on the relative distance of the two

particles, the relative and center of mass coordinate parts of the Hamiltonian

separate for harmonic traps of equal frequency. The center of mass part of the

wavefunction is given by harmonic oscillator functions and is irrelevant for the

interaction. Therefore, only the relative part is considered here. The equation

is named ‘coupled’ because it describes N coupled channels, and ‘closed’ because

only the subspace of coupled states is included. For example, if the total angular

momentum projection mf = mfi + mfa is conserved, all channels with the same

mf can be coupled, and otherwise do not belong to the considered subspace. At

large distances the channels differ in their dissociation energy E∞i by the hyper-

fine splittings, since each channel is a certain spin configuration of the atom-ion
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complex. The interaction matrix

Wij(r)
r→∞−→

[
E∞i −

C4

r4

]
δij (3.2)

is asymptotically diagonal. C4 is the interaction constant defined in Table 2.2.

Mixing of channels only appears at short distance, since at large distance the

hyperfine states are eigenstates of the system. The short-range part of W does

not have to be known explicitly for a quantum-defect treatment. U is the trapping

potential

Uij =
1
2
µω2

(
x2 + y2 + (z − d)2

)
δij , (3.3)

which is always diagonal. The coordinate frame is chosen such that the line be-

tween the two trap minima lies on the z-axis.

Special Case: d = 0

For d = 0 the external potential is spherically symmetric and the equations for

different relative angular momenta l decouple. One can decompose Ψ(r) into

partial waves,

Ψ(r) =
∑
l

clFl(r)Yl0(r̂)/r. (3.4)

The projection of angular momentum l on the z axis is denoted by ml. For

simplicity one can set ml = 0, because the Hamiltonian does not depend on the

azimuthal coordinate φ. The radial wavefunction Fl(r) of the partial wave l fulfills[(
− ~2

2µ
∂2

∂r2
+

~2l(l + 1)
2µr2

+
1
2
µω2r2 − E

)
I + W(r)

]
Fl(r) = 0, (3.5)

where l is the angular momentum quantum number of the relative motion (also

called the partial wave number). The centrifugal barrier l(l + 1)/r2 has its origin

in the angular part of the Laplacian.

In the calculation, the short-range part of the interaction potential W is mim-

icked by choosing an appropriate short-range phase ϕ. This is equivalent to setting

Wij = (E∞i − C4
r4 )δij . In this case the reference potentials that are necessary to

define MQDT functions can be simply related to the diagonal elements of W(r):

V li ≡ E∞i −
C4

r4
+

~2l(l + 1)
2µr2

. (3.6)
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With the reference potentials one can associate a pair of linearly independent

solutions that have a WKB-like normalization at small distances:

f li (r) ∼= kli(r)
−1/2 sinβli(r)

gli(r) ∼= kli(r)
−1/2 cosβli(r)

 r ∼ rmin, (3.7)

where kli =
√

2µ(E − V li (r))/~ is the local wave vector and βli =
∫ r
kli(x) dx is

the WKB phase. Here, rmin denotes the typical distance where the minima of

the realistic potentials occur (see Figure 2.2) and the semiclassical approximation

is applicable. In the present approach this is equivalent to the limit r → 0.

The solution of Equation (3.5) can be expressed in terms of the pair functions

f̂ l(r) = {δijf li (r)} and ĝl(r) = {δijgli(r)} giving

Fl(r) =
[
f̂ l(r) + ĝl(r)Y

]
Â. (3.8)

Here, Y is the quantum-defect matrix that represents the effect of the short-range

potential, e.g. couplings between the channels. Y(E) is a function of energy. It

is important for MQDT analysis that it remains analytic across the thresholds

and generally depends weakly on energy. Â is a constant matrix that depends

on the boundary conditions at r →∞. At large distances, the trapping potential

dominates, and the physical solution of one channel is

ψli
r→∞−→ Dν(

√
2r/l0), (3.9)

where Dν(z) is the parabolic cylinder function with the energy E = E∞i + ~ω(ν +

1/2), and l0 =
√

~/µω is the harmonic oscillator length. The MQDT functions

tan νli(E) and N l
i (E) relate the solutions Equation (3.7) to Equation (3.9), and

can be defined as

ψli = N l
i (E)

[
cos νli(E)f̂ l(r)− sin νli(E)ĝl(r)

]
, (3.10)

where νli(E) describes a mixing of the pair functions f̂ and ĝ from Equation (3.7).

Since for small r the pair functions are combined to the solution for r → 0, νli is

related to the short-range phase ϕl(E) (see Section 3.2.1). ϕl(E) can be calculated

numerically in a single channel model, which is done in Section 3.6.1. An expression

for the normalization N l
i (E) in terms of the short-range phase can also be derived
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3.2 Closed Coupled N -Channel Model for Atom-Ion Collisions

(see [23]) as

N l
i (E) = 1

/( ∂ϕ
∂E

)
. (3.11)

The solution Fl(r) can be expressed in terms of ψl(r) ≡ {δijψli(r)} as

Fl(r) = ψl(r)A, (3.12)

where A is a constant matrix that is not to be confused with Â of Equation (3.8).

Comparing Equation (3.8) to Equation (3.12) one gets[
cosνl(E)f̂ l(r)− sinνl(E)ĝl(r)

]
A =

[
f̂ l(r) + ĝl(r)Y

]
Â, (3.13)

where the quantum-defect functions νl = νliδij and Nl = N l
iδij are written in

matrix form. This yields two equations, since the coefficients for f̂ l and ĝl must

each be equal. Eliminating Â one arrives at[
Y + tanνl(E)

]
Nl(E) cosνl(E)A = 0, (3.14)

which has nontrivial solutions A 6= 0, if∣∣Y + tanνl(E)
∣∣ = 0. (3.15)

This is a standard condition for determining bound states in the MQDT approach

of [7]. From this condition one can determine eigenenergies in the multichannel

case, while the eigenstates are given by Equation (3.12), with A determined from

Equation (3.14). For bound states typically only one vector of A is nonzero; that

vector is denoted as b. This yields eigenfunctions Fln(r) = ψl(r)bn where and n

enumerates the solutions of the radial equation[(
− ~2

2µ
∂2

∂r2
+

~2l(l + 1)
2µr2

+
1
2
µω2r2 − En

)
I + W(r)

]
Fln(r) = 0. (3.16)

Solutions corresponding to different eigenenergies are orthonormal, i.e.∫ ∞
0

drFln(r)†Fln′(r) = δnn′ . (3.17)

Generalization to d 6= 0

The solutions of Equation (3.1) in the general case of d 6= 0 can be expressed as a

linear combination of solutions for d = 0:

F(r) =
∑
ln

clnFln(r)Yl0(r̂/r). (3.18)
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3 Quantum Defect Theory for Atom-Ion Collision

One can find the coefficients for this expansion by solving a matrix equation that

is obtained by substituting Equation (3.18) in the expansion in the Schrödinger’s

Equation (3.1). This gives(
Eln − E +

1
2
µω2d2

)
cln + µω2d

∑
l′n′

〈Yl0| cos θ|Yl′0〉Dll′

nn′cl′n′ , (3.19)

where

Dll′

nn′ =
∫ ∞

0

d rFln(r)†rFl′n′(r). (3.20)

In the single channel model derived later we use an equivalent procedure to deter-

mine the solutions to d 6= 0. A more detailed explanation and equations are given

in this context in Section 3.5.

For the sake of clarity we summarize the main result of this section. In order

to determine eigenenergies and corresponding eigenstates one has to know Y and

νl(E). A convenient way to determine the quantum-defect matrix Y is described

in Section 3.2.2, and uses a frame transformation. The MQDT function νl(E)

can be determined by calculating the short-range phase ϕ(E). This is done in

Section 3.6.1.

3.2.1 Short-Range Phase, MQDT Function and Scattering

Length

Since at small distance for a 1/r4 potential the de Broglie wavevector is kli ∼ 1/r2

and the WKB phase is β ∼ −1/r, the pair functions of Equation (3.7) take the

form
f li (r) ∼= r sin− 1

r

gli(r) ∼= r cos− 1
r

 r → 0. (3.21)

The same solutions can also be obtained directly by solving the radial equation

in the limit r → 0 with energy, trap and centrifugal barrier neglected. Any so-

lution can be written as a linear combination of f and g. In the r → 0 limit of

Equation (3.21), Equation (3.10) translates to

ψli(r)
r→0−→N l

i (E)
[
r cos νli(E) sin(−1/r)− r sin νli(E) cos(−1/r)

]
= −N l

i (E)
[
r sin(1/r + νli(E))

]
∼ r sin(1/r + ϕ(E)),

(3.22)
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3.2 Closed Coupled N -Channel Model for Atom-Ion Collisions

and therefore the MQDT function νli(E) can be interpreted as a energy dependent

short-range phase ϕ(E) of the wavefunction.

For our choice of the MQDT functions f̂ ĝ of Equations (3.7), the asymptotic

solutions of Equation (3.21) become valid for all distances for the s-wave (l = 0) in

free space (ω = 0) at energy E = 0. On the other hand, the zero energy scattering

solution asymptotically behaves like

Ψ(r) r→∞−→ 1− a/r. (3.23)

The linear combination of Equation (3.22) has the asymptotic behavior

Ψ(r) =
ψl=0(r)

r

r→∞−→ N
[cosϕ

r
− sinϕ

]
= Ñ

[
1− − cotϕ

r

]
.

(3.24)

Therefore one can relate the short-range phase ϕ to the s-wave scattering length

a = − cotϕ, (3.25)

which is a measurable physical quantity given by the system.

3.2.2 Parametrization of Y at Small Distance and Frame

Transformation

In the ultracold regime, energy variations are much smaller than the depth of

the real potential at r = rmin and therefore it is justified to neglect the energy

dependence of Y(E) and set Y(E) ∼= Y. It is then sufficient to determine Y at

one energy. It is convenient to express Y in terms of few parameters, for example

scattering lengths using a frame transformation. For application, we consider the

collision of an alkali atom with an alkaline earth ion, which are in their electronic

ground states. As described in Section 2.3, the asymptotic channel states are

characterized by the hyperfine quantum numbers (fi,mfi) and (fa,mfa) for the

ion and the atom respectively, and by the angular momentum quantum number l

and ml of relative motion of the atom and the ion. The asymptotic channel states

are labeled with β = {fi, fa,mfi ,mfa , l,ml}. The eigenbasis at short distances

according to the LS coupling scheme is characterized by the total electron spin
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3 Quantum Defect Theory for Atom-Ion Collision

s = si+sa, the total nuclear spin i = ii+ ia and additionally by the total hyperfine

angular momentum f = i + s and its projection mf on the axis of quantization.

Here, si, sa denote the electron spin of ion and atom respectively, and ii, ia are

the nuclear spins of the ion and the atom involved. In the is basis the channels

are labeled by γ = {i, s, f,mf , l,ml}. The unitary transformation

Uβγ = (f1f2mf1mf2 |isfmf ) (3.26)

from β to γ is called a frame transformation. It can be expressed in terms of Clebsh-

Gordan coefficients and Wigner 9j-symbols (see e.g.[24]). Here, for simplicity, the

quantum numbers l and ml are omitted, because they are not transformed.

The quantum-defect matrix is determined at a distance, where it is diagonal in

is representation. Mixing of the asymptotic channels typically arises in the core

region of the atom-ion complex, where the real potential starts to deviate from the

1/r4 law. This distance is denoted as r0 and is of the order of a few a0 (Bohr radii).

At r & r0 the exchange interaction is negligible. On the other hand, for r � R∗

one can safely ignore the centrifugal potential and hyperfine splitting. The long

range atom-ion interaction provides a separation of length scales: r0 � R∗. In the

region where r0 . r � R∗ the real potential is of the form Wij
∼= −C4/r

4δij and

therefore is equal to the reference potentials as defined in Equation (3.6) (with

hyperfine energy and centrifugal barrier neglected). The wavefunction is given

by a linear combination of the pair functions of Equation (3.7). The short-range

phase corresponding to the linear combination is related to a scattering length

according to Equations (3.24) and (3.25) in Section 3.2.1. Since in the specified

regime the channels in the is representation are not mixed, the quantum-defect

matrix takes the diagonal form

Y
(is)
γγ′ = δγγ′

[
as(γ)

]−1
. (3.27)

Here, s(γ) is the total spin in the channel γ, which can take the values s(γ) = 0, 1

corresponding to singlet as and triplet at scattering lengths, respectively. In the

asymptotic hyperfine channel representation, Y is generally not diagonal and can

now be determined with the frame transformation Uβγ , giving

Yββ′ = UβγY
(is)
γγ′ Uγ′β′ . (3.28)
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3.3 Single Channel Equations

An example can be found in Section 3.6.3.

3.3 Single Channel Equations

A single channel picture assumes that either there is only one channel, or no

couplings to other scattering channels exist. In other words the colliding particles

do not change their spin states. The matrices of the multichannel formalism reduce

to scalars in that case. The Equation equivalent to (3.1) reads

− ~2

2µ
∆Ψ(r) +

(
W +

1
2
µω2

(
x2 + y2 + (z − d)2

)
− E

)
,Ψ(r) = 0 (3.29)

where the long range part of the interaction potential W is

W (r) r→∞−→ E∞i −
C4

r4
. (3.30)

Setting the dissociation energy E∞ to zero removes this energy offset in W . It

is sufficient for all problems in this thesis to solve the Schrödinger equation for

d = 0 and use the resulting wavefunctions to decompose the solutions for d 6=
0. In that case, both traps lie on top of each other and the problem becomes

spherically symmetric. Equivalently to Equation (3.4), a partial wave expansion

of Ψ is performed

Ψ(r) =
∑
l

clψl(r)Yl0(r̂)/r, (3.31)

where Ylm are spherical harmonics. The factor 1/r is introduced to remove the

first order derivative of the Laplacian in spherical coordinates. The corresponding

radial part of the wavefunction ψl(r) fulfills

− ∂2

∂r2
ψl(r) +

2µ
~2

(
~2

2µ
l(l + 1)
r2

+
1
2
µω2r2 +W (r)− E

)
ψl(r) = 0. (3.32)

In terms of quantum-defect theory one replaces the real interaction potential W (r)

by a reference potential V (r) that produces the correct asymptotics. Here,

V (r) = −C4

r4
(3.33)

is chosen, which is divergent for r → 0. Equation (3.32) becomes

− ∂2

∂r2
ψl(r) +

2µ
~2

(
~2

2µ
l(l + 1)
r2

+
1
2
µω2r2 + V (r)− E

)
ψl(r) = 0. (3.34)
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3 Quantum Defect Theory for Atom-Ion Collision

Two linearly independent solutions can be associated to the reference potential,

equivalent to Equation (3.7). In the limit of r → 0 these functions are chosen as

f̂(r) ∼= r sin 1/r

ĝ(r) ∼= r cos 1/r

 r → 0. (3.35)

A solution of Equation (3.34) can be expressed in terms of the reference functions

ψl(r) = Ñ
[
f̂(r) + ĝ(r) tanϕ0φ

]
= N r sin(1/r + ϕ0), (3.36)

and in the limit

ψl(r)
r→∞= N r sin(1/r + ϕ0). (3.37)

Here, N and Ñ are normalization constants. Comparing this to Equation (3.8),

the quantum-defect matrix is now replaced by a single parameter ϕ0: Y=̂ tanϕ0.

By Equation (3.37) the short-range part of the real potential is replaced by a

boundary condition for the wavefunction at the origin that fixes the short-range

phase ϕ. The condition determining bound states (Equation (3.15) ) becomes

simply

ϕ(E) = ϕ0. (3.38)

The energy dependent short-range phase must match the quantum-defect param-

eter.

3.4 Solving the Radial Single Channel Equation for

d = 0

This section assumes that a given quantum defect parameter, the short-range

phase ϕ0, sets a boundary condition for the solution ψl(r) of the radial Schrödinger

Equation (3.34). This quantum-defect parameter is independent of energy, but can

depend on the partial wave l. In the characteristic units R∗ and E∗ (see Table

2.2) the dimensionless form of the radial Schrödinger equation for d = 0 is:

− ∂2

∂r2
ψnl(r) +

(
l(l + 1)
r2

+ αr2 − 1
r4
− En

)
ψnl(r) = 0. (3.39)

This equation is solved numerically using the renormalized Numerov method. On

a given grid the ratio Ri = ψi+1/ψi is calculated instead of determining ψi directly,
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3.4 Solving the Radial Single Channel Equation for d = 0

which suppresses numerical errors. Details of the Numerov method can be found

in Section A.1 and in [25]. The second order linear differential equation can be

brought to the standard form for the Numerov method (see Equation (A.1))[
∂2

∂r2
+Q(r)

]
ψ(r), (3.40)

with

Q(r) = −
(
l(l + 1)
r2

+ αr2 − 1
r4
− E

)
. (3.41)

3.4.1 Discussion of the Numerical Solution of the Schrödinger

Equation with a −1/r4 Potential

0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

r/R*

l(l+1)
r2 αr2

− 1
r4

potential /E*

Figure 3.1: Example potential for l = 9 and α = 146.046 with long range trap part,

centrifugal barrier and short-range interaction potential. The height

of the centrifugal barrier is given by l2(l + 1)2/4E∗.

There are several features of Q(r) to be discussed. First, there is the diverging

negative potential for r → 0 that does not allow numerical solving of Schrödinger’s

equation up to r = 0. One must stop at a minimum distance called rmin. Since the

wavefunction oscillates very fast where the potential is very deep, an extremely

fine grid is needed at small r. Secondly, the centrifugal barrier becomes important

for large angular momenta. Its height is given by l2(l + 1)2/4 in units of E∗.

For energies well below this height the wavefunctions show a harmonic-oscillator-

like structure; they are localized on the right of the centrifugal barrier. However,

bound states localized on the left are possible but rather rare. In addition they
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3 Quantum Defect Theory for Atom-Ion Collision

are only weakly coupled to the harmonic oscillator part, because the tunneling

through the centrifugal barrier is very weak for large l.

While solving the Schrödinger equation in position representation, one should

always go in the direction of increasing wavefunction amplitude. In particular in a

classically forbidden region like the high centrifugal barrier, the unphysical solution

of the Schrödinger equation would otherwise grow exponentially and would gain

in amplitude due to numerical errors. The stable implementation of the Numerov

method (see Appendix A.1) iterates from both sides always going out of a forbidden

region and in the direction of increasing wavefunction amplitude. The left hand

and right hand solutions are matched at a point rM in the middle of the classically

allowed region. The Numerov method uses a grid in r-space; the minimum value is

rmin and the maximum value is rmax, which must be finite. Iteration at rmax starts

with ψ(rmax + h = 0) and ψ(rmax) 6= 0. rmax must be chosen big enough to make

the error produced by this procedure sufficiently small. At rmin, the asymptotic

solution including the quantum-defect parameter ϕ0 is used to start the iteration.

Therefore rmin must be chosen small enough to make sure that the asymptotic

solution is accurate. Formulas to calculate start and end point of the grid are

given in Section 3.4.2.

Typical wavefunctions are depicted in Figure 3.2, Figure 3.1 shows an example

potential Q(r). The wavefunctions oscillate very fast at small r where the 1/r4

term dominates, and shows slower oscillations for r on the right side of the centrifu-

gal barrier. The wavefunction ψ(r) decays exponentially for large r, because here

the harmonic trap term αr2 dominates. For large l and energies below the cen-

trifugal barrier the wavefunction looks almost like a harmonic oscillator function,

slightly shifted by the interaction potential. Computational effort is minimized by

adapting the grid used to the specific problem. In the method we use, the number

of grid points per oscillation is monitored and kept larger than a certain lower

bound K. An estimation of the oscillation period is given by the local de Broglie

wave length:

λ(r) = 2π/k(r), (3.42)

where

k(r) =
√
|E − V (r)| =

√
|Q(r)| (3.43)
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Figure 3.2: Plots showing different types of wavefunctions for d = 0: Molecular

bound state (a), vibrational states with energy below (b) and above

(c) the centrifugal barrier. In (b) the molecular part on the left of

the centrifugal barrier is strongly suppressed. Also, hybrid states (d)

are possible; they correspond to bound states in the centrifugal barrier

(E > 0).

is the local de Broglie wave number. The grid is created starting from the right, at

rmax, with a starting step size h = hmax that should be sufficiently small. Going

to rmin, the step size h is halved as soon as K×h > λ(r). Q(r) in Equation (3.43)

is evaluated with a typical value for the angular momentum l = l0 and an energy

E = E0, e.g. l0 = 0 and E0 = 70~ω (the particular choice is unimportant). The

resulting grid is used to generate all the functions that are needed. Typically
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K = 20 grid points per oscillation period is sufficient, but K ≈ 100 is safer,

because the same grid is used for all functions.

In Appendix A.1.4 and A.1.5 where the Numerov method is explained, step

doubling and step halving for a Numerov iteration is introduced. The derived

formulas are used for the calculation of the wavefunctions on the given grid.

3.4.2 Choice of rmax and rmin

The maximum value of r is chosen such that the interaction potential is negligible

with respect to the trapping potential at r = rmax. For lower energies this can be

estimated as
1

r4
maxαr

2
max

� 1, or rmax = 6

√
1
αε
. (3.44)

Here, ε � 1 gives the approximate numerical accuracy. For higher energies one

also must make sure that E � αr2
max, because the Numerov method requires

rmax to be far into the classically forbidden region, where the wavefunction decays

exponentially and has a very small amplitude. At the inner boundary r = rmin,

the asymptotic differential equation of Bessel type must hold. That is(
l(l + 1)
r2
min

− 1
r4
min + αrmin

)
� E,

or(
l(l + 1)
r2
min

− 1
r4
min + αrmin

)
= E/ε.

(3.45)

We set ε = 10−6 for the calculations in this thesis.

3.4.3 Asymptotic Behavior of the Wavefunctions

For simplicity we first focus on the special case l = 0, when there is no centrifugal

barrier. In the asymptotic limit of r → 0, the trap and energy term can be

neglected and the radial differential equation becomes of the form[
∂2

∂r2
+

1
r4

]
ψ(r) = 0. (3.46)

The two linearly independent solutions of this second order differential equation are

ψ1 ∼ r cos(1/r) and ψ2 ∼ r sin(1/r). This is also the asymptotic form of the pair
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functions in Equation (3.7) associated with the 1/r4 potential of quantum-defect

theory of atom-ion collision, as discussed in Section 3.2. A particular solution is

then determined by the quantum-defect parameter ϕ0:

ψ(r) = Ñr

(
cos(ϕ0) sin

(
1
r

)
+ sin(ϕ0) cos

(
1
r

))
= Ñr sin

(
1
r

+ ϕ0

)
. (3.47)

Including the centrifugal barrier for l ≥ 0 the asymptotic differential equation is

the Bessel equation [
∂2

∂r2
+

1
r4
− l(l + 1)

r2

]
ψ(r) = 0, (3.48)

whose two linearly independent solutions are given by the spherical Bessel func-

tions ψ1 ∼
√
r Jl+1/2(1/r) and ψ2 ∼

√
rYl+1/2(1/r). The asymptotic wavefunc-

tion

ψasymp(r) = N
√
r

(
Jl+1/2

(
1
r

)
+ tan(δ)Yl+1/2

(
1
r

))
(3.49)

contains the short-range phase in the coefficients of a linear combination of those

functions. The mixing angle δ is connected to the short-range phase ϕ0. In the

limit r → 0, ψasymp(r) must approach Nr sin(1/r + ϕ0), since in this limit the

centrifugal barrier becomes negligible and the differential Equation (3.48) becomes

Equation (3.46). This constraint fixes δ to equal (−ϕ0 − lπ/2). Including the

centrifugal barrier in the asymptotic solution allows larger values of rmin which

saves computing time and memory usage, since one has to resolve less of the very

fast oscillations at a small r.

3.4.4 Determination of Eigenenergies

The solution of the radial Schrödinger equation in our model has to fulfill a bound-

ary condition at r = 0 given by the short-range phase. This boundary condition

has an influence on the eigenenergies as well. Eigenenergies are searched for be-

tween a minimal energy Emin and a maximal energy Emax. To make sure that

enough states are found, Emax is about 80~ω. Emin should be sufficiently nega-

tive to allow several bound states for lower l. For a given partial wave l a trial

energy E is set and Equation (3.39) is solved. As described in Section 3.4, first a

backwards integration starts from a large initial rmax. Because of the exponential

decay of the wavefunction one can set ψ(rmax + h) to zero, while ψ(rmax) 6= 0.
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Figure 3.3: Typical aspect of the help function G defined in Equation (3.50). The

function passes the roots n, n − 1 and n + 1 with positive slope. Be-

tween the roots G has poles. This figure was created with an angular

momentum of l = 10.

With the resulting end condition R̃N+1 =∞, the Numerov formula is iterated to

a certain matching point rM in the classically allowed region and then stopped.

Then, the left hand side of the wavefunction is calculated starting at rmin = r0

with the initial condition given by the asymptotic solution of Equation (3.49),

R0 = ψasymp(r1)/ψasymp(r0). Iteration of the Numerov formula goes up to the

chosen matching point where left and right solution are fitted. While in principle

the choice of rM is arbitrary, it is advantageous to use the first maximum/minimum

of the wavefunction, seen from the right side. At this point the Numerov ratio R̃n

first becomes smaller than one in the backwards iteration.

A help function G(E) matching the left- and right-hand solution is defined as

G(E) =
1

R̃M+1

−RM =
(
ψ(rM + h)
ψ(rM )

)
right

−
(
ψ(rM + h)
ψ(rM )

)
left

. (3.50)

G is zero if right and left hand solutions are the same, which is the case if and

only if E is an eigenvalue of the Hamiltonian H
(0)
rel for a fixed short-range phase.

A typical form for G is depicted in Figure 3.3. It has poles between each root,

where the left hand solution becomes zero. If defined as in Equation (3.50), G(E)

always passes a root with positive slope, and at the poles it jumps from plus to
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minus.

The roots of G are located roughly with sweep over energy, which detects sign

changes of G. If in addition the slope is positive, a root must lie in between the

values of different sign, and one can apply standard root finding routines. The

routine we use begins with three bisection iterations and then finds the root with

a high precision of nine digits with the faster secant method. The secant method

can be unstable, so if it starts to diverge, some more bisections are performed,

since bisection cannot fail. It is important to note that the precision of nine digits

is not the computational accuracy of all our algorithms, because the G function we

calculate is much less accurate (the goal is 10−6 relative error tolerance). These

two rootfinding routines can be found in [26] with example implementations in the

C programming language. The special choice of rM has its advantage in the fact

that the roots of G are located in the middle between two poles with this choice.

Choosing a different rM can cause the root to come close to a pole. A root in

the vicinity of a pole is not that easy to handle, since typically the secant method

diverges in this case. Details of this procedure can be read in [25].

3.5 Solution for the General Case d 6= 0 in a Single

Channel Model

In this section we find the eigenenergies and wavefunctions for the general case

d 6= 0. In doing so we obtain the energy spectrum of the relative Hamiltonian

showing the eigenergies of the system as a function of the trap displacement d. This

spectrum is very useful to understand the dynamics of the controlled collision, since

trap induced shape resonances can be seen as avoided crossings in the spectrum.

For the sake of clarity we rewrite the Hamiltonian of Equation (2.3):

H
(d)
rel = H

(0)
rel − µω2d z +

1
2
µω2d2. (3.51)

3.5.1 Choice of the Basis

The task is to find eigenenergies and eigenfunctions of the relative Hamiltonian for

each trap separation d that is of interest. This can be done in position representa-

55



3 Quantum Defect Theory for Atom-Ion Collision

tion, where the Schrödinger equation is a second order differential equation with

three coupled components (x,y and z). However, solving these differential equa-

tions is difficult and computationally expensive. It is more convenient to choose an

orthonormal basis. For that purpose we use the wave functions Ψ(0)
nl (r) for d = 0.

The eigenfunctions for the general case d 6= 0 are decomposed in that basis:

Ψ(d)(~r) =
∑
nl

cnlΨ
(0)
nl (~r). (3.52)

This choice is convenient, since Ψ(0)
nl (r) already diagonalizes the part H(0)

rel of Equa-

tion (3.51). A wavefunction for d 6= 0 is then characterized by a set of coefficients

cnl. The task is now shifted to the calculation of basis functions and finding the

matrix elements of the Hamiltonian in the chosen basis.

The Hamiltonian is spherically symmetric for d = 0. The eigenfunctions can be

separated into angular and radial part (see Equation (3.31)), which makes them

easier to calculate than functions for d 6= 0:

Ψ(0)
nl (r) = ψnl(r)Yl0(r̂)/r.

The solutions for the angular part are spherical harmonics Yl,ml(θ, φ), since the

interaction potential only depends on the radial coordinate r. It is sufficient to

consider the projection of the angular momentum ml = 0, because for our choice of

the coordinate frame (d = dêz) the Hamiltonian does not depend on the azimuthal

coordinate φ. The radial part of the wavefunction, ψnl(r), is found by solving the

radial equation(see Section 3.4).

As the basis is infinitely large, one has to truncate it at a minimal energy

and at a maximal energy. One has to make sure that the basis is large enough

to decompose all needed states, especially for large d. In our case, a maximal

energy of Emax = 80~ω is sufficient. For the trap induced shape resonances,

one needs some molecular bound states close to threshold (E = 0). We use all

bound states between E = 0 and a minimal negative Energy Emin = −1000E∗

(the characteristic energy scale for the bound states is E∗, while the level spacing

above the threshold is given by ~ω).
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3.5.2 Derivation of a Matrix Equation

On order to diagonalize the Hamiltonian for d 6= 0 the Schrödinger equation(
H

(0)
rel − µω2dz +

1
2
µω2d2

)
Ψ(d)(r) = E(d)Ψ(d)(r) (3.53)

has to be solved and for that we use the eigenbasis of H(0)
rel . The basis functions are

characterized by the quantum numbers n and l. We now sort the wavefunctions

in ascending order with respect to the energy eigenvalue. We now re-label the

eigenfunctions and eigenenergies with the new index k that replaces the quantum

numbers n and l, for convenience.

We find a set of equations for determining the eigenenergies E(d) and the vec-

tor of coefficients {ck} characterizing the corresponding eigenfunction by substi-

tuting Equation (3.52) into Equation (3.51). We use the eigenvalue equation

H
(0)
rel Ψ(0)

k (~r) = E
(0)
k Ψ(0)

k (~r) to obtain

∑
k

ck

(
E

(0)
k − µω2dz +

1
2
µω2d2

)
Ψ(0)
k (~r) = E(d)

∑
k

ck.Ψ
(0)
k (~r). (3.54)

We multiply Ψ0
k′(~r) from the left and integrate over r to obtain

ck′

(
E

(0)
k′ +

1
2
µω2d2

)
+ µω2d

∑
k

ck

∫
d3rΨ∗k′(~r)zΨk(~r) = E(d)ck′ . (3.55)

Now we introduce the dipole matrix element

Mk′k =
∫

d3rΨk′(r)∗zΨk(r)

=
∫ ∞

0

r3R∗nl(r)Rn′l′(r)dr

×
∫ 2π

0

∫ π

0

cos(θ) sin(θ)Ylm(θ, φ)∗Ylm(θ, φ)dθdφ.

(3.56)

Equation (3.55) is a matrix equation that can be written in the form∑
k

Hk′kck = E(d)ck′ , (3.57)

where

Hk′k =
(
E

(0)
k′ +

1
2
µω2d2

)
δk′,k − 2µω2dMk′k, (3.58)
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or

Hc = E(d)c, (3.59)

where H is a matrix, c is an eigenvector and E(d) is an eigenvalue. All linear

independent solution vectors {cj} can be combined to form the matrix C. In

doing so Equation (3.59) becomes

HC = E(d)C, (3.60)

where E(d) is a diagonal matrix containing the eigenenergies E(d)
j . This matrix

equation can be solved using standard matrix diagonalization routines in order to

obtain E(d) and C. We can plot all the eigenenergies as a function of d to obtain the

energy spectrum (or correlation diagram), in which we observe avoided crossings at

the locations of trap-induced shape resonances (see Figure 2.8). The eigenstates

for d 6= 0 are obtained in terms of a set of coefficients that can be substituted

to Equation (3.52) (using also Equation (3.31)) to obtain the wavefunctions in

position representation. These coefficients can also be used for the simulation of

the time evolution of the system (see Chapter 4).

3.6 Formulation of a Single Channel Model

The advantage of a single channel model is the fact that a scalar wavefunction is

to be computed instead of an N ×N matrix of wavefunctions. In this section an

effective single channel model is extracted from the multichannel case. The result

is an effective short-range phase that can be used in a single channel formalism to

obtain the same result as the multichannel formalism would provide.

3.6.1 Short-Range Phase as a Function of Energy

The multichannel formalism described in Section 3.2 is based on quantum-defect

theory. The MQDT functions tan νl(E) and N l(E) play a central role. As shown

in Section 3.2.1 one can define the pair functions in Equation (3.7) in such a way

that the function νl(E) equals the short-range phase ϕl(E). The normalization

function N l(E) = 1/(∂ϕl(E)/∂E) can also be related to the short-range phase (see

58



3.6 Formulation of a Single Channel Model

Equation (3.11)). The short-range phase can be calculated numerically by solving

Equation 3.39 in a single channel picture for dense energy points. In the radial

equation one can set E∞ = 0; the offset is given by the hyperfine splitting energy

and can be added later. Energies below zero then correspond to molecular bound

states, while energies larger than zero belong to trap vibrational states. We

present here a stable way of extracting the short-range phase with the Numerov

method. The wavefunction ψn must be iterated from rmin to rM , and from rmax

to rM . This makes it a requirement to fix the short-range phase as an boundary

condition for the wavefunction at rmin. On the one hand we need to fix a short-

range phase on the wavefunction and on the other hand we want to obtain precisely

this phase from the calculation. This problem can be solved writing the actual

wavefunction ψ(r) as a linear combination of ψ1(r) and ψ2(r)

ψ(r) = c1ψ1(r) + c2ψ2(r). (3.61)

We choose the pair of basis solutions ψ1,2 in a way that their asymptotic forms

are

ψ1,2(r) r→0−→ r sin(1/r + ϕ1,2), (3.62)

We fix the short-range phases ϕ1 = 0 and ϕ2 = π/2 of these basis functions and

obtain the real value by a linear combination of ψ1 and ψ2. One behaves as a

sine function, the other as a cosine function, at r → 0, which are clearly linearly

independent.

The formula of Liouville (see e.g. [27]) states that if two solutions of a linear

differential equation are linearly independent at one point r0, they will be linearly

independent on every other point of the considered interval. Therefore ψ1 and ψ2

are linearly independent on the right of the centrifugal barrier. In terms of Bessel

functions the two solutions become

ψ1,2(r) r→0−→ √r
(
cos(−ϕ1,2 − lπ/2)Jl+1/2 (1/r) + sin(−ϕ1,2 − lπ/2)Yl+1/2 (1/r)

)
,

(3.63)

and this asymptotic behavior is valid before the sine-like asymptotic form is valid in

the limit of r → 0. Those two functions are propagated with the Numerov method

to a matching point rM . Propagating backwards, the solution ψ+ is found with
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the usual initialization ψ(rmax + h) = 0, ψ(rmax) 6= 0. In general neither ψ1 nor

ψ2 match ψ+. However, a linear combination of ψ1 and ψ2 will match the right

hand side ψ+, so that

c1ψ1(r) + c2ψ2(r) = c3ψ
+(r). (3.64)

Evaluating this equation at r = rM and r = rM + h and then dividing the two

equations allows us to determine the ratio of the coefficients c2/c1:

C ≡ c3ψ
+(rM )

c3ψ+(rM + h)
=

c1ψ1(rM ) + c2ψ2(rM )
c1ψ1(rM + h) + c2ψ2(rM + h)

, (3.65)

c2
c1

=
ψ1(rM + h)
ψ2(rM + h)

ψ1(rM )
ψ1(rM+h) − C
− ψ2(rM )
ψ2(rM+h) + C

. (3.66)

Looking at the asymptotic form of the functions again, c2/c1 can be related to

the actual short-range phase ϕ that according to Equations (3.22) and (3.47)

characterizes the solution at r → 0 as sin(1/r + ϕ).

ψ(r) = c1ψ1(r) + c2ψ2(r), (3.67)

ψ(r) r→0−→
√

2/πr (c1 sin (1/r) + c2 cos (1/r)) (3.68)

we set c1 = cos δ and c2 = sin δ to obtain

ψ(r) r→0−→
√

2/πr (cos δ sin (1/r) + sin δ cos (1/r))

=
√

2/πr (sin (1/r + δ)) , (3.69)

ϕ = δ = arctan(c2/c1) (3.70)

Note that for the evaluation of ψi(rM+h) in Equation (3.66) both functions should

start with the same amplitude at rmin, which is secured by using cos δ and sin δ as

coefficients in Equation (3.49) instead of 1 and tan δ.

The phase ϕ is given in the interval [−π/2, π/2]. Actually, ϕ(E) is monotonically

increasing in E and between two eigenenergies φ(E) increases by π. Because we

calculate the tangent and then apply the arcus tangent, jumps occur at certain

energies. One can remove these jumps by adding π to the function on the right side

of the jump. If done so, the short-range phase can be plotted as a function of energy

like in Figure 3.4. One can observe in Figure 3.4b that for higher partial waves the
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3.6 Formulation of a Single Channel Model

phase increases in well defined steps. This can be explained by the height of the

centrifugal barrier, which can be estimated as (l(l+1))2/4 E∗ in the characteristic

unit of energy for atom-ion interaction. In the ultracold regime the centrifugal

barrier for large l is much higher than typical particle energies (for l = 10 it is

3000E∗). The eigenstates at energies larger than zero are trap states located on the

right of the centrifugal barrier. Tunneling through the centrifugal barrier is very

weak and therefore the molecular part of the wavefunction is strongly suppressed.

The trap part of the wavefunction is not sensitive to the short-range phase, so the

eigenenergy does not depend on it. Reversely the phase does not depend on energy.

On the other hand, the phase must increase by π between two eigenenergies and

this is why the steps occur. The phase is independent of energy on the plateaus

between the steps. For energies higher than the centrifugal barrier the steps vanish

because the short range part of the wavefunction is no longer suppressed by the

barrier. This can be seen for the example of l = 4 where the centrifugal barrier is

small (100E∗).

3.6.2 Choice of Species and Computational Basis

This section addresses the question which atom and ion species are to be used to

perform explicit numerical simulations on the system. Our choice of the species

of the atom and the ion is motivated by ongoing experiments in Innsbruck using

Barium ions and Rubidium atoms for ultracold collisions [9]. We use the isotopes
87Rb and 135Ba+, since their atomic levels have a hyperfine structure and qubit

states are to be encoded in hyperfine states. In this section we also choose the com-

putational basis out of the manifold of hyperfine states and motivate the choice.

The hyperfine structure of the atom and ion isotopes is depicted schematically in

Figure 3.5. Both structures are similar, because the nuclear spins ia,i = 3/2 are

equal. The hyperfine splitting energies are EHFi /h = 7.29×109Hz for Barium and

EHFa /h = 6.83×109Hz for Rubidium (see e.g.[28] and [19] for isotope information).

Collisions that scatter atom and ion out of the computational basis are a loss

mechanism and result in failure of any gate process. Furthermore, if a phase gate

is desired, collisions that change the qubit state are to be avoided. We assign the
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Figure 3.4: Short-range phase as a function of energy for the partial waves l = 0,

l = 4 and l = 10. The energy axis is split into negative (left panel)

and positive (right panel). Once the quantum-defect parameter ϕ0

is specified, one can find a eigenenergy at ϕ(E) = ϕ0 + nπ. The

bound states level spacing (negative energies) increases exponentially

the deeper the state is bound. The level spacing in the trap part of

the potential (positive energies) becomes equidistant (harmonic trap).

For higher partial waves the energy is independent on the short-range

phase, since ϕ(E) shows a step structure.

qubit states |0〉i,a and |1〉i,a to hyperfine states of atom and ion in such a way

that the combined two-qubit computational basis states |00〉i,a, |01〉i,a, |10〉i,a and

|11〉i,a are each coupled to the smallest possible manifold of non-computational

basis states. For that purpose, it is convenient to pick the states with lowest and

highest energy in Figure 3.5 for the ion as well as for the atom:

|0〉i,a = |fi,a = 1,mfi,a = 1〉i,a
|1〉i,a = |fi,a = 2,mfi,a = 2〉i,a.

(3.71)

In the present setup, without magnetic field, mf is the quantum number of the

projection of the total spin f on the z axis, which is the axis of trap displacement

and the symmetry axis. The total projection quantum number mf = mfi + mfa
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Figure 3.5: Hyperfine structure of the atom (left) and of the ion (right), 87Rb and
135Ba+ both have a nuclear spin of ia,i = 3/2, the hyperfine splitting

energies are different.

is conserved, so in principle a channel can be coupled to another channel if their

mf is the same. Two qubit channels are constructed by combining single qubit

hyperfine states. We name a channel according to its quantum numbers in the

order |fi,mfi , fa,mfa〉:

|00〉 = |fi=1,mfi =1, fa=1,mfa =1〉 = |1, 1, 1, 1〉 mf = 2

|01〉 = |fi=1,mfi =1, fa=2,mfa =2〉 = |1, 1, 2, 2〉 mf = 3

|10〉 = |fi=2,mfi =2, fa=1,mfa =1〉 = |2, 2, 1, 1〉 mf = 3

|11〉 = |fi=2,mfi =2, fa=2,mfa =2〉 = |2, 2, 2, 2〉 mf = 4.

(3.72)

For this choice of hyperfine qubits the |11〉 channel is completely isolated because

no other channel has a total spin of mf = 4, while the other qubit states can be

influenced by other channels.

The channels with mf = 2 (including the |00〉 computational state) are:

|1, 1, 1, 1〉 |1, 1, 2, 1〉 |2, 1, 1, 1〉 |2, 1, 2, 1〉
|1, 0, 2, 2〉 |2, 2, 1, 0〉 |2, 0, 2, 2〉 |2, 2, 2, 0〉.

(3.73)

For an ultracold collision of an atom and an ion that are prepared in the incoming
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channel |00〉, all seven other mf = 2 channels are closed. That means the threshold

energy of their potentials lies above the threshold of the incoming channel, because

of the hyperfine splitting energy (of the atom or the ion or both). This hyperfine

splitting is much larger than all kinetic and potential energies considered in an

ultracold collision and therefore only bound states of closed channels can influence

the dynamics of the open channel by resonances.

For mf = 3 the channels (including the |01〉 and |10〉 computational states) are

|1, 1, 2, 2〉 |2, 2, 1, 1〉 |2, 1, 2, 2〉 |2, 2, 2, 1〉, (3.74)

note here that |01〉 and |10〉 are in principle coupled. The threshold energy of the

|10〉 potential is shifted by the difference of the hyperfine splittings EHFi −EHFa > 0

with respect to the |01〉 threshold. Therefore if atom and ion are prepared in

the |10〉 channel, there is a second open channel. Not only the molecular bound

states of this channel, but also vibrational states, can lead to resonances between

the two open channels, resulting in possible spin-changing processes. In a spin-

changing collision, mi and ma change while mf is conserved. Since vibrational

states have a smaller level-spacing than molecular states, it is not unlikely that one

vibrational state of the |01〉 channel hits the energy of any state of the |10〉 channel.

This definitely limits the use of a single channel picture of four non coupled qubit

channels, though a single channel model can be applied in the special case of similar

singlet and triplet scattering lengths. This model is described in Section 3.7.

3.6.3 Parametrization of the Quantum-Defect Matrix Y

Once the hyperfine states are specified, one can parametrize the quantum-defect

matrix at short distances r0 . r � R∗. We explain this by giving the example of

the four coupled channels of the mf = 3 subspace for the 135Ba+ ion and the 87Rb

atom from Section 3.6.2. We begin with Table 3.1, listing the quantum numbers

of the states of this subspace. The four states in hyperfine representation are

found on the left side and the four states in is representation are on the right side.

The hyperfine states are labeled such that β1, β2 correspond to the qubit channels

|01〉,|10〉, respectively. Note that in the is basis, one channel has the total electron

spin s = 0 and therefore is a singlet state, while the other three channels are triplet
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fi mfi fa mfa i s f mf

β1) 1 1 2 2 γ1) 3 0 3 3

β2) 2 2 1 1 γ2) 3 1 3 3

β3) 2 1 2 2 γ3) 3 1 4 3

β4) 2 2 2 1 γ4) 3 1 4 3

Table 3.1: Quantum numbers of the four states of the mf = 3 subspace for 135Ba+

ion and 87Rb atom. The left(right) block shows the states in hyperfine

(is) representation. Note that the state βi is not equal to γi, but a

linear combination of all the γ channels. This linear combination is

determined by the frame transformation Uβγ .

states with s = 1. Accordingly, the quantum-defect matrix in is representation

has the form

Y(is) ≡


a−1
s 0 0 0

0 a−1
t 0 0

0 0 a−1
t 0

0 0 0 a−1
t

 . (3.75)

The frame transformation described in Section 3.2.2 yields the quantum-defect

matrix in the hyperfine basis

Y = UY(is)U =


3

8as
+ 5

8at
3

8as
− 3

8at
−
√

3
8as

+
√

3
8at

−
√

3
8as

+
√

3
8at

3
8as
− 3

8at
3

8as
+ 5

8at
−
√

3
8as

+
√

3
8at

−
√

3
8as

+
√

3
8at

−
√

3
8as

+
√

3
8at

−
√

3
8as

+
√

3
8at

1
8as

+ 7
8at

1
8as
− 1

8at

−
√

3
8as

+
√

3
8at

−
√

3
8as

+
√

3
8at

1
8as
− 1

8at
1

8as
+ 7

8at

 .

(3.76)

We observe that the off-diagonal elements that represent the coupling between the

channels are small for similar singlet and triplet scattering lengths. They vanish

for as ≡ at.
This procedure is repeated analogously for the mf = 2 subspace, including the

|00〉 channel. The channel |11〉 is the only state in the subspace mf = 4 and it is

a triplet state in is representation. The quantum-defect matrix Y = 1/at in that

case is a scalar.

65



3 Quantum Defect Theory for Atom-Ion Collision

3.7 Single Channel Models for Four Qubit Channels

for the Ba+ Rb System

In this section we present and discuss a single channel model for the collision of a
135Ba+ ion and a 87Rb atom with the qubit states specified in Section 3.6.2. The

choice of species must be made in order to perform concrete numerical calculations.

It does not restrict the applicability of the developed ideas to other systems. One

single channel model is created for each qubit channel |00〉, |01〉, |10〉 and |11〉 as

specified in Section 3.6.2. Here, we only consider the special case of d = 0 in the

calculation of eigenenergies and states. This is justified, since the general solution

for d 6= 0 can be written as a linear combination of the d = 0 states given in

Equation (3.18). If a mixing of channel states occurs for d = 0, then it is also true

for the d 6= 0 general case.

The multichannel eigenvalue condition
∣∣Y + tanνl(E)

∣∣ = 0 (Equation (3.15)) is

solved to find the d = 0 eigenenergies of the multichannel problem. The quantum-

defect matrix Y is determined as in Section 3.6.3 where specific short-range phases

are assumed. The diagonal elements of the matrix νl(E) = (νli(E)δij) equal

the short-range phase νli(E) = ϕl(E − E∞i ) determined in Section 3.6.1. The

energy splitting between the asymptotic channels enters as E∞i . The matrix A is

determined by Equation (3.14). A is given by the null space of
[
Y + tan νl(E)

]
.

Typically, for an eigenvalue En determined from Equation (3.15), only a single

vector of A is nonzero and this vector determines the eigenstate. This vector of

A is denoted by bn and gives the mixing of the asymptotic hyperfine states. For

the case of four channels we give an example

bn =


0.9999

10−4

10−10

10−9


}
→ dominant channel

→ small admixture of other channels
(3.77)

in which one channel is dominant and therefore decoupled. The other channels

disturb the state with a maximal admixture of 10−4. If all states {bn} have

this maximal admixture, a single channel model can be formulated that has the

accuracy of 10−4. In this case we determine the short-range phase corresponding
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to the energy of the lowest vibrational state with the help of the monotonical

function ϕl(E) (see Figure 3.4). This phase defines the effective short range phase

ϕl0 for the single channel model. If this phase is used in a single channel model as

a quantum-defect parameter for the wavefunctions, all multichannel eigenenergies

(found with Equation (3.15)) are reproduced by this model with a certain accuracy.

The single channel eigenenergies are found at the phases ϕl0 + nπ in the function

ϕ(E). Here we assume, that the quantum defect parameter does not depend on

energy. We verify this statement by comparing the multichannel eigenenergies

with the single channel eigenenergies in the regime we are interested in.

This procedure is repeated for every partial wave, which in general leads to an

l-dependent quantum-defect parameter ϕ0(l). We only need to find ϕ0(l) up to

a certain angular momentum threshold l0 where the centrifugal barrier becomes

much higher than the considered particle energies. For larger l the energies become

independent of the short-range phase and we can set the phase to an arbitrary

value, still obtaining the correct states and energies. If bn on the other hand is

not dominated by one channel, for example

bn =


0.510

0.481

0.009

10−9




→ two completely mixed channels

→ two channels slightly disturb

(3.78)

then a mixing with other channels takes place and a single channel effective de-

scription is excluded.

Two opposite situations for singlet and triplet scattering lengths are discussed

in the following. First we assume that as and at have opposite signs, for example

as = −R∗ and at = R∗. In the second situation we assume similar as and at, for

example as = 0.8R∗ and at = 1R∗. When the singlet and triplet scattering length

are equal (as = at), the quantum-defect matrix is diagonal in is representation as

well as in the hyperfine basis. No couplings occur and also the eigenenergies and

eigenstates are the same for different channels.
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3.7.1 Opposite Sign of Singlet and Triplet Scattering Length

We calculate multichannel energies and states for the example as = −R∗ and at =

R∗. An effective single channel model for the |00〉 channel can be extracted. The

seven closed channels disturb the incoming channel wavefunction with terms of the

order of 10−5 to 10−6 or lower, depending on the partial wave. The |11〉 channel is

decoupled in any case; since |11〉 is a triplet state in the is basis, the corresponding

single channel short-range phase is calculated from tanϕ0 = −R∗/at, which yields

ϕ0 = −π/4=̂3/2π for all partial waves.

The remaining two computational basis states |01〉 and |10〉 are decoupled from

the two non-computational basis states of the corresponding mf = 3 subspace, but

|01〉 and |10〉 are mixed. For the energetically lower lying state |01〉 the mixing is

not very strong (∼ 10−4), since the bound states of the higher energetic channel

|10〉 that could influence the states of |01〉 have a much larger level spacing than

the vibrational states. A single channel model for |10〉 is excluded, since in the

energy range considered many vibrational trap states of |01〉 influence the |10〉
channel and the two cannot be separated.

In this case one can either perform the full four channel calculation or create

an effective two-channel model that includes the couplings between |01〉 and |10〉
channels. We do not consider this more complicated case in this thesis. However,

the case of opposite scattering lengths is very interesting, since it leads to large

differences in the dynamics that can be used for fast gates, and this problem will

be addressed in the future.

Controlling the two-channel dynamics simultaneously offers the possibility of a

swap gate as well as a phase gate. The corresponding truth tables are

|00〉 Swap Gate−→ |00〉

|01〉 −→ |10〉

|10〉 −→ |01〉

|11〉 −→ |11〉,

(3.79)
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3.7 Single Channel Models for Four Qubit Channels for the Ba+ Rb System

|00〉 Phase Gate−→ |00〉

|01〉 −→ |01〉

|10〉 −→ |10〉

|11〉 −→ −|11〉.

(3.80)

The swapping of |01〉 to |10〉 states while |11〉 and |00〉 remain unchanged is con-

trasted to the phase gate that isolates the two-qubit states and gives a phase only

to the |11〉 channel. The phase gate in combination with single-qubit transforma-

tions is a universal gate for quantum computing. The square root of the swap gate

is an entangling two-qubit gate as well [29], and therefore universal in combination

with single-qubit gates.

3.7.2 Similar Singlet and Triplet Scattering Lengths

In the situation of similar singlet and triplet scattering lengths one can find an

effective model of four isolated channels for the qubit states. Since the channels

are isolated one can attempt a two-qubit phase gate (see Equation (3.80)). The

admixture of other channels depends on the structure of the levels. The level spac-

ing of the trap states is dependent on the trapping frequency, while the hyperfine

splitting energy that shifts the potential curves with respect to each other depends

on atom and ion species. If, in the multichannel picture, two states occur that have

very similar energy, there is a large possibility that a channel mixing takes place

in the corresponding states. On the other hand, if the levels in the multichannel

picture are well separated, it is more likely that the corresponding states can each

be assigned to isolated channels. This also has to be investigated for the specific

example.

The example we choose is as = 0.8R∗ and at = 1R∗. The energy dependence

of the short-range phase in the energy range typical for ultracold collisions is

negligible. The effective phase depends on the partial wave l(see Figure 3.6). the

differences between the channels are not large, because as and at are similar. The

|11〉 channel is decoupled by definition and the |00〉 channel also decouples, since

none of the bound state energies of the seven closed channels meet the levels of
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Figure 3.6: Effective single channel short-range phases for 0 ≤ l ≤ 10 found for a
135Ba+-87Rb collision in traps with ω ≈ 2π×26.9kHz. The singlet and

triplet scattering lengths are assumed as as = 0.8R∗ and at = 1R∗.

For l > 10 the phase is arbitrary in the energy regime E . 80~ω.

The phase for l = 4 in the |00〉 channel differs from the phases for the

other partial waves, but indeed produces the respective multichannel

energies very accurately.

the open channel. The admixture of the closed channels is of the order of 10−6

to 10−8. If the particles are prepared in the |01〉 channel, all other channels of

the mf = 3 subspace are closed. We find a single channel model for the |01〉
channel, and the maximal disturbance of the |01〉 states by other channels is of

the order of 10−4, which mostly originates from deep bound states of the |10〉
channel. The single channel model for the |10〉 channel is the least accurate of

the four. The states of the |10〉 channel are mixed with high vibrational states of

the |01〉 channel typically to the order of 10−3. The maximal admixture found is

1.45 × 10−2 for the state with the energy E = 118E∗ of the partial wave l = 4.

This state is included in the set of basis functions used both for calculation of the

energy spectrum in Section 3.5 and for time evolution in Chapters 4 and 5. The

admixture of 1.45 × 10−2 gives an estimation of the error of the effective single

channel model describing the controlled collision of a 135Ba+ ion and a 87Rb atom

in ω ≈ 2π × 26.9kHz traps. This model is used to demonstrate a phase gate with

the given system provided that scattering lengths are similar. The ideas presented

here can in principle be applied on any alkali atom plus alkaline earth ion system.
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4 Controlled Atom-Ion Collision in a Single

Channel Model

4.1 Time Dependent Problem

In this chapter we study the dynamics of the ultracold atom-ion collision in a

single channel model. In Chapter 3 the time independent Schrödinger equation was

solved in order to find eigenstates and eigenvalues. The problem now becomes time

dependent. The time evolution of a state |Ψ〉 is governed by the time dependent

Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = H(t) |Ψ(t)〉. (4.1)

There are many ways to introduce time dependency in the collision. For example,

the trapping frequencies could change in time, or one could apply a time dependent

magnetic field B(t) to change the scattering lengths dynamically. In this context

Feshbach resonances provide an opportunity to control the outcome of a collision.

In this work, the quantity we change in time will be the trap displacement d(t)

to make use of trap-induced shape resonances. Since this approach uses inherent

features of the system, it is particularly simple and interesting 1.

A quantum gate can be performed by bringing the ion trap close to the atom

trap with a certain speed, and by finally separating them again. The distance d(t)

between the trapping potentials is the only parameter to be controlled. For an

illustration of this controlled collision see Figure 2.1.

1It is possible to further control the interaction by additional external (magnetic) fields. This

more complicated approach is not followed in this thesis.
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4 Controlled Atom-Ion Collision in a Single Channel Model

4.2 Time Evolution Using a Basis

We decided to use the basis of eigenfunctions for d = 0 for time evolution. At

r approaching zero the potential becomes very deep, which causes the wavefunc-

tions to oscillate very fast. The required spatial resolution for following these

oscillations is too high to reasonably apply time evolution in position or momen-

tum representation. Instead, one set of basis functions {|Ψ(0)
k 〉} is calculated as

described in Section 3.4 for d = 0. These functions are used to decompose an

arbitrary state, which is then characterized by a set of coefficients ck (see Sec-

tion 3.5). Schrödinger’s equation translates to a set of differential equations for

these coefficients. An alternative basis would be an adiabatic one, consisting of the

instantaneous (time dependent) eigenstates of the Hamiltonian. One advantage of

an adiabatic basis would be that fewer states are required for accurate numerical

time evolution, since only the lowest energy states are populated. On the other

hand, the differential equations for the coefficients are more complicated, both

in the derivation and the final form. Thus we chose the time independent |Ψ(0)
k 〉

basis. The basis functions |Ψ(0)
k 〉 are sorted according to their eigenenergy E(0)

k in

ascending order.

In the framework of quantum-defect theory the interaction potential is replaced

with −C4/r
4. Since the functions are singular at the origin in this case, they

are truncated at a minimal distance rmin. If rmin is chosen small enough, the

produced error is small, because the radial functions amplitude is proportional to

r at small distance. In the effective single channel model developed in Chapter 3,

a boundary condition—the short-range phase—is imposed on the wavefunction at

rmin. Figure 4.1a shows two typical radial functions for d = 0. One can see that

states corresponding to high energy Ek, e.g. trap states, are localized far away from

the origin r = 0. States with low or negative energy, e.g. molecular states, have

higher probability amplitude at small r.For larger d, the eigenstates are similar

to harmonic oscillator states, because the atom and the ion are localized in their

separated traps. In Figure 4.1b the trap ground state for d = 1.5 is depicted. In

the relative coordinate the total wavepacket is then localized around the distance

r = d. A large number of d = 0 basis functions are needed to decompose these
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Figure 4.1: Typical radial wavefunctions for d = 0 (left panel) and d > 0 (right

panel). A molecular state is located at small r, a vibrational state

reaches to larger r and is similar to a shifted harmonic oscillator state.

For large angular momenta the short-range part is suppressed. The

wavefunctions of the trap vibrational ground state for d = 1.5R∗ (right

panel) is located around the trap distance d. For the plot r goes in the

z-direction (θ = 0). To decompose the states for large d, many states

for d = 0 are needed.

harmonic oscillator states for large d with a small truncation error.

4.2.1 Differential Equation for the Coefficients ck

Since the trap distance d(t) is a function of time, the Hamilton operator becomes

time dependent:

H
(d)
rel (t) = H

(0)
rel +

1
2
µω2d(t)2 − µω2d(t)z. (4.2)

The wavefunction is decomposed in the basis

|Ψ(t)〉 =
∑
k

ck(t)|Ψ(0)
k 〉. (4.3)
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4 Controlled Atom-Ion Collision in a Single Channel Model

We substitute this into Schrödinger’s equation, which thereby translates to a cou-

pled differential equation for the coefficients ck:

i~
d
dt
|Ψ(t)〉 = H

(d)
rel (t)|Ψ(t)〉,

i~
∑
k

d
dt
ck|Ψ(0)

k 〉 =
∑
k

ckH
(d)
rel (t)|Ψ(0)

k 〉,

we project on 〈Ψ(0)
k′ | to obtain

i~
d
dt
ck′ =

∑
k

ck

[(
E

(0)
k′ +

1
2
µω2d(t)2

)
δk′,k − µω2d(t)Mk′k

]
. (4.4)

Here, Mk′k = 〈Ψ(0)
k′ |z|Ψ(0)

k 〉 is the dipole matrix element (see also Section 3.5). In

dimensionless units of E∗ andR∗ (the time is given in units of ~/E∗) Equation (4.4)

becomes

i
d
dt
ck′ =

∑
k

ck

[(
E

(0)
k′ + αd(t)2

)
δk′,k − 2αd(t)Mk′k

]
, (4.5)

with α = (~ω/2E∗)2. The set of basis functions and therefore also the set of

differential equations is infinitely large but will be truncated at a finite value

N corresponding to the number of numerically calculated basis functions. The

independence of N with respect to the time evolution has to be tested carefully to

make sure that the basis is sufficiently large and to exclude the possible influence of

truncated functions on the dynamics of the system (see e.g. Appendix A.4). That

is, the population of highest-n basis states must (within a certain error bound)

vanish for all times.

The farther separated the traps are (the larger d is), the more |Ψ(0)
k 〉 states

contribute to the trap ground state, which for our simulations is the initial state for

time evolution. Therefore the application of the d = 0 basis is limited. Depending

on the maximum value of d(t), the size of the basis has to be chosen as small as

possible, since the computational effort strongly increases with growing N .
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4.3 Features of the Dynamics

4.3 Features of the Dynamics

4.3.1 The Landau-Zener Formula

The Landau-Zener theory deals with the time dependent Schrödinger equation of

two coupled states whose energy levels are crossing. The same situation is called

a resonance in Section 2.5. Actually, the levels form an anticrossing or avoided

crossing as depicted in Figures 2.5 and 4.2. We consider a situation in which each

particle is prepared in the ground state of its trap. We decrease the distance d

between the traps with a constant speed and thereby pass an avoided crossing.

The Landau-Zener formula

Pna = exp
(
−2π

|〈Ψ1|H|Ψ2〉|2
~|ḋ ∂E12/∂d|

)
(4.6)

gives a quantitative statement of the probability of nonadiabatic (also called di-

abatic) passage of the avoided crossing that depends on the velocity ḋ, the slope

of the adiabatic energy curves ∂E/∂d and the strength of the coupling given by

the matrix element H12 = 〈Ψ1|H|Ψ2〉. In the following section we compare the

numerical time evolution to the Landau-Zener formula. For the atom-ion system

this formula can be specialized in such a way that only quantities directly available

from the energy spectrum are used. This is done in [10]. Here, |Ψ1〉 = |Ψvib〉 is

an unbound diatomic state (vibrational state) and |Ψ2〉 = |Ψmol〉 is a molecular

state. First, the energy gap ∆E = 2 〈Ψmol|H|Ψvib〉 can be related to the cou-

pling matrix element. Since the molecular state is concentrated around r = 0 ,

its energy varies approximately as Emol(d) = 〈Ψmol|H|Ψmol〉 ≈ E(0) + 1/2µω2d2.

Therefore, ∂Emol/∂d = 〈Ψmol|∂H(d)/∂d|Ψmol〉 ≈ µω2d can be estimated. With

∂Evib/∂d ≈ 0, Equation (4.6) can be rewritten as

Pna = exp
(
−π

2
(∆E)2

~|ḋ|µω2d

)
. (4.7)

For further reading about the original Landau-Zener formula and its derivation we

recommend [22]. Details on the application on atom-ion collision can be found in

[10].
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4 Controlled Atom-Ion Collision in a Single Channel Model

Figure 4.2: Schematic drawing of an avoided crossing of a vibrational state and a

molecular state. The coupling strength can be related to the energy

splitting ∆E. Starting at the unbound state (separated particles) at

large d and decreasing d, in an adiabatic (slow) process we will stay

in the adiabatic eigenstate and reach the molecular state (connected

particles) at small d along the solid line in the energy diagram. If the

same process is executed with a fast speed, we will follow the diabatic

curve (dashed line) and reach the unbound trap state at small d. This

process is reversible.

4.3.2 Numerical Simulation of the Traverse of an Avoided

Crossing

In order to understand the basic features of the dynamics around an avoided

crossing, numerical calculations are performed, assuming typical particle masses

and trapping frequencies. The dimensionless parameter of the radial equation in

our simulation is set to α = 146.046. This parameter corresponds to a specific

trapping frequency for a given atom-ion pairing, as α is determined by the ratio

of characteristic energy of the interaction potential to the oscillator energy of the

trap. The required trapping frequencies are realistic for typical trapped particles

(ω ≈ 2π×27kHz for 135Ba++87Rb and ω ≈ 2π × 100kHz for 40Ca++87Rb), even

though in the laboratory generally ωi 6= ωa.

In the framework of quantum-defect theory, a short-range phase ϕ is imposed
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4.3 Features of the Dynamics

on the eigenfunctions as a boundary condition. In the calculations presented in

the present section this phase is set to ϕ = −π/4. This corresponds to a scattering

length of a = 1R∗, according to Equation (3.25). Scattering lengths usually are

of the order of R∗ (see [7]). The same short-range phase and α correspond to the

channel |11〉 in the two-qubit phase gate presented in Chapter 5.

Using these parameters we investigate a trap-induced shape resonance at d =

1.119R∗, marked in the energy spectrum in Figure 4.3a. This particular resonance

is chosen because it is reasonably strong (for larger d the resonances get weaker)

and on the other hand we still can see the typical behavior of constant energy of

the trap vibrational state, which is not so clear in the inner crossing at d ∼ 0.7R∗.

Further, we want to compare the numerical results to the Landau-Zener formula

which requires a linear d-dependence of the energy curves. The deviations from a

linear slope of the energy curves are not too large.

In the simulated process the trap distance varies linearly in time, going from

large to small d. The passage of the resonance is simulated with three different

velocities ḋ: ḋ = 0.01R∗/(~/E∗) (slow), ḋ = 0.5R∗/(~/E∗) (intermediate) and

ḋ = 10R∗/(~/E∗) (fast). The characteristic unit of velocity is R∗/(~/E∗). For

the 135Ba+-87Rb system this unit corresponds to 2.05mm/s, while for lighter par-

ticles, it corresponds to larger velocities, e.g. for the Ca+-Na system 1R∗~/E∗ =

14.11 mm/s.

For the results presented here we used the Matlab routine ode45 to solve the

differential equations (4.5). The solver ode45 has a built in relative error tolerance

of 10−3 and an absolute error tolerance of 10−6, which is sufficient for the sake of

demonstration, but can also be adjusted.

Figure 4.3b zooms in on the investigated avoided crossing. Figure 4.3a shows

the position of this crossing in the energy spectrum and illustrates the numeration

of the energy eigenstates. The adiabatic eigenstates in the spectrum are labeled

according to their energy in ascending order with the numbers n = 1, 2, . . . , N .

These adiabatic eigenstates change from molecular to unbound states at avoided

crossings. For example the state n = 4 at d = 0 is a molecular bound state

with the energy ≈ −2~ω, Following the energy curve to larger d, a large avoided

crossing with state n = 5 is reached at d ≈ 0.7R∗. On the right side of this
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Figure 4.3: The left panel shows the numbering of the adiabatic energy eigenstates

in the energy spectrum for the short-range phase ϕ = −π/4, the circle

marks the avoided crossing depicted in the right panel. Final and

initial d for the numerical time evolution are marked. The initial state

is n = 3 at d = 1.25R∗. The energy unit is ~ω, where ω ≈ 2π× 27kHz

for the 135Ba++87Rb system.

crossing, the state n = 4 has the character of an unbound trap vibrational state;

its energy stays approximately constant with increasing d. For even larger d state

n = 4 meets state n = 3 in a second avoided crossing at d ≈ 1.2. This avoided

crossing is smaller and not resolved in Figure 4.3a and this is the resonance we

investigate time evolution at. Passing this crossing, the eigenstate n = 4 becomes

a molecular state again and n = 3 becomes the mentioned unbound diatomic state.

This switching from bound to unbound states labeled by n = 4 is continued at the

following avoided crossings.

We simulate the time evolution between the trap distances d = 1.25R∗ and

d = 1R∗ (see Figure 4.3a). At both edges resonances are as far away as possible,

so we expect it to be justified that the influence of resonances at these distances

is negligible. We calculated the curvature of the adiabatic energy curves and they

came out to be relatively low at d = 1 and 1.25R∗, which affirms our assumption
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4.3 Features of the Dynamics

that at these distances no resonance has a large influence. The initial state

|Ψini〉 = |Ψ(d=1.25)
n=3 〉 (4.8)

is n = 3 at d = 1.25R∗, which corresponds to the ground state in the trapping

potential, which is an unbound diatomic state. After numerical time evolution the

final state

|Ψfin〉 = cmol |Ψ(d=1)
mol,n=3〉+ cvib |Ψ(d=1)

vib,n=4〉+ cexc |Ψ(d=1)
exc,n=5〉+ . . . (4.9)

is composed of a molecular state (mol) and a trap vibrational state (vib). Also

excited states (exc) may be populated. The results of these simulations are illus-

trated in Figure 4.4.

We focus on the slow process first. The population of relevant states is shown

in Figure 4.4a. Initially, at d = 1.25R∗, the trap ground state labeled with n = 3

is 100% populated. While sweeping over the resonance, a part of the population

is passed over to the crossing molecular bound state. The final state of this slow

process at d = 1R∗ is composed of the molecular bound state (|cmol|2 = 0.33) and

of the unbound trap state (|cvib|2 = 0.67). Note that in Figure 4.3b the molecular

state is labeled with n = 4 on the right and with n = 3 on the left side of the

crossing and vice versa for the unbound trap state.

In the case of intermediate velocity the resonance is passed in a nonadiabatic

way. The final state at d = 1 is the unbound trap state labeled with n = 4 with the

fidelity of |cvib|2 = 0.99 (see Figure 4.4b). During the process the energy quantum

number changes from n = 3 to n = 4, but the shape of the state does not change

much. The quantum state is a trap vibrational state before and after the process.

Higher velocities result in excitations to higher vibrational states, especially

n = 5 (see Figure 4.4c). At the final distance d = 1, n = 5 labels the first excited

state in the trap. The final state is composed of the vibrational ground state n = 4

(|cvib|2 = 0.67) and of excited states. The first excited state n = 5 is populated

with |cexc|2 = 0.26. The molecular state n = 3 is only |cmol|2 = 1.3 × 10−4

populated in this case.
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Figure 4.4: (a),(b) and (c) show population of energy eigenstates for a slow, in-

termediate and fast process, respectively. The initial state is n = 3

at d = 1.25 (the ground state of the trap). In the slow process some

population goes into the molecular state, for intermediate speed the

avoided crossing is traversed diabatically, while in a fast process higher

vibrational states (especially n = 5) are excited.

4.3.3 Comparison of the Numerical Simulation with the

Landau-Zener Formula

In this section we compare our numerical results to the predictions of the Landau-

Zener Formula. We interpolate the nonadiabatic eigenenergy curves E1(d) and

E2(d) through the avoided crossing and thereby obtain the crossing point d and

the slope ∂E12/∂d = ∂(E1 − E2)/∂d (see dashed black lines in Figure 4.3b). We

model the crossing with the Hamiltonian

H̃Ω(d) =

 E1(d) Ω

Ω∗ E2(d)

 . (4.10)

where Ω = 〈Ψmol|H|Ψvib〉 describes the coupling of the levels. We diagonalize

H̃Ω(d) to obtain its eigenvalues that are functions of d including the matrix element

Ω as a parameter. We now fit the parameter Ω so that the eigenvalues of H̃Ω

match the adiabatic eigenenergies found in the spectrum. (see Figure 4.3b). The
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ḋ Pna numerical result

0.5 R∗/(~/E∗) 0.992 0.988

0.01R∗/(~/E∗) 0.702 0.673

Table 4.1: Comparison of Landau-Zener formula to the numerical simulation of

the time evolution for the avoided crossing at d = 1.119R∗ in the spec-

trum of Figure 4.3. The comparison of Pna for the fast process with

ḋ = 10R∗/(~/E∗) is not listed because in the numerical time evolution

excitations to higher energetic states occur (see text for details).

position of the crossing is found as d = 1.119R∗ and the coupling matrix element is

Ω = 0.43E∗ , which corresponds to an energy splitting of ∆E = 0.036~ω = 0.86E∗.

We use these parameters to calculate the probability of nonadiabatic passage Pna

with Equation (4.6). This probability is compared with the coefficient |cvib|2 in

Equation (4.9) that gives the part of the final state of numerical time evolution that

corresponds to the unbound trap state. The comparison can be made for different

velocities ḋ. Table 4.1 summarizes the results for ḋ = 0.01 and ḋ = 0.5R∗/(~/E∗).

For the fast process, a comparison of Pna is not possible because a third level

becomes excited, which is not included in the Landau-Zener model. In this case we

compare the probability of adiabatic traversal of the crossing 1−Pna = 3.5×10−4

to the population of the molecular bound state |cmol|2 = 1.34 × 10−4. Here,

the Landau-Zener formula gives the same order of magnitude. For the velocities

ḋ = 0.5 and 0.01R∗/(~/E∗) the results compare well, although the fitted curves

do not perfectly match the actual adiabatic curves. The fitting parameter Ω is

obtained with and accuracy of 10−2. Since Ω enters Equation (4.6) exponentially,

this error can have a significant impact. In the case of ḋ = 0.01R∗/(~/E∗) the two

results differ by 2%, which can be explained by this inaccuracy. Note also that the

Landau-Zener formula is developed for constant ∂E12(d)/∂d, which is not given

in our case, since other levels influence the considered avoided crossing.

Because of these inaccuracies, and because it cannot handle more than two

levels, the Landau-Zener estimation is not the best choice for treating the relevant

crossings and predict dynamics. However, it can help to estimate the relevance of
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4 Controlled Atom-Ion Collision in a Single Channel Model

deep bound states. The energy of molecular bound states is Emol(d) ≈ Emol(0) +

1/2µω2d2 (see Figure 2.8 and Equations (2.16) and (2.17)). Deeply bound states

can cross vibrational states only at large d. A semiclassical theory for estimating

the coupling matrix element (and thereby the energy splitting) shows that ∆E

decays exponentially with the trap distance (see [10]). In combination with the

Landau-Zener formula this proves that resonances with deep bound states have

no relevance for dynamics because they occur at large d. It is sufficient to include

only the few bound states closest to the threshold in the calculations.
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5 Atom-Ion Quantum Gate

In this chapter we simulate a specific gate process for a 135Ba+ ion and a 87Rb

atom. The qubit states are encoded in hyperfine spin states

|0〉i,a = |fi,a=1,mfi,a =1〉i,a
|1〉i,a = |fi,a=2,mfi,a =2〉i,a,

which leads to the two-qubit channels

|00〉 = |fi=1,mfi =1, fa=1,mfa =1〉 = |1, 1, 1, 1〉

|01〉 = |fi=1,mfi =1, fa=2,mfa =2〉 = |1, 1, 2, 2〉

|10〉 = |fi=2,mfi =2, fa=1,mfa =1〉 = |2, 2, 1, 1〉

|11〉 = |fi=2,mfi =2, fa=2,mfa =2〉 = |2, 2, 2, 2〉,

as defined in Equations (3.71) and (3.72). The dimensionless parameter α =

(~ω/(2E∗))2 in the Hamiltonian Equation (5.3) is chosen as α = 146, 046. Both

the Ba+ ion and the Rb atom are guided by traps with ω ≈ 2π × 26, 9kHz.

The essential parameters of our calculations are the singlet and triplet scattering

lengths as and at. They can be measured in principle, but this has not been done

so far. Our choice of the parameters of as = 0.8R∗ and at = 1R∗ allows for the

application of an effective single channel model, which is found with the procedure

explained in Section 3.7. In this model the isolated qubit channels |00〉, |01〉, |10〉
and |11〉 are each characterized by an effective short range phase. These four phases

are similar, since singlet and triplet scattering lengths are similar. The validity of

the single channel model for the |10〉 channel is estimated as 98.5%. The other

channels are described much more accurately by a single channel model. The low

validity of one model is due to the fact that for atom and ion being prepared in

the |10〉 channel, a second open channel exists. This channel disturbes the |10〉
states. The maximal admixture of this second open channel was found in the state
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with the angular momentum l = 4 and the energy E ≈ 118E∗ to be 1.45%, so

the 98.5% validity is a worst case estimation. Most of the |10〉 states are more

accurate than this. The channels |00〉, |01〉 and |11〉 are the only open channel

in their respective mf -subspaces and therefore the single channel model is more

accurate (see Sections 3.6.2 and 3.7).

There are combinations of as and at for which the channels are coupled and

therefore one cannot create an effective single channel model. Such a combination

is, for example, as = −R∗ and at = +R∗. Here, the two channels |01〉 and |10〉
are coupled. In this case one must perform a full multichannel calculation (see

Section 3.2) or extract an effective two channel model for the (|01〉,|10〉) subspace

of the computational basis. This more complicated situation is not considered in

this thesis and will be a subject of future investigations. Here, we focus on the

case of similar scattering lengths.

5.1 Four Channel Conditional Dynamics

By controlled four channel dynamics we attempt to realize a two-qubit phase gate

that has the following truth table

|00〉 Interaction−→ eiφ00 |00〉 US−→ |00〉,

|01〉 −→ eiφ01 |01〉 −→ |01〉,

|10〉 −→ eiφ10 |10〉 −→ |10〉,

|11〉 −→ eiφ11 |11〉 −→ eiφ|01〉.

(5.1)

The first step is the controlled collision of the atom and the ion that leads to

different phases for each channel. By the single particle transformation US three

of these phases can be undone according to [30]. One phase remains on the |11〉
channel. The transformation US acts on the atom and the ion separately and

therefore can be applied after the ion is transported away from the atom. The

desired phase gate requires the relation of the channels phases to be

φ = φ00 + φ11 − φ01 − φ10. (5.2)

If the gate phase is φ = π or an odd integer multiple of π, the phase gate is equiv-

alent to the CNOT gate. A Hadamard transformation (a single qubit operation),

84



5.1 Four Channel Conditional Dynamics

is to be applied on the target qubit before and after the π-phase gate to obtain

the CNOT gate. This, or any equivalent entangling two-qubit gate is a necessary

part of a quantum computer. Arbitrary quantum operations can be composed of

single qubit rotations and an entangling two-qubit gate. Single qubit operations

on a single ion/atom have already successfully been realized in experiment, e.g.

with laser driven Raman transitions (see e.g. [14]).

For each of the qubit channels |00〉, |01〉, |10〉 and |11〉 an effective single channel

model is established with the methods described in Section 3.7. Those four chan-

nels are then isolated. The equations for time evolution derived in Section 4.2.1

are valid for one channel. In this section we give the Hamiltonian for one channel

and compose the full Hamiltonian of four channels. The four channel dynamics is

fundamental for the gate process of Sections 5.3,5.5 and 5.6.

We denote |ΨA〉 as the state of relative motion of atom and ion being in the

spin state corresponding to the qubit channel A ∈ {00, 01, 10, 11}. In contrast |A〉
denotes the pure spin state of atom and ion. Since the channels are isolated in our

model, it is not possible that e.g. |Ψ00〉 evolves to |Ψ01〉. It is, however, possible

that atom and ion prepared in the channel |00〉 change their quantum state of

motion in |Ψ00〉, e.g. get excited from the trap vibrational ground state to the

first excited state.

The relative Hamiltonian for an atom-ion collision in the qubit channel |A〉 in

dimensionless coordinates is

H
(d)
A = H

(0)
A + αd(t)21− αd(t) z. (5.3)

Here, H(0)
A denotes the relative Hamiltonian of atom-ion motion for d = 0 trap

separation in the case that the particles are prepared in the channel A. We can

denote this Hamiltonian of relative motion in its eigenbasis:

H
(d)
A =

∑
n

E(d),A
n |Ψ(d),A

n 〉〈Ψ(d),A
n |. (5.4)

In the following we will assume an implicit d dependency of the Hamiltonian and

its eigenfunctions and suppress ‘(·)(d)’ in the notation. The total Hamiltonian for

all computational basis channels including external degrees of freedom is

H = H00 ⊗ |00〉〈00|+H01 ⊗ |01〉〈01|+H10 ⊗ |10〉〈10|+H11 ⊗ |11〉〈11|. (5.5)
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An arbitrary state of this system can be written down as a linear combination

of the four qubit-channels:

|Ψ〉 = α|Ψ00〉|00〉+ β|Ψ01〉|01〉+ γ|Ψ10〉|10〉+ δ|Ψ11〉|11〉. (5.6)

Time evolution of this state is given by the time evolution operator:

|Ψ(t)〉 = e−i/~
∫ t
0 H dτ |Ψ(0)〉

= αe−i/~
∫ t
0 H00 dτ |Ψ00〉|00〉+ βe−i/~

∫ t
0 H01 dτ |Ψ01〉|01〉

+ γe−i/~
∫ t
0 H10 dτ |Ψ10〉|10〉+ δe−i/~

∫ t
0 H11 dτ |Ψ11〉|11〉.

(5.7)

Since the channels are isolated, the time evolution of all four channels leads to a

different phase for each channel. It is implied that before the time evolution starts,

the particles are prepared in the ground state |Ψini〉 of their traps (we assume zero

temperature). At the end of the process, the particles shall reach this state again,

but will have accumulated an individual phase.

Since in our model the channel dynamics are isolated, we can handle the gate

process for each channel separately. The requirements for a successful gate are

formulated in the following equation for the final state |ΨA
fin〉 of channel |A〉:

|ΨA
fin〉 = eiφ

′
A |ΨA

ini〉, (5.8)

where φ′A is the desired phase to be accumulated. The process phase

φA(T ) = arg(〈ΨA
ini|ΨA(T )〉). (5.9)

for one channel |A〉 is defined as the angle in the complex plane of the overlap

of the initial state |ΨA
ini〉 with is the state |ΨA(T )〉 obtained by the actual time

evolution at the final time T . The phase φA(T ) is a relevant quantity only if the

scalar product of the final state at t = T and the initial state has an absolute value

close to one, since then |ΨA(T )〉 ≈ exp(iφA)|ΨA
ini〉 = |ΨA

fin〉.
We define the fidelity for one channel at zero temperature according to [31] as

FA =
1
2
[
1− |〈ΨA

ini|ΨA(T )〉| cos(π −∆φA)
]

(5.10)

where ∆φA = φA(T )− φ′A is the difference between the desired channel phase φ′A
and the phase φA(T ) obtained by actual time evolution. In the following, we will
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according to Equation (5.2) assume that the phases for the channels |00〉, |01〉 and

|10〉 are undone perfectly due to single qubit rotations leading to

∆φ00 = ∆φ10 = ∆φ01 ≡ 0, while ∆φ11 is nonzero. The fidelity is FA = 1 for all

channels if the overlap of the initial and final state has the absolute value one for

each channel and the total gate phase is φ = π, computed from the single channel

phases with Equation (5.2).

We can then define the gate fidelity as

Fgate = min
A

FA, (5.11)

since in our model the channels are decoupled (we neglect spin changing collisions).

5.2 Idea of a Quantum Gate using Trap-Induced

Resonances

The initial state for a gate process is the trap ground state at a certain distance

dmax (see Figure 4.1b). We consider all avoided crossings and their effect on

dynamics for d < dmax. There are deeper bound molecular states that cross the

ground state level of the trap at d > dmax, but since these resonances are very weak

they are not relevant, as described in Section 4.3.3. Bringing the atom and the

ion to the distance dmax is a transport problem. Since this work rather focuses on

controlled atom-ion interaction, we refer to other research projects like [32, 33, 34]

that address optimal transport of trapped ions and atoms. Resonances that occur

on the way to dmax will be passed diabatically.

During the gate time T the traps will be moved close together to let the particles

interact, then separated again to the initial distance. The controlling function is

the trap distance d(t) as a function of time.

For the sake of clarity we summarize: a qubit channel denominates a specific

spin configuration of the atom and the ion. If the particles are prepared in one

of the four channels, many eigenstates of relative motion (molecular and unbound

states) exist. Initially the particles are prepared in their trap ground states and

this state is denoted as |ΨA
ini〉, where A ∈ {00, 01, 10, 11} denotes the channel. It is
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desired that after the gate process the particles are in the trap ground state again

and have picked up a two-qubit phase φA(T ) that depends on the channel.

The idea of an adiabatic gate is the following: one starts with the trap ground

state |Ψini〉. The traps are brought together, in a way that the quantum state

remains unbound while passing weaker resonances at larger d diabatically. At

smaller d, a big resonance is followed adiabatically to reach a molecular state

|Ψmol〉. In the energy diagram the curve depicted in Figure 5.1a is followed from

|Ψini〉 to |Ψmol〉 and back again. In this case the accumulated phase for the channel

A can be estimated with the potential energy integral

φApot = −1
~

∫ tmax

tmin

EA(t)d t. (5.12)

where EA(t) is the potential energy curve followed in the process. This integral

can be found, for example, in [20]. As seen in Figure 5.1b, the energy spectra

are different for all four qubit channels. Consequently the potential energy phase

is different for each channel, which provides the possibility of a phase gate (see

Equation (5.1)). The differences of the energy curves are not so large, because

the scattering lengths are similar. Larger differences in energy would be found if

singlet and triplet scattering lengths differed more. In this case the qubit channels

would also stronger couple, which would result in spin-changing collisions that are

not desired in the phase gate process.

5.3 Adiabatic Quantum Gate

This section presents the results of the numerical simulation of an adiabatic atom-

ion quantum gate. We use 300 basis functions, which makes the truncation error

for the states smaller than 10−4. We also compare the gate phases to the potential

energy phase calculated with the integral of Equation (5.12).

In the following, the shape of d(t) that allows to follow the energy curve de-

picted in Figure 5.1a is determined. Initial and molecular states are marked in

Figure 5.2b. Different velocities are used to compose the desired d(t) function. At

d ≈ 1.5 to d ≈ 1 the speed is as fast as possible while still avoiding excitations

to pass the small resonances diabatically. To follow the big resonance at d ≈ 0.7,
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Figure 5.1: Energy curve followed in the adiabatic process (left panel) for the ex-

ample of the |11〉 channel. The different energies of the channels at

small d can be seen in the close-up (right panel). The difference be-

tween |01〉 and |10〉 is not resolved. Larger differences between the

energy curves would be found if singlet and triplet scattering lengths

differed more.

the speed is reduced. The kinks are rounded to avoid excitations. In our example

calculation we change the velocities twice: starting from ḋ1 = 0.8, we reduce to

ḋ2 = 0.5 and finally to ḋ3 = 0.1 R∗/(~/E∗). The unit R∗/(~/E∗) corresponds to

2, 05mm/s in our case. The same way is followed back to the initial trap separa-

tion. The fidelity of the gate came out to be very sensitive on the details of the

d(t) function. We found out that a relatively large overlap of the time evolved final

state with the initial trap ground state is obtained, if the turning point dmin lies

behind the resonance. Therefore we chose dmin = 0.6R∗. The largest difference

in energy is found at small values of d. We introduce a time delay at dmin and

wait until the required gate phase of φ = π is accumulated. In doing so we ob-

tain a d(t) function depicted in Figure 5.2a that corresponds to a process time of

T = 11.959~/E∗. Most of the time is needed to transfer the molecular state with

the speed ḋ3. The time delay at dmin is short compared to that transfer time. We
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Figure 5.2: Manually designed d(t) function for the adiabatic process (left panel)

and spectrum of the qubit channel |11〉 (right panel). The spectra for

the other three channels look qualitatively similar. Eigenstates are

labeled by energy in ascending order.
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Figure 5.3: Variation of the waiting time tw to optimize the gate phase φ. The

desired odd integer multiple of π is reached at tw = 1.127~/E∗.

performed a numerical simulation of time evolution of all four channels based on

this d(t). A satisfying result for the gate phase can be obtained by a variation of

the waiting time tw. Figure 5.3 shows the resulting gate phase as a function of the

waiting time. As seen in the figure, a phase of π is obtained with a waiting time

around 1.127R∗/(~/E∗). The adiabatic gate process results in the fidelities and

phases summarized in Table 5.1. Equations (5.11) and (5.10) yield a gate fidelity

F = 0.98, the gate phase is φ = 0.998π obtained with Equations (5.9) and (5.2).
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Channel FA,num φnum φpot φkin φkin + φpot

00 0.98652 0.00829π 1.902718π -0.0552π 1.847536π

01 0.98624 1.12677π 1.024376π -0.0552π 0.969194π

10 0.98687 1.02621π 0.921919π -0.0552π 0.866736π

11 0.97909 1.14311π 1.053739π -0.0552π 0.998556π

Gate: 0.97909 0.99842π 0.951437π 0 0.951437π

Table 5.1: Results of the adiabatic gate process using d(t) shown in Figure 5.2a.

The gate time is T = 11.959~/E∗. Phases are given modulo 2π. The

gate fidelity of F = 0.98 is calculated with Equation (5.11) where we

use ∆φ00 = ∆φ01 = ∆φ10 = 0 and ∆φ11 = (1 − 0.998)π. The total

gate phase is φ = 0.998π for the numerical (num) time evolution. It

consists of the channel phases φ... = φ00 + φ11 − φ01 − φ10 according

to Equation (5.2). Phases resulting from numerical time evolution are

compared to the integral of the energy curve and the kinetic energy

calculated with Equations (5.12) and (5.13). The results agree up to

15%.

We illustrate the process by plotting in Figure 5.8 the population of the relevant

adiabatic eigenstates as a function of time during the process. In this plot we ob-

serve that the molecular state is nearly 100% populated at the minimal distance.

Small variations of this population show that the process is not entirely adiabatic.

Table 5.1 further compares the numerical calculation of the phases to an esti-

mation given by the adiabatic potential energy integral of Equation (5.12). An

additional contribution to the phase of a channel beyond adiabaticity is the kinetic

phase

φAkin =
∫ tmax

tmin

−µ
2

(ḋ)2 dt, (5.13)

which is the first correction to the adiabatic phase. It is obtained by taking the

expectation value of the kinetic part of the Hamiltonian p2/2µ.The kinetic phase is

the same for each channel and in the adiabatic limit it vanishes. The results differ

slightly from the numerical simulation, which can be explained by excitations

to higher levels. The energy integral assumes that the excitations seen in the
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numerical simulations do not happen. Since the kinetic phase is small (∼ 10−2π)

but not negligible, the process is not entirely adiabatic.

The fidelities reached with the manually adjusted d(t) function are not very

good. We expect that if one would invest more time into manually optimizing

the d(t) function, e.g perform more parameter variations, the outcome would be

much better. Instead, we decided to optimize the gate with a more sophisticated

method and used optimal control techniques, as described in Section 5.5.

5.3.1 A Faster Adiabatic Gate

In this section we try to find a faster adiabatic gate process. Therefore we vary

dmin and monitor the gate phase. The results are depicted in Figure 5.4a. A

phase of π can be obtained with a minimal distance of dmin = 0.75R∗ or smaller,

without changing the velocities ḋ1,2,3. The d(t) function with dmin = 0.75R∗ is

depicted in Figure 5.4b. The corresponding gate phase is 1.0039π, the process

time is T = 7.83~/E∗ and the gate fidelity is F = 0.947, which is smaller than

the fidelity obtained with d(t) of Figure 5.2a. Because of this smaller fidelity we

remain with the slower process. Of course we could also apply optimal control

techniques (see Section 5.4) in this case in order to increase the fidelity.

5.4 Use of Optimal Control Techniques

Using optimal control techniques we can improve the gate fidelity as well as reduce

the gate time. The iterative algorithm we use for optimal control is described in

Appendix B. The objective

J [{ΨA(T )}] =
∑
A

2Re{〈ΨA
fin|ΨA(T )〉}. (5.14)

should reach the value J = 8 when the final state of time evolution reaches the

desired final state. Not only the fidelity, but also phase is included. Here, the ob-

jective final states phases are chosen in a way that the gate phase in Equation (5.2)

is π. Only this relation of the single channel phases is important for the two-qubit

phase gate, because the particular channel phases can be undone by single qubit

rotations [30]. The algorithm needs a good initial guess to converge.

92



5.4 Use of Optimal Control Techniques

0.6 0.65 0.7 0.75 0.8 0.85 0.9

−5

−3

−1

dmin/R∗

(φ
0
0
+

φ
1
1
−φ

0
1
−φ

1
0
)/

π

(a)

0 1 2 3 4 5 6 7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
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Figure 5.4: Variation of dmin to find the minimal gate time required for a gate

phase of (2k + 1)π. We find that for dmin = 0.75 a gate phase of

φ = −3π is reached. The time for this process is T = 7.83~/E∗ only,

but the fidelity F = 0.93 is less than for the process in Section 5.3.

Our calculations showed that the fidelity can be improved during each iteration

step quite well, while the phase is not altered much by the algorithm. That is

why a precise parameter variation (e.g. of a time delay at minimal distance)

is helpful before starting the optimization algorithm in order to adjust the gate

phase to π. For the time evolution we use the Crank-Nicholson method described

in Appendix A.3, because the quantum state is available at each time step in this

method, which is essential for the optimal control algorithm we use. The required

time steps are estimated by comparison to the Matlab routine ode45 with built-in

error estimation.

The following optimization processes are performed and presented in the next

sections. In Section 5.5 the fidelity of the adiabatic gate is optimized in order

to obtain a reasonable value. In Section 5.6 a fast, non-adiabatic, gate process

optimized.
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5.5 Optimization of the Adiabatic Gate

The fidelity of the adiabatic process described in Section 5.3 was not desirable,

although the phase could be adjusted precisely. In this section the process is

optimized. We initialize the optimization algorithm with d(t) as in Figure 5.2a, as

the gate phase obtained with this d(t) is very close to π. After 25 iterations with

20000 time steps a satisfying result is reached; the fidelity is F = 1 − 3.1 × 10−4

and the gate phase is φ = 1.003π. The population of adiabatic energy eigenstates

is depicted in Figure 5.7 for the |00〉 channel. One can see, that excitation to

higher vibrational states during the process is suppressed by the optimal control

algorithm.

We use 300 basis functions, which makes the truncation error smaller than 10−4.

Because no direct error control is available for the Crank-Nicholson method, the

optimized pulse was interpolated with a cubic Hermitian interpolation polynomial

and fed in the Matlab routine ode45 with relative error tolerance of 10−5. The

routine produced a gate phase φ = 1.003π and a fidelity F = 1−2.5×10−4, which

agrees very well with the Crank-Nicholson method. These results are summarized

in Table 5.2. Note that the single phases comparing both methods differ by up to

0.035π. This phase difference cancels out in the computation of the gate phase.

Figure 5.5 depicts the optimized d(t) function. On a large scale it looks like the

initial function, but on a small scale some ‘wiggles’ occur. These small scale

modifications can be seen in Figure 5.5b. They have an amplitude of the order

of 0.01R∗ in characteristic units of interaction. This corresponds to 3nm for the

Barium+-Rubidium system and for a Ca+-Na system 0.01R∗ equals ∼ 1nm. Both

values are quite small and experimentally challenging.

The time scale of the system is given by ~/E∗ = (
√
α/π)Tosc, where Tosc = 2π/ω

is the oscillator period of the harmonic trap. For the Ba+-Rb collision the total

gate time therefore is T ≈ 12~/E∗ ≈ 1, 7ms. The time scale of the wiggles is

δt = 0.05~/E∗ ≈ 7, 2µs.

94



5.5 Optimization of the Adiabatic Gate

0 2 4 6 8 10
0.6

0.8

1

1.2

1.4

t/(̄h/E∗

d
/
R
∗

optimized d(t)

initial d(t)

(a)

5.2 5.4 5.6 5.8 6 6.2 6.4
0.59

0.595

0.6

0.605

0.61

0.615

0.62

t/(̄h/E∗

d
/
R
∗

optimized d(t)
initial d(t)

(b)

Figure 5.5: Optimized d(t) function for the adiabatic gate (left panel) and close-

up (right panel). The optimized function shows small scale wiggles

(amplitude ≈ 0.01R∗).

0 2 4 6 8 10
−120

−100

−80

−60

−40

−20

t/(̄h/E∗

φ
0
0
/
π

optimized process
initial process

Figure 5.6: Evolution of the phase of channel |00〉 during initial and optimized

adiabatic process. It is remarkable that the phases of all channels are

affected by the optimization algorithm in a way that the total gate

phase (Equation (5.2)) is not altered much.
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Figure 5.7: Population of energy eigenstates during the optimized gate process, for

qubit channel |00〉. Compared to Figure 5.8 less excitation to higher

vibrational states during the process and a fidelity closer to one at the

final time can be observed. The curves for the other qubit channels

look qualitatively similar.

Channel Fidelity Phase

C-N |00〉 1− 7.5× 10−5 1.9987 π

|01〉 1− 2.7× 10−4 1.1218 π

|10〉 1− 3.1× 10−4 1.0204 π

|11〉 1− 7.4× 10−5 1.1467 π

Gate 1− 3.1× 10−4 1.0031 π

ode45 |00〉 1− 7.5× 10−5 0.0024 π

|01〉 1− 1.5× 10−4 1.1254 π

|10〉 1− 2.5× 10−4 1.0240 π

|11〉 1− 1.3× 10−4 1.1502 π

Gate 1− 2.5× 10−4 1.0032 π

Table 5.2: Results of the optimized adiabatic gate process using d(t) shown in

Figure 5.5. The two tables compare the Crank-Nicholson method (CN)

used for the optimization and the Matlab routine ode45 with a relative

error tolerance of 10−6. Phases are given modulo 2π. The gate phase

is φ = 1.003π and gate fidelity is 1− 3.1× 10−4 calculated equivalently

to Table 5.1 with Equations (5.2) and(5.11).
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Figure 5.8: Populations as a function time for all four qubit channels during the

adiabatic gate process with d(t) of Figure 5.2a. The initial state is

the trap ground state. The overall gate time is T = 11.959~/E∗. The

diabatic passage of the weaker resonances takes place at the beginning

and at the end of the process. The quantum state at dmin = 0.6R∗ is

the molecular state n = 4 with a fidelity close to one in each channel.
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5.6 Optimized Fast Gate

With the help of optimal control techniques it is possible to reduce the overall gate

time, which is desirable for application in quantum computation. Our procedure

to find an optimized process realization with short gate time is the following: first

we look for an initial d(t) function, that in a short time causes a phase shift of π.

A successful initial guess function is the Gaussian d(t) curve that is delayed at the

minimal distance dmin by a waiting time depicted in Figure 5.9. This waiting time

is varied in a similar way to the parameter variation in Figure 5.3. In general,

the resulting channel fidelities are not satisfactory. As a second step we run our

optimal control program in order to increase the fidelities.

The process we found in this way uses the total gate time of T ≈ 4.1~/E∗, which

is an improvement by the factor of three with respect to the adiabatic process that

needed T ≈ 12~/E∗. The optimized d(t) function shows larger variations than the

adiabatic example of Section 5.5, but also small scale wiggles (see Figure 5.9).

Figure 5.11 shows the population of the most important adiabatic eigenenstates

during the fast gate process. One can observe that the molecular state at dmin,

n = 4, is only populated between 15% to 40%, depending on the channel. The

main part of the phase is accumulated in the molecular state. Due to its small

population a larger waiting time at dmin is required than for the adiabatic case.

The final fidelities of the process are listed in Table 5.2. The overlap of the initial

and final wave functions is good as ∼ 1 − 10−6, but the gate phase is 1.015π,

which is 1.5% inaccurate with respect to the objective phase of π. The gate

fidelity is calculated to F = 1 − 9.5 × 10−4 with Equation (5.11). We stopped

the optimization at 250 iterations (when this result was reached), because this

exceeds the worst-case-estimated accuracy of underlying the single channel model

(see Section 3.7) of 98.5%. If the algorithm was given more time, the phase would

have been improved more. The convergence of the objective is shown in a log-log

plot in Figure 5.10. A further significant improvement could be expected at an

additional number of iterations of the order of 100.
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Figure 5.9: Optimized d(t) function for the non-adiabatic gate (left panel) and

zoom-in (right panel). The process time is 4.1~/E∗ The optimized

function shows larger wiggles (amplitude ≈ 0.05R∗) and smaller ones

(amplitude ≈ 0.005R∗).
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Figure 5.10: Convergence of the optimization algorithm. At 250 iterations the

procedure is stopped.
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Figure 5.11: Population of the most important adiabatic eigenstates as a function

of time for all four qubit channels during the non-adiabatic gate pro-

cess. The underlying trap separation d(t) depicted in Figure 5.9. The

initial state is the trap ground state at maximal distance. The molec-

ular state n = 4 at dmin (mid of figure) is only populated between

15% and 40%.
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5.7 Limitations of the Current Approach

The present approach for realizing a quantum gate is mainly limited by the fact

that the single channel model is, in the worst case, only accurate up to 1.45%. The

threshold of gate error tolerance to successfully apply quantum error correction

protocols lies between 10−3 and 10−4, depending on other parameters [35]. This

accuracy is not guaranteed by the present model. It is, however, possible that for

a different combination of singlet and triplet scattering lengths the single channel

model is more accurate. An N -channel approach can help in cases of strongly

coupled channels.

Although the gate time was decreased by a factor of three with the help of

optimal control techniques, we expect that one can further decrease it. During

the gate process presented in Section 5.6, most of the population does not go

to the molecular state, but stays in vibrational states. Since most of the phase

is accumulated in the molecular state, the potential advantage of staying in the

molecular state is that we may produce shorter gate times. Since the optimal

control algorithm as we use it so far is not able to drastically change the populations

of the adiabatic eigenstates around the minimal distance, a further optimized gate

must choose a different initial guess than the Gaussian function with a time delay.

It is promising to split the optimization into parts: first, the goal is to evolve the

initial state at dmax to a molecular state in the shortest time possible; second the

gate phase is to be accumulated and third the initial state is to be obtained again

in short time. With this procedure it should be possible to reach the quantum

speed limit given by the difference of the energy curves of the molecular states of

the four channels.

The further optimization of the gate time as well as the enhancement of the

accuracy of the collision model will be part of future investigations.
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6 Conclusions & Future Work

In this work we analyzed the spin-state-dependent interaction between a single

atom and a single ion guided by external trapping potentials. We applied our

insight on this system in order to realize a two-qubit quantum gate process and

thereby provide the basic ingredient for quantum computation with atoms and ions

combined in one setup. This work was motivated by recently opened experimental

possibilities combining magneto-optical traps or optical lattices for atoms, and

RF electromagnetic fields for ions. These experiments are currently established in

several groups worldwide [9, 8].

We started our description of controlled interaction of an atom and an ion by

formulating a multichannel quantum-defect theory for trapped particles, analo-

gous to the free-space case discussed in [7]. This step was necessary because the

short-range part of the atom-ion molecular potentials are not yet available. We

introduced a set of two parameters—the singlet and triplet scattering lengths—to

model this short-range interaction. These parameters can be measured in upcom-

ing experiments and then substituted into our equations.

A remarkable feature of the system is trap-induced shape resonances that couple

molecular bound states to unbound trap states. Quasistatic eigenenergy curves

show these resonances as avoided crossings. They can be used to form ultracold

trapped molecular complexes and thereby allow full control of cold chemical re-

actions. It is also possible to substitute the single atom with a single nonpolar

molecule and study its interaction with a single ion.

In this work we reduced the multichannel formalism to an effective single chan-

nel model for one specific spin state of atom and ion. The validity of this model,

which depends on the actual values of the singlet and triplet scattering lengths,

was discussed. Where applicable, our effective single channel model can be imple-

mented in calculations regarding ultracold chemistry as well as atom-ion scattering

103



6 Conclusions & Future Work

physics. A single channel model was already discussed in [10], with the difference

that the spin state of atom and ion was not included (in other words, a quan-

tum defect parameter was assigned to each spin state separately). In our present

approach we can describe relations between these quantum-defect parameters, be-

cause all single channel models originate from the same multichannel formalism.

Therefore, we can apply the model for quantum computation schemes which store

qubits in internal spin states of atom and ion.

Our idea of the phase gate process makes use of trap-induced resonances. Atom

and ion are prepared in the trap vibrational ground state. By bringing the traps

close together we let the particles interact ad finally separate them, obtaining the

motional ground state again. In doing so we cross weaker resonances diabatically

(remaining in a trap state) and then follow a strong resonance adiabatically to a

molecular bound state, where a two-qubit phase is accumulated. Since the posi-

tions of the resonances are different for each spin combination, the accumulated

phase is different for each qubit channel and we are able to control the trap dis-

tance in such a way that a two-qubit phase gate is realized. This phase gate, in

combination with single qubit rotations, is a universal gate for quantum compu-

tation.

We performed numerical simulations of the essential features of the controlled

collision specifically for a 135Ba+ ion interacting with a 87Rb atom, each guided

by spherically symmetric harmonic traps with ωi,a ≈ 2π × 27kHz. For this, we

assumed similar singlet and triplet scattering lengths of 4435 and 5544 Bohr radii

respectively, which allows the application of a single channel model. For this

situation we have chosen hyperfine-qubit states to obtain the four qubit-channels

00, 01, 10, 11. In contrast, opposite scattering lengths exclude a single channel

description. In this framework we found a two-qubit phase gate gate process

entangling atom and ion. We thereby showed that trap-induced resonances can

be used to control the interaction of atom and ion. Assuming the correctness of

our model, the fidelity for our gate process is 1 − 2.5 × 10−4 and in this case the

gate time is 1.7ms. Using optimal control techniques we were able accelerate the

process to 0.58ms. In future work we plan to decrease the gate time by tightening

the traps (higher trapping frequency) and by further optimizing the process.
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We estimated the validity of our specific single channel model to 0.985, which

can be increased by assuming a different combination of singlet and triplet scat-

tering lengths that are more similar, thus for which a single channel model is more

applicable. On the other hand, this would require longer gate times. Moreover,

we can perform full multichannel calculations to overcome this problem.

The numerical simulation of the collision within the multichannel formalism is

desirable because it allows general combinations of the scattering lengths. In this

context the scattering lengths of the channels can differ more greatly, which not

only includes a more general description of the atom-ion system, but also would

allow possibly much faster quantum gates.

In our model, we assumed harmonic trapping potentials, and the oscillator fre-

quencies were equal for atom and ion. More general situations, like cigar-shaped

trapping potentials, are expected to allow an application of the basic ideas devel-

oped in this thesis. In the context of this generalization, it is also desirable to

consider particular experimental realizations in order to describe them with our

theory and compare the results.

So far, we did not use external magnetic fields in order to manipulate the inter-

action. Magnetic induced Feshbach resonances have been applied very successfully

in this context. Future investigations will include magnetic fields to control the

atom-ion interaction even more efficiently and possibly combine trap-induced res-

onances and Feshbach resonances for this purpose. Our work can be seen as a

principle investigation of a new, interesting physical system and can be extended

in many directions.
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A Numerical Methods

A.1 The Renormalized Numerov Method

The Numerov method is a numerical method for solving one dimensional second

order differential equations that do not contain a first order derivative. It is is

especially useful in quantum mechanics for determining bound states of a given

potential. The methods we present here are based on [25]. The Schrödinger

equation is denoted as [
d2

dx2
+Q(x)

]
ψ(x) = 0, (A.1)

where

Q(x) =
2µ
~2

(E − V (x)) , (A.2)

with V (x) as the potential.

A.1.1 The Numerov Formula

In this section, we perform a discretization of the problem and derive a three-point

iteration formula (Numerov formula) for the discretized wavefunction. The x-axis

is divided into small intervals of length h starting at the value x0 and ending at

xN . The discretized wavefunction reads

ψn = ψ(xn) = ψ(x0 + nh). (A.3)

Starting at the Taylor expansion

ψ(xn + h) =
∑
k

hk

k!
ψ(k)(xn), (A.4)

we obtain
1
2

(ψn+1) = ψn +
h2

2!
ψ(2)
n +

h4

4!
ψ(4)
n +

h6

6!
ψ(6)
n . (A.5)
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We differentiate this equation twice to get

1
2

(
ψ

(2)
n+1

)
= ψ(2)

n +
h2

2!
ψ(4)
n +

h4

4!
ψ(6)
n . (A.6)

Equation (A.6) is multiplied by the factor h2/12 and the result is subtracted from

Equation (A.5). This eliminates the fourth order term. Wherever it occurs, we

eliminate the second derivative by the original differential equation ψ(2)
n = −Qnψn.(

1 +
h2

12
Qn+1

)
ψn+1 +

(
1 +

h2

12
Qn−1

)
ψn−1 −

(
2− 5h2

6
Qn

)
ψn = − h6

240
ψ(6)
n .

(A.7)

To obtain the Numerov formula, we set the right hand side to zero. The truncation

error is of sixth order in h. It is now possible to calculate ψn+1from ψn and ψn−1.

Qn of course is known.

Numerical calculations can be more precise if the values of the functions are not

too large compared to one. Therefore it is convenient to calculate the ratio

Rn =
ψn+1

ψn
. (A.8)

of the wavefunction at certain xn and the function of the next step. This quantity

is of the order of one in most cases. In the vicinity of nodes, R obviously can have

large values, because of division by a small number. Furthermore, the ratio Rn is

negative if and only if the wavefunction ψ(x) has a node between xn and xn+1,

which can be used to count the nodes of the wavefunction. Using Equation (A.8) in

the Numerov formula Equation (A.7), one can derive a two point iteration formula

for Rn:

Rn =
(

1 +
h2

12
Qn+1

)−1 [(
2− 5h2

6
Qn

)
−
(

1 +
h2

12
Qn−1

)
R−1
n−1

]
. (A.9)

This formula works for forward iteration, starting at R0 = ψ1/ψ0. The quantity Q

is known at all points of the x-axis. If the recursion should start at the maximum

value of x, namely xN , another formulation is slightly more convenient. The ratio

R̃n =
ψn−1

ψn
(A.10)

is defined for that purpose. The corresponding iteration formula runs backwards

on the x-axis and the final value is assigned to R̃N at xN , so that we have

R̃n =
(

1 +
h2

12
Qn−1

)−1 [(
2− 5h2

6
Qn

)
−
(

1 +
h2

12
Qn+1

)
R−1
n+1

]
. (A.11)
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A.1.2 Construction of the Wavefunction

In a stable implementation of the Numerov method, the integration of Schrödinger’s

equation goes up to a matching point rM from the left side with Numerov-forward

R iteration, Equation (A.9), and from the right side with Numerov backward R̃

iteration, Equation (A.11). In the case of the trapped atom-ion potential (Equa-

tion (3.41)), the initial condition on the right side is

R̃(rmax + h) = ψ(rmax)/ψ(rmax + h) =∞, and on the left side

R(rmin) = ψasymp(rmin + h)/ψasymp(rmin), using the asymptotic analytic solution

of the Schrödinger equation. If an eigenfunction is calculated, left and right side

match (see Section 3.4.4). The ratios Ri and R̃i are known numerically and are

stored. Now the wavefunction is constructed. We start in the middle, at rM , by

setting ψ(rM ) = 1. The value is arbitrary, but convenient, because in any case

ψ(r) has to be normalized afterwards. From Equation (A.10) we find the formula

ψi =
ψi−1

R̃i
i = M + 1,M + 2 . . . , N , (A.12)

for the right side, and from Equation (A.8) we obtain

ψi =
ψi+1

Ri
i = M − 1,M − 2 . . . , 1 , (A.13)

for the left side respectively. Since the wavefunction oscillates very fast for small r,

the grid is to be adapted to the problem. This requires to derive an interpolation

formula and include a changing of the step size during the Numerov iteration,

which is done in the following sections. Assuming that the step size is changed in

the left side integration at the point rn, one has to take care of how to iterate over

this point. The ratio Rn = ψ(rn + h)/ψ(rn) is defined with a certain step size h.

Let the step size on the right hand side of rn be h, and on the left hand side let

it be h′ < h. One runs into trouble if Rn is defined as Rn = ψ(rn + h′)/ψ(rn)

with step size from the left hand side, because the point rn + h′ is not in the

grid (compare Figure A.1). Instead, the next value in the grid is rn+1 = rn + h.

It follows that defining Rn = ψ(rn + h)/ψ(rn) avoids problems and one can use

Equation (A.13) without restrictions.

An equivalent argument requires R̃n = ψ(rn − h′)/ψ(rn) with the same defini-

tions for h and h′ as for the left-side case.
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A.1.3 Interpolation Formula

For some problems it is necessary to know the wavefunction at a point that is not

on the grid. Halving of the step size during the calculation is one example. For

that purpose one needs an interpolation formula that makes it possible to calculate

the function on a point between two grid points just as accurately as it is known

on the grid points themselves.

The value of the wavefunction at a point xα that lies between the two grid points

xi−1 and xi is to be computed. We have

xi = xα + (1− α)h , (A.14)

xi−1 = xα − αh , (A.15)

where h = xi − xi−1 and 0 ≤ α ≤ 1. For convenience, we define β = (1 − α).

Making a Taylor expansion of the wavefunction around the point xα we get

ψi = ψα + (βh)ψ′α + (β2h2/2)ψ′′α + (β3h3/6)ψ′′′α +O(h4)ψ(IV)
α , (A.16)

ψi−1 = ψα − (αh)ψ′α + (α2h2/2)ψ′′α − (α3h3/6)ψ′′′α +O(h4)ψ(IV)
α , .(A.17)

Here O(h4) represents a term of order h4. After multiplying Equation (A.16) by

β−1 and Equation (A.17) by α−1, we sum them and find

β−1ψi+α−1ψi−1 = (αβ)−1ψα+(h2/2)ψ′′α+(β−α)(h3/6)ψ′′′α +O(h4)ψ(IV)
α , (A.18)

where we made use of the identities

α+ β = 1

1
α

+
1
β

=
β + α

αβ
=

1
αβ

(α2 − β2) = (α2 − (1− α2)) = (1− 2α) = (β − α) .

(A.19)

We differentiate Equations (A.16) and (A.17) twice, add the resulting equations

and multiply by h2/6 to obtain

(h2/6)(ψ′′i + ψ′′i−1) = (h2/3)ψα + (β − α)(h3/6)ψ′′′α +O(h4)ψ(IV)
α . (A.20)

We subtract this from Equation (A.18) to obtain

(β−1ψi+α−1ψi−1)−h2/6(ψ′′i +ψ′′i−1) = (αβ)−1ψα+(h2/2−h2/3)ψ′′α+O(h4)ψ(IV)
α .

(A.21)
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We use Schrödinger’s equation to eliminate the second order derivative terms. The

final expression for the interpolation formula is

ψα =
(
(αβ)−1 + γα

)−1 (
(β−1 − γi)ψi + (α−1 − γi−1)ψi−1

)
, (A.22)

with a truncation error of the order h4, where

γn = −(h2/6)Q(xn). (A.23)

This formula is as accurate as the renormalized Numerov method, which has a

cumulative error of the order of h4, according to [25]. Thus the function can be

evaluated at each point of the x-axis with this precision.

A.1.4 Step Size Doubling

It is possible to double the step size during iteration. The ratio Rn is based on

the previous Rn−i. The new iteration formula is defined with a double step size

h′ = 2 · h. The iteration starts at the grid point n with the value Rn, which is

calculated based on Equation (A.9), such that

-

u u u u u
︷ ︸︸ ︷h ︷ ︸︸ ︷h′

rn−1 rn rn+1

ψn−1 ψn ψn+1

Figure A.1: Doubling of the step size, iterating from the left to the right hand side.

Rn =
(

1 +
h′2

12
Qn+1

)−1 [(
2− 5h′2

6
Qn

)
−
(

1 +
h′2

12
Qn−1

)
R−1

0

]
, (A.24)

where

R0 =
ψn
ψn−2

=
ψn
ψn−1

ψn−1

ψn−2
= R(n− 1) ·R(n− 2). (A.25)

is obtained for R0 (see Figure A.1). Rn can directly be calculated from the previous

values. It is of course possible to double the step size more than once or increase

the step size by an integer factor larger than two.
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A.1.5 Step Size Halving

In order to halve the step size one needs to know the wavefunction at a point

in between two grid points to find the starting value for a new calculation with

a smaller step size. A useful fourth order interpolation formula is derived in

�

u u u u ue
︷ ︸︸ ︷h′ ︷ ︸︸ ︷h

rn−1 rn rα rn+1

ψn−1 ψn ψα ψn+1

Figure A.2: Halving of the step size, iterating from right to left. The intermediate

value of the wavefunction ψα is obtained by interpolation.

Section A.1.3. In Figure A.2, step size halving is illustrated for backward iteration

of R̃n. On the right side of xn, the step size is h; on the left side it is halved to

h′ = h/2. The value of ψα in the middle of xn and xn+1 is needed, because the

ratio R0 = ψn/ψα serves as an initial value for the backwards iteration:

R̃n =
(

1 +
h′2

12
Qn−1

)−1 [(
2− 5h′2

6
Qn

)
−
(

1 +
h′2

12
Qn+1

)
R̃−1

0

]
. (A.26)

Once the initial Rn is calculated, the usual iteration with Equation (A.11) using

step size h′ is applicable.

The intermediate value of the wavefunction ψα is obtained by specifying the

interpolation formula (Equation (A.22)) α = β = 1/2 and γi = −(h′2/6)Q(xi):

ψα =
(

4− h′2

6
Q(xα)

)−1 [(
2 +

h′2

6
Q(xn+1)

)
ψn+1 +

(
2 +

h′2

6
Q(xn)

)
ψn

]
.

(A.27)

Dividing by ψn gives the desired result

ψα
ψn

=
(

4− h′2

6
Q(xα)

)−1 [(
2 +

h′2

6
Q(xn+1)

)
ψn+1

ψn
+
(

2 +
h′2

6
Q(xn)

)]
,

(A.28)
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where ψn+1
ψn

= 1/R̃n+1 is available from the previous iteration step. The step size

halving can be repeated several times. In principle it is also possible to divide h

by a number larger than two.

A.2 Numerical Integration

Integrals of the type ∫ b

a

f(x) dx (A.29)

are calculated numerically on a discrete x-axis with the points x1 = a, x2, . . . , xN =

b. The integrated function must be evaluated at these points. If the points are

chosen to be equidistant, the following sum can approximate the integral:∫ xN

x1

f(x) dx = h

[
3
8
f(x1) +

7
8
f(x2) +

23
24
f(x3) + f(x4) + f(x5) + . . .

+f(xN−3) +
23
24
f(xN−2) +

7
8
f(xN−1) +

3
8
f(xN )

]
+O(h4). (A.30)

This equation can be found in [26], it is constructed by fitting cubic polynomials

through successive groups of four points. The error term is of fourth order in the

step size h. We apply this formula to calculate the normalization integral∫ ∞
0

|ψ(r)|2 dr ≈
∫ rmax

rmin

|ψ(r)|2 dr, (A.31)

where the lower limit has to be replaced by rmin since the wave function is singular

at r = 0. We see that rmin must be small enough to make the error of this

truncation small. The wavefunction decays exponentially for r →∞ and therefore

the integral can be truncated at rmax. In the normalization integrals we calculate

in this thesis, the r axis points are not equidistant, but separated in J sections with

different stepsize. This is because the grid is adapted to the period of oscillation of

the wavefunctions. In each section the stepsize hj is kept constant. Consequently,

the normalization integral is split into J integrals. Each integral is then calculated

with Equation (A.30).

This formula requires at least five points in order to approximate the integral.

If ever a part of the x-axis has fewer points, the integral between these points is
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approximated with the trapezium rule∫
f(x)dx =

∑
n

f(x(n+1)) + f(xn)
2

· h+O(h2). (A.32)

The error term of this formula is of the order of h2, which is less accurate then

Equation (A.30).

A.3 Crank-Nicholson Method

In this section the Crank-Nicholson (or Cayley’s) method is introduced in order to

numerically solve the time dependent Schrödinger equation. We use this method

for time evolution in Section 5 because it is both stable and unitary.

In dimensionless units Schrödinger’s equation can be written as

i
d
dt
ψ(t) = H(t)ψ(t). (A.33)

Its formal solution is

ψ(t) = e
−i

∫ t
t0
H(τ) dτ

ψ(t0). (A.34)

The initial condition ψ(t0) is given at the time t0.

Numerically, Equation (A.33) is solved by dividing the time axis between ini-

tial time t0 and final time T into small time intervals of size ∆t. Then ψ(t) is

propagated step by step, so that at time t+ ∆t we have

ψ(t+ ∆t) = e−i
∫ t+∆t
t

H(τ) dτ ψ(t). (A.35)

First, the integral is approximated as
∫ t+∆t

t
H(τ) dτ ≈ H(t) ∆t to obtain

ψ(t+ ∆t) = e−iH(t) ∆t ψ(t). (A.36)

Written in a basis representation (e.g. harmonic oscillator states, truncated at

N ), H is an N × N matrix, and ψ(t) is a vector of N complex numbers. The

exponential of a matrix can be calculated, but for large matrices this is very CPU

time consuming. A good approximation for the time evolution operator for one

time step is the Crank-Nicholson form introduced in [26]:

e−i
∫ t+∆t
t

H(τ) dτ ≈ 1− i∆tH(t)
1 + i∆tH(t)

(A.37)
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or

[1 + i∆tH(t)] ψ(t+ ∆t) = [1− i∆tH(t)] ψ(t). (A.38)

The method is second order accurate in time (the error term is proportional to

(∆t)2) and unitary; that is, the normalization of ψ is conserved for each time step.

This equation allows to propagate the wave function ψ(t) one time step forward.

Starting at the initial condition at t = t0 and propagating step by step the final

wave function ψ(T ) can be calculated. The availability of the wavefunction at

each time step makes optimal control algorithms possible. One optimal control

algorithm is presented in Appendix B and applied in Chapter 5.

A.4 Accuracy of the Crank Nicholson Method, Time

Steps and Basis Size

This section is about the numerical accuracy of the time evolution. Two principal

error sources exist. On the one hand the accuracy of the Crank-Nicholson method

is increased by increasing the number of time steps per process, but this also is

more CPU time consuming. On the other hand the more basis functions are used,

the smaller is the truncation error, but the computational time increases as well.

Particularly for the optimal control algorithms the computation time must be

reasonable small, because many iterations have to be performed. Table A.1 shows

that for the adiabatic gate 20000 time steps make sense to achieve an accuracy of

10−3. This corresponds to a time step of the length ∆t = 6 × 10−4. The Crank-

Nicholson method is compared to the Matlab routine ode45 with a adjusted relative

error tolerance of 10−5. The number of basis vectors used has an influence on the

computational time as well, so it should be kept low. Table A.2 shows a variation

of the basis size for a fast process. According to that a basis size of at least 200

makes sense to achieve an accuracy of 10−3. More than 250 basis states lead to

an accuracy of ≈ 10−4. It is important to note that the process one-channel-phase

converges to the value obtained with 1000 basis vectors calculated with the ode45

method, but it is slightly shifted using the Crank-Nicholson method. This phase

shift can possibly be explained by a too small number of Crank-Nicholson-time

115



A Numerical Methods

time steps C-N FidelityC−N
Fidelityode45

PhaseC−N
Phaseode45 comput. time

2500 0.945644 1.09746

5000 0.982608 1.02705

10000 0.990721 1.00682

20000 0.997411 1.00169 1400sec

30000 0.998830 1.00075

70000 0.999782 1.00014 5000sec

Table A.1: Test Of the Accuracy of the Crank-Nicholson method by comparing to

the Matlab routine ode45. The relative error tolerance of ode45 is set

to 10−5 and the d(t) function depicted in Figure 5.2a is used for both

methods. The Number of basis states is 300. The method ode45 takes

92737 time steps for the time interval of the length of T = 11.959~/E∗.

One can observe that a accuracy of 10−3 is reached with about 20000

time steps for the Crank-Nicholson method. The computation time is

measured using two CPUs

steps, but with 10000 time steps the maximal tolerated computational time for

reasonably applying optimal control is already reached. The fidelity is equally

increasing for ode45 and Crank-Nicholson method.
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Basis Size time steps Fidelity ode45 phase ode45 phase CN

150 18481 0.98886 0.92216 0.92842

200 19155 0.99891 0.99210 0.99553

250 20363 0.99948 0.99779 1.00609

300 21457 0.999472 0.99861 1.00696

1000 38027 1 1 1.00801

Table A.2: Variation of the basis size used for numerical time evolution. The

Matlab routine ode45 is used with a relative error tolerance of 10−6.

The simulated process uses the time T = 3.42 and is performed for the

00 channel. For the comparison we normalize the calculations to the

ode45 case of 1000 basis vectors. One can observe that between 250

and 300 basis functions the results are accurate up to 10−4. Compared

to the Crank-Nicholson method with 10000 time steps, it is remarkable

that the phase shows a slight shift which probably is due to a too large

time step.
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B.1 Introduction to Quantum Optimal Control

In many quantum mechanical systems the dynamics can be controlled by an ex-

ternal field. This control parameter is denominated as u(t) here and is an explicit

function of time. The Hamiltonian of the system then depends on the control

function. Time evolution of the quantum state |ψ(t)〉 is given by the Schrödinger

equation

i~|ψ̇(t)〉 = H(u(t)) |ψ(t)〉. (B.1)

We want to control an ultracold atom-ion collision in this thesis, using trap-induced

shape resonances. Here, u(t) is the trap separation d(t), and the Hamiltonian is

H = H(0) +
1
2
µω2d(t)2 − µω2d(t)z (B.2)

as introduced in Equation (2.3). Optimal control theory is about finding the

optimal u(t) function that causes the system to evolve from a given initial state

|ψ(t = 0)〉 = |ψ0〉 to a desired final state |ψ(T )〉 = |ψf 〉 within the fixed time T .

The Schrödinger equation for ψ(t) must be fulfilled at all times during the process.

The problem can be mathematically formulated by constructing a cost functional

(or objective) J that depends on the reached state at the time T . This Functional

must be maximized under the constraint of fulfilling Schrödinger’s equation.

Such an objective could be the fidelity |〈ψf |ψ(T )〉|2, the real part of the overlap

Re{〈ψf |ψ(T )〉} or the norm of the difference |ψ(T )〉− |ψf 〉. The most appropriate

method must be chosen to fit the specific problem. The optimal solution u(t) can

be found by constructing a Lagrange functional L

L[ψ, χ, u] = J [ψ(T )] + 2Re

{∫ T

0

dt
(
〈ψ̇| − 〈ψ| i

~
H(u(t))

)
|χ(t)〉

}
. (B.3)
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that depends on the wavefunction |ψ(t)〉, the control u(t) and an auxiliary state

|χ(t)〉. The functions that make J extremal under the constraint of fulfilling the

Schrödinger equation have the property that the first derivatives of L with respect

to ψ, χ and u vanish. Technically, the variation δfiF of the functional F [fi] in the

argument function fi replaces the derivative ´∂F/∂fi’. Optimal control techniques

are further detailed in [36],[37] and [38]. In particular one can prove the existence

of an optimal solution.

B.2 Basic Equations

In this section we derive the basic equations for the optimal solutions ψ(t), χ(t)

and u(t) by a variation of the Lagrange functional L. The variation of a functional

F is

δfF [f ] = F [f + δf ]− F [f ]. (B.4)

Here, only linear terms in δf must be taken into account. Equating each deriva-

tive(variation) to zero leads to equations for the optimal solution.

Variation of |ψ〉

Taking the variation of L with respect to ψ, we have

δψL[ψ, χ, u]

= L[ψ + δψ, χ, u]− L[ψ, χ, u] (B.5)

= δψ(T )J [ψ(T )]− 2Re

{∫ T

0

dt 〈χ(t)|
(
i

~
H(u(t)) +

d
dt

)
|ψ(t) + δψ(t)〉

}

+ 2Re

{∫ T

0

dt〈χ(t)|
(
i

~
H(u(t)) +

d
dt

)
|ψ(t)〉

}
(B.6)

= δψ(T )J [ψ(T )]

− 2Re

{∫ T

0

dt
(
〈χ(t)| i

~
H(u(t)) |δψ(t)〉+ 〈χ(t)| ˙δψ(t)〉

)}
(B.7)
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= δψ(T )J [ψ(T )]

− 2Re

{∫ T

0

dt 〈χ(t)| i
~
H(u(t)) |δψ(t)〉+ 〈χ(t)|δψ(t)〉

∣∣∣T
0
−
∫ T

0

dt〈χ̇(t)|δψ(t)〉
}

(B.8)

= δψ(T )J [ψ(T )]

− 2Re

{
〈χ(T )|δψ(T )〉+

∫ T

0

dt
(
〈χ(t)| i

~
H(u(t))− 〈χ̇(t)|

)
|δψ(t)〉

}
.

(B.9)

In the last step, after the integration by parts, we used the fact that the variation

of |ψ〉 should not affect the initial state, i.e. |δψ(0)〉 = 0. Because the variation

|δψ(t)〉 is arbitrary, δψL in the last line of Equation (B.9) can only vanish if the

integrand vanishes. That means |χ(t)〉 fulfills the Schrödinger equation

i~|χ̇(t)〉 = H(u(t)) |χ(t)〉 (B.10)

for all times, with the end-condition

0 = δψ(T )J [ψ(T )]− 2Re {〈χ(T )|δψ(T )〉} . (B.11)

The condition of Equation (B.11) in the following is specified for two examples

for when J is the fidelity, and when J is the real part of the overlap. For the

application in this thesis, the choice J = 2Re〈ψf |ψ(T )〉 is more relevant, since for

the phase gate we need phase information, which is lost by taking the absolute

value of the fidelity. The fidelity can be used for other applications and is found

as an objective in literature, and so we will derive the equations for both cases.

a) Fidelity: J [ψ(T )] = |〈ψf |ψ(T )〉|2 substituted in Equation (B.11) yields

0 = J [ψ(T ) + δψ(T )]− J [ψ(T )]− 2Re {〈χ(T )|δψ(T )〉} (B.12)

= 〈ψf | (|ψ(T )〉+ |δψ(T )〉) (〈ψ(T )|+ 〈δψ(T )|)

|ψf 〉 − 〈ψf |ψ(T )〉〈ψ(T )|ψf 〉 − 2Re {〈χ(T )|δψ(T )〉} (B.13)

= (〈ψf |ψ(T )〉+ 〈ψf |δψ(T )〉) + (〈ψ(T )|ψf 〉+ 〈δψ(T )|ψf 〉)

− 〈ψf |ψ(T )〉〈ψ(T )|ψf 〉 − 2Re {〈χ(T )|δψ(T )〉} (B.14)
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= 〈ψf |ψ(T )〉〈|δψ(T )|ψf 〉+ 〈ψf |δψ(T )〉〈ψ(T )|ψf 〉

+ 〈δψ(T )|ψf 〉〈δψ(T )|ψf 〉 − 2Re {〈χ(T )|δψ(T )〉} (B.15)

Here, we neglect the marked term, because it is second order in δψ(T ). We

arrive at

0 = 2Re {〈ψ(T )|ψf 〉〈ψf |δψ(T )〉} − 2Re {〈χ(T )|δψ(T )〉} (B.16)

For arbitrary δψ(T ), we find an end value condition for χ(T )

0 = 〈ψf |〈ψ(T )|ψf 〉 − 〈χ(T )|, (B.17)

or

|χ(T )〉 = 〈ψf |ψ(T )〉|ψf 〉, (B.18)

which can be interpreted as the part of |ψ〉 that reached |ψf 〉.

b) Real part of the overlap: J [ψ(T )] = 2Re{〈ψf |ψ(T )〉} substituted in Equation

B.11 yields:

0 = J [ψ(T ) + δψ(T )]− J [ψ(T )]− 2Re {〈χ(T )|δψ(T )〉}

= 2Re {〈ψf |δψ(T )〉 − 〈χ(T )|δψ(T )〉} .
(B.19)

For arbitrary small variation δψ(T ) the end value condition in this case reads

|χ(T )〉 = |ψf 〉. (B.20)

The end value condition for |χ〉 is the objective state.

Variation of |χ〉

The calculation of δχL is similar to δψL, only more straightforward. We find that

the variation of χ yields the constraint, as expected for the Lagrange-multiplier-like

method, ψ(t) must satisfy the Schrödinger equation

i~|ψ̇(t)〉 = H(u(t)) |ψ(t)〉, (B.21)

for all times t, with the initial condition

|ψ(0)〉 = |ψ0〉. (B.22)
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Variation of u(t)

The variation of L with respect to the control u(t) yields:

δuL[ψ, χ, u] = L[ψ, χ, u+ δu]− L[ψ, χ, u]

= 2Re

{∫ T

0

dt〈χ| i
~
∂H

∂u
(t) δu(t) |ψ(t)〉

}
.

(B.23)

For arbitrary variation δu(t)

0 = −2Im
{
〈χ| ∂H

~∂u
(t) |ψ(t)〉

}
(B.24)

must hold for all times. The derivative ∂H/∂u is an operator. It sometimes is

easy to determine, e.g. in the linear case H(u(t)) = H0 +u(t)H1, the derivative is

H1. In the atom-ion control of Chapter 5 the derivative reads(
∂H

∂d

)
ai

= µω2d(t)− µω2z. (B.25)

Summary

We summarize the equations for the state and the optimal control functions for

the objective of maximizing J = 2Re {〈ψf |ψ(T )〉}.

a) The equation of motion for ψ(t) is

i~|ψ̇(t)〉 = H(u(t)) |ψ(t)〉, (B.26)

with the initial condition

|ψ(0)〉 = |ψ0〉. (B.27)

b) the equation of motion for χ(t) is

i~|χ̇(t)〉 = H(u(t)) |χ(t)〉, (B.28)

with end-value condition

|χ(T )〉 = |ψf 〉. (B.29)

c) The end-condition for u(t) is

0 = −2Im {K(u(t))} , (B.30)

with

K(u(t)) = 〈χ(t)| ∂H
~ ∂u

(t) |ψ(t)〉. (B.31)
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B.2.1 Control of more than one State

The calculations above are valid for the case of one wavefunction to be controlled by

one control function. The atom-ion quantum gate described in Chapter 5 requires

the simultaneous control of four isolated qubit channels. For that purpose we

extend the equations to a set of wavefunctions {ψA}, A ∈ {1, 2, ..} and a set of

control functions {uj(t)} j ∈ {1, 2, ..}. Time evolution is governed by a Schrödinger

equation for each ψA(t) with Hamilton operators {HA}.
We formulated an objective as the sum of the single objectives.

J [{ψA(T )}] =
∑
A

JA[ψA(T )] (B.32)

The Lagrange functional has the form

L[{ψA}, {χA}, {uj}] =

J [{ψA(T )}] + 2Re

{∑
A

∫ T

0

dt
(
〈ψ̇A| − i

~
〈ψ|HA ({uj(t)})

)
|χA(t)〉

}
. (B.33)

For specific objective JA[ψA(T )] = 2Re
{
〈ψAf |ψA(T )〉

}
the resulting equations are

summarized below.

a) Equations of motion for the {ψA(t)} are:

i~|ψ̇A(t)〉 = HA({uj(t)}) |ψA(t)〉, A ∈ {1, 2, ..} (B.34)

with the initial conditions

|ψA(0)〉 = |ψA0 〉. (B.35)

b) Equations of motion for {χA(t)} are:

i~|χ̇A(t)〉 = HA({uj(t)}) |χA(t)〉, A ∈ {1, 2, ..} (B.36)

with end-value conditions

|χA(T )〉 = |ψAf 〉.. (B.37)
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c) Equations for {uj(t)}:

0 = −2Im

{∑
A

KA
j ({uj(t)})

}
, j ∈ {1, 2, ..}, (B.38)

where

KA
j ({uj(t)}) = 〈χA(t)| ∂H

A({uj(t)})
~ ∂uj

(t) |ψA(t)〉. (B.39)

B.3 Iterative Algorithm

The set of Equations (B.34, B.35, B.36, B.37, B.38, B.39) for the optimal solutions

provides the basis for an an iterative algorithm for finding the optimal control func-

tions {uj(t)}. We solve Equations (B.34) and (B.36) numerically by discretizing

the time axis with time step ∆t and by using the Crank-Nicholson method (see

Section A.3). We start with an initial guess for the control functions {u(0)
j (t)}.

In each iteration the controls are updated from {u(n)
j (t)} to {u(n+1)

j (t)} with the

result that the objective is increased. The algorithm we use here is called inter-

mediate feedback control (see [39]). The algorithm is initialized with a forwards

propagation of the {|ψA(t)〉} with the initial conditions from Equation (B.35) by

using the initial guess controls {u(0)
j (t)}.

At this point an iterative procedure can start. At the n-th iteration, the current

controls are {u(n)
j (t)}. The {|χA(t)〉} are propagated from t = T to t = 0 back-

wards in time with the final conditions from Equation (B.37). Given the solutions

|χA(0)〉, the states |χA(t)〉 and |ψA(t)〉 are now again evolved forwards in time

with the initial conditions from Equation (B.35). For |χA(t)〉, the old controls

{u(n)
j (t)} are used. During each time step the controls are updated according to

u
(n+1)
j (t) = u

(n)
j (t) +

2
λ(t)

Im

{∑
A

KA
j ({u(n)

j (t)})
}
, j ∈ {1, 2, ..}. (B.40)

These new controls are used to evolve |ψA(t)〉 forwards in time. The weight λ(t)

fixes the initial and final values of {uj(t)} and adjusts the magnitude of the update.

Once the final time is reached and the update of the controls is complete, |ψ(T )〉
is calculated and the next iteration step can start. We stop the procedure as soon

as a satisfying objective is reached.
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KA
j can be interpreted as the gradient of the objective with respect to the control

functions. The expectation value is calculated with the backwards propagated

|χA〉, which represents the goal, and the forwards propagated |ψA〉 produced by

the current control. Therefore KA
j gives a direction in which the control must be

updated to get closer to the objective. After the update, ψA〉 is propagated with

the new controls.

Since the parameter space is huge, it can easily happen that a local extremal

value is found by the algorithm. If the objective converges, but not to the optimal

solution, a different initial guess may have better success. Another important

issue is the magnitude of the control updates in Equation (B.40). The weight λ(t)

assures that the boundary conditions are fixed, but can also be used to adjust

this magnitude. If λ is too big, the updates are small and convergence is slow.

On the other hand, if λ is too small, the algorithm can miss the optimal solution

because of too large an update, and the convergence is lost. This is schematically

illustrated in Figure B.1.

In one of our optimization programs of the atom-ion gate, λ(t) is exponentially

increasing at the final and the initial time to values of the order of 1013, and

thereby fixes the initial and final values of the control function. For other times

we require values of the order of 104. The control function takes values of the

order of one in the dimensionless coordinates used, while the Hamiltonian can

take values of the order of 102 to 103 in our example. The function λ(t) regulates

the updates to be smaller than one in this case.
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L[u]

n

n+ 1 n+ 2

n+ 2 . . .

n+ 1

u

Figure B.1: Schematic depiction of updating the optimal control function in order

to reach the maximum value of the cost functional. Steps that are too

large can cause errors. Smaller steps can be more successful, but are

also more time consuming.
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