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Abstract

Coupled systems of macroscopic and atomic objects are interesting subjects

of study. Understanding such coupled systems allows one to illuminate the

boundary between the macroscopic, classical, world and the microscopic,

quantum mechanical, world. The demonstration of the quantum nature of

macroscopic mechanical objects has the potential not only to reach a new

level of measuring precision, but also for a greater understanding of physics.

The experiment described in this thesis aims to establish the basis for cou-

pling an ion and a micro oscillator. Based on the idea of Frank Ziesel to

combine an ion trap with a membrane, we set up an oscillating ion trap.

This thesis describes the development of the so called membrane trap, start-

ing from the simulation of the trap to a complete experimental setup. The

focus of this work lies on the characterization of the system, consisting of an

ion and a membrane, but we will also discuss possible future measurements.

The essential feature of the oscillating ion trap is the implementation of a

Paul trap in a specially prepared membrane, which provides the required

geometrical structure for a micro ion trap. For finding the proper condi-

tions for a stable ion trap, we used numerical simulations to analyze the

potentials and trajectories. Based on these simulations, the design of the

trap holes was created, as well as the configuration of the electrical compo-

nents. Following a design by Frank Ziesel, the ultra-high vacuum setup for

the membrane trap was assembled. Furthermore, the imaging optics were

set up and the focusing of the laser beams through the trap holes were op-

timized. For the analysis of the mechanical properties of the membrane, a

specially designed Michelson interferometer was developed and fabricated.

The theoretically expected resonance frequencies and quality factors of the



membrane were then compared to the obtained results using the interferom-

eter. Additionally, a preliminary theoretical analysis of future measurements

was performed and their experimental implementation was prepared.

The work introduced in this thesis enables a variety of directions for future

research. One example is a cryogenic setup for the oscillating ion trap,

which could allow the cooling of the membrane to the ground state, making

it possible to reach the strong coupling regime of an ion and the membrane.



Zusammenfassung

Die Erforschung der Kopplung von makroskopischen und atomaren Objek-

ten ist Gegenstand aktueller Forschungen und von großem Interesse, denn

solche Systeme ermöglichen eine Untersuchung der Verbindung zwischen der

makroskopischen, klassischen Welt und der mikroskopischen, quantenmecha-

nischen Welt. Solche makroskopischen mechanischen Objekte, die sich dabei

trotzdem nach Gesetzen der Quantenwelt verhalten, könnten sowohl zum

Erreichen neuer Messgenauigkeiten führen, als auch unser Verständnis der

Physik erweitern.

Das in dieser Diplomarbeit vorgestellte Experiment soll den Grundstein le-

gen für die Kopplung von einem Ion und einem Mikro-Oszillator. Basierend

auf der Idee Frank Ziesels, eine Ionenfalle mit einer Membran zu verbinden,

haben wir eine schwingende Ionenfalle aufgebaut. Diese Diplomarbeit be-

schreibt die Entwicklung dieser Membranfalle, beginnend bei Simulationen

der Falle, bis hin zum kompletten Experiment. Den Schwerpunkt der Arbeit

stellt die grundlegende Charakterisierung des Systems aus Ion und Mem-

branfalle dar, doch werden auch zukünftige Möglichkeiten diskutiert, die

das Experiment bietet. Die schwingende Ionenfalle besteht aus einer speziell

entworfenen Membran, die die geometrische Struktur einer Mikro-Ionenfalle

mit einem mechanischen Oszillator verbindet. Um die nötigen Vorausset-

zungen für eine funktionierende Ionenfalle zu schaffen, wurde diese zunächst

numerisch simuliert und die Potentiale sowie Trajektorien analysiert. Auf

diesen Simulationen basierend, wurde das Design der Fallenlöcher erstellt

und die elektrischen Bauteile der Membranfalle angepasst. Ein Ultrahoch-

Vakuum-Aufbau wurde nach einem Design von Frank Ziesel konstruiert und

die Membranfalle darin integriert. Desweiteren wurde die Abbildungsoptik

für die EMCCD-Kamera aufgebaut und die Fokussierung der Laser durch die



Fallenlöcher optimiert. Um die mechanischen Eigenschaften der Membran zu

untersuchen, wurde ein spezielles Michelson Interferometer entworfen. Da-

mit wurden die Resonanzfrequenzen und Qualitätsfaktoren der Membran

bestimmt und diese anschließend mit den theoretischen Werten verglichen.

Zusätzlich wurden vorbereitende theoretische Analysen für zukünftige Mes-

sungen durchgeführt und deren Umsetzung im Experiment geplant.

Für die Zukunft der Membranfalle gibt es viele Möglichkeiten. So wäre es

zum Beispiel eine Möglichkeit einen kryogenen Aufbau zu entwerfen, der

das Kühlen der Membran in den Grundzustand ermöglicht und eine starke

Kopplung zwischen Ion und Membran realisierbar macht.
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1
Introduction

At the beginning of the 20th century the formulation of the quantum theory provided

the foundation to understand physics on a novel microscopic level − a quantum level.

Since then, many theories were confirmed in experiments and quantum physics affected

almost every field of science. With the development of novel and better techniques to

observe and manipulate particles at atomic and sub-atomic scales, the exploration of

the quantum world continues.

As nowadays the macroscopic world is well understood and evidence from an increasing

number of experiments supports the quantum theory and hence our understanding of

the microscopic world, the next step is to investigate the connection between both

worlds. Therefore, it is necessary to find a way to couple macroscopic and microscopic

objects and study their interactions. The goal is to illuminate the boundary between our

macroscopic world, governed by classical physics, and the microscopic realm, governed

by quantum mechanics. The demonstration of the quantum nature of macroscopic

mechanical objects has the potential to open up new perspectives on the research of

the limits of quantum-based measurements. This may lead to the development of novel

techniques techniques to control quantum states. The investigation of macroscopic

quantum coherence might influence the quantum world in every field, e.g., quantum

simulation, quantum information protocols.

For more than a decade, the coupling of microscopic and macroscopic objects has been

a regularly discussed theoretical idea [Law 1994, Law 1995, Bose 1999, Meiser 2006,

Genes 2008, Ian 2008]. But only recently, it has become possible to observe it in ex-

perimental setups. A variety of different approaches has been considered in this con-
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1. INTRODUCTION

text, many of them utilizing the well-established properties of mechanical oscillators.

The advantages of such systems are not only the variety of existing theoretical cou-

pling schemes, which make it possible to examine quantum behavior in ordinary bits of

matter, but also the possibility to establish the oscillators as probes of quantum and

mesoscopic forces.

One approach that has contributed much activity lately is the so-called optomechan-

ics approach that has resulted in significant research efforts lately [Kippenberg 2008,

Anetsberger 2009, Marquardt 2009, Regal 2011]. Its main idea is to use a micro- or

nanomechanical oscillator as one of the two mirrors of a cavity. Many interesting dis-

coveries have already been made, including the cooling of a mechanical oscillator to or

near to its ground state. [Teufel 2011a, Rivière 2011]

Based on the promising discoveries in the field of optomechanics, the coupling of atoms

to mechanical oscillators has made great progress. By adding a Bose-Einstein-condensate

to the system of cavity and oscillator, the vast experience with ultra-cold atoms in cav-

ities and optical lattices could be combined with mesoscopic objects, e.g., cantilevers

and membranes. Recent experiments have already provided encouraging first results

and should be investigated further. [Treutlein 2007, Hammerer 2009, Hammerer 2010,

Hunger 2010, Wallquist 2010, Hunger 2011].

Another method is the utilization of superconducting circuits, which can be described as

electromagnetic cavities, with high-quality-factor mechanical oscillators [Craighead 2000].

Recently it was accomplished to reach the strong-coupling regime with such a setup.

Following the definition known from cavity quantum electro dynamics, in the strong-

coupling regime the interaction between two systems is faster than the dissipation of

energy from either system [Teufel 2011b].

In this thesis we present a system consisting of a macroscopic mechanical oscillator, i.e., a

Silicon membrane, and an ion. Ions provide an ideal system to study quantum mechanics

in an isolated environment, thereby reducing undesirable interactions with the outside

world. An elaborate toolbox to prepare, control and manipulate ions exists. Our expe-

rience with microtraps permits preparation and detection of desired states, such as the

ground state, and enables the creation of non-classical states, e.g., superpositions and

entangled states [Leibfried 2003, Häffner 2008, Poschinger 2010b, Poschinger 2010a]. In

2



a recent experiment the coupling of an ion to the smallest know oscillator, a second ion,

was already achieved [Brown 2010].

The membrane provides the required geometrical structures for a micro ion trap and

the well characterized properties of a mechanical oscillator. Our first attempt is to

use the ion as a high-sensitive probe to analyze the vibrations of the membrane and

examine the interaction between membrane and ion. Additionally, the presented setup

allows the investigation of non-classical states. Although a cooling of the membrane via

interaction with the ion is not possible in this setup, the thermal state of the membrane

already provides many interesting possibilities to explore the connection of classical and

quantum mechanical properties.

In a future setup the investigation of a ground state cooled membrane opens new per-

spectives for further coupling schemes. In a cryogenic setup the membrane could be

cooled to a quantized state and the interaction with an ion in the ground state could

be observed, for example the coherent exchange of energy between the two systems.

Organization of the chapters:

The second chapter provides the theoretical foundation. The Hamilton operator of

the system of the membrane and the ion is derived and we analyze the different terms

in detail. In this chapter, we study the required mechanisms to trap and control the

ion via electrical potentials and electromagnetic fields, respectively. We analyze the

possible coupling of a membrane and an ion, and their respective dissipation channels.

Furthermore, we discuss the measurement of the vibrational modes of the membrane

using an interferometer.

In the third chapter the experimental setup is described. The first part of this chap-

ter describes the setup of the membrane ion trap, including the membrane itself, its

placement inside a vacuum chamber and the necessary tools, such as the laser system

and the imaging optics. The second part covers the interferometer, which was especially

designed for this setup, and the stabilization circuit used to reduce noise signals.

The fourth chapter covers the obtained results. First, we discuss the simulations of the

potentials and the resulting trajectories, analyze different trap sizes, in our case different

3



1. INTRODUCTION

hole sizes, and examine a vibrating trap situation. Then we describe the characterization

of the stabilization circuit and the results of the measurements of the vibrational modes

of different membranes, as well as the measurements of the quality-factor. After that we

show some example sideband spectroscopy measurements obtained in a different trap

to compare them to the expected results in the membrane trap. Finally we present the

first successful steps towards trapping an ion in the membrane trap and give an outlook

on future measurements.

The fifth chapter summarizes the current state of the membrane trap and discusses a

future approach to achieve a membrane-ion coupling at cryogenic temperatures, as well

as a variety of further research possibilities.

4
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In this thesis the coupling of an ion to a mechanical oscillator, in our case a membrane,

is discussed. We start by defining the Hamilton operator for the system of membrane
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2. THEORETICAL FOUNDATION

and ion including all interactions and then go on by taking a closer look at the separate

terms.

The system consists on the one hand of the ion, which interacts with the trapping

potential, the laser beams, and the environment and on the other hand of the membrane,

which is characterized by its eigenfrequencies and the corresponding quality factor and

is influenced by the environment, as well. At last we have to consider the interactions

between membrane and ion.

The Hamilton operator of the whole system can be written as

Hsystem = Hion +Hpot +Hlaser-ion

+Hmem +Hmem-ion (2.1)

+Hion-world +Hmem-world

where Hion describes the ions internal structure using a two level approximation and

its behavior in the harmonic trap potential is described by Hpot. The interaction of

the ion with the applied laser beams is formulated by Hlaser-ion. Hmem defines the

membrane vibrations in a quantum mechanical approach and the interaction between

the ion and the membrane is described by Hmem-ion. The last two terms Hion-world and

Hmem-world describe the interaction of the ion and the membrane with the environment,

respectively. These terms lead to dissipation.

In the following sections, we analyze the different Hamilton operators in detail.
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2.1 The ion - a two level system approach

2.1 The ion - a two level system approach

At first, we take a closer look at the ion. In the experiments presented in this thesis, we

work with Calcium ions (40Ca+). For the membrane trap, there are three important

properties to account for choosing the right element. First of all, we need to ionize

an atom beam. Secondly, the energy level structure needs to be accessible for existing

laser systems and thirdly, a fast decaying state for Doppler cooling and internal state

detection, as well as a metastable state for spectroscopy are required. Calcium has

proven to be a good choice for experiments in ion traps and fulfills these requirements.

Isotope selective photo ionization of Calcium is possible, for all relevant transitions there

are affordable lasers available and we will see that the the internal structure of 40Ca+

provides the necessary states.

Figure 2.1: The ion - a two level system - The ion is well approximated by a two level
system approach, although its actual internal structure is more complicated. The overview
pictures at the beginning of each section show a cut through the membrane hole, which
represents the geometry of a ring Paul trap.

Figure 2.2 shows the internal structure of the ionized 40Ca+, produced via photo ion-

ization1. The relevant energy levels, transitions, and lifetimes are displayed. There are

the fast decaying P-levels and the metastable D-Levels. The 42P1/2 state is used for

1Photo ionization is described in detail elsewhere: [Gulde 2001].
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2. THEORETICAL FOUNDATION

Doppler cooling and internal state detection, the 32D5/2 level is used for spectroscopy.

393nm

397nm

854nm

729nm

866nm

1.17s

1.18s

8ns

7ns
101ns

94ns

Figure 2.2: Energy levels of Calcium - A scheme of the internal structure of a 40Ca+

ion. The fast decaying 42S1/2 - 42P1/2 transition is used for detection via fluorescence
read out and Doppler cooling. The transition 42S1/2 - 32D5/2 (represented by |g〉 and |e〉,
respectively) is important for sideband spectroscopy. All transitions are accessible with
common laser systems.

Despite the complicated internal structure of the ion, a good approximation is the

approach to describe the ion as a two level system. Therefore we start by choosing two

arbitrary states |g〉 and |e〉 with respective energies Eg and Ee. In the case of the 40Ca+

ion, |g〉 represents the 42S1/2 state and |e〉 the 32D5/2 state. The Hamiltonian is then

defined by:

Hion =
~ωion

2
(|e〉 〈e| − |g〉 〈g|) (2.2)

with

ωion = (Ee − Eg) /~ (2.3)

In the presence of an quantizing external magnetic field B, an energy splitting of the

mJ sublevels occurs, the so called Zeeman splitting. This effect is described by the

8



2.1 The ion - a two level system approach

following Hamilton operator

HZ = µBgJ
∑
mJ

mJB |JmJ〉 〈JmJ | (2.4)

where µB is the Bohr magneton and gJ are the Landé factors. In figure 2.3 an example

for the S1/2 state is shown.

Figure 2.3: Zeeman splitting of the ground state - description

2.1.1 State-sensitive detection of the ion via fluorescence read out

The state-sensitive detection of the 40Ca+ ion is possible via fluorescence read out on

the fast decaying 42S1/2 - 42P1/2 transition. By applying laser beams at 854 nm and 866

nm we keep the ion from occupying the metastable 32Dj states, hence it is only available

for the fast decaying 42S1/2 - 42P1/2 and 42S1/2 - 42P3/2 transitions. If we drive the

transition at 397 nm, we can detect the emission of fluorescence light via the EMCCD

camera. Turning off the laser at 866 nm, we allow the ion to occupy the metastable

32D5/2 state, making it unavailable for the fluorescence transition for the lifetime of the

metastable state. Additionally, it is possible to drive the 42S1/2 - 32D5/2 transition at

729 nm, in combination with the laser at 866 nm turned on or off, to directly control,

if the ion is in a bright or dark state.

The discrimination of a bright and dark state of the ion is detected via the difference

of the count rate for light at 397 nm. The short lifetime of the 42P1/2 state (τ = 8 ns)

9



2. THEORETICAL FOUNDATION

implicates a high scattering rate of Γ ≈ 2π · 20 MHz. When the ion is in a dark state

the count rate is decreased, but remaining stray light from the laser at 397 nm is still

detected. A threshold is defined to distinguish between the count rates for bright and

dark state. The threshold is calculated from the mean value of the count rate of the

bright ion b̄ and the dark ion d̄ for a constant period of time (typically 5 ms):

σ =
√
b̄d̄ (2.5)

Figure 2.4 shows an example for a typical histogram.
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Figure 2.4: A typical histogram - The histogram for typical count rates shows the
“dark counts” colored red, the “bright counts” colored blue, and the threshold σ is marked
by the arrow.
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2.2 The ion oscillating in a harmonic potential

2.2 The ion oscillating in a harmonic potential

In this section, the trapping of the ion in a harmonic potential is described. We start

by discussing the trapping mechanism of a Paul trap, then we go on to describe the

Hamiltonian for an ion oscillating in a harmonic potential and the influence on its

behavior. At the end of this section, we will see that it is possible to cool the confined

ion with only one laser beam and therefore discuss the Doppler cooling mechanism.

Figure 2.5: The ion trapped in a harmonic potential - In a harmonic potential the
ion occupies quantized vibrational states.

2.2.1 Trapping ions in a ring Paul trap

In the last sixty years, a huge development at the field of single particle traps oc-

curred. Charged particles can be trapped using the Coulomb force, e.g., in Penning

[Dehmelt 1968] or Paul [Paul 1990] traps. The trapping of single particles is the first

step towards understanding and researching quantum mechanical effects.

In 1953, Wolfgang Paul discovered that ions can be mass-selected using radio-frequency

fields [Paul 1953]. Based on Paul’s research, Dehmelt realized in 1967 that this mech-

anism could be utilized to trap single charged particles [Dehmelt 1967]. In modern

11



2. THEORETICAL FOUNDATION

quantum information experiments, this trapping mechanism proved itself as a fine in-

strument, because of the good isolation from the environment, if put into an ultra high

vacuum, and the great accessibility, which is necessary for manipulation via laser beams.

There are different designs of Paul traps, which utilize the same trapping mechanism

but have different advantages depending on their geometrical structure, e.g., surface

traps, linear traps, ring traps. In this thesis we use a ring Paul trap since its necessary

geometrical structure agrees well with the membrane geometry. In figure 2.6 a schematic

drawing of a ring Paul trap is shown.

Figure 2.6: Drawing of a ring Paul trap - The r.f. electrode is colored red and the dc
electrodes are colored blue.

The main concept of trapping charged particles in the center of a Paul trap is to use

an alternating electrical field which creates a ponderomotive potential. It is necessary

to use an alternating field. Since the Laplace equation ∆Φ = 0 for the general electric

quadrupole potential in the trapping region Φ(x, y, z)

Φ(x, y, z) = Φ0

(
αxx

2 + αyy
2 + αzz

2
)

(2.6)

demands that the coefficients αi solve the following equation:∑
αi = 0 , i = x, y, z (2.7)

So while it is possible to have two positive coefficients creating a confining potential,

one is always negative which creates a repulsive force pushing the ion out of the center.

In the case of the static field, the ion would escape in the unstable direction.

The solution is to alternate the field1 and take advantage of the inertia of mass. Chang-

1In the case of ion traps the order of the field is in the radio frequency range - that is why it is
often called the r.f.-field.
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2.2 The ion oscillating in a harmonic potential

ing between the trapping state in two dimensions and non-trapping state in one dimen-

sion, and vice versa, is accomplished by applying a time-dependent potential Φ0(t):

Φ0(t) = Udc + Vrfcos (Ωrf t) (2.8)

with Udc being an applied dc voltage and Vrf being the amplitude of a r.f.-field with

the driving frequency Ωrf .

The resulting potential is described by the following equation:

Φ(x, y, z, t) = Udc

(
α(dc)
x

(
x− x′

)2
+ α(dc)

y

(
y − y′

)2
+ α(dc)

z

(
z − z′

)2)
+ Vrfcos (Ωrf t)

(
α(rf)
x x2 + α(rf)

y y2 + α(rf)
z z2

)
(2.9)

A static potential created by the dc voltage Udc is superimposed with a time-dependent

potential induced by the r.f. voltage Vrfcos (Ωrf t). The fact that the two minima of the

static and periodic potential may have slightly different positions is taken into account

with the displacement vectors (x′, y′, z′).

Averaged over time, we would expect the time-dependent part of the potential to cancel

itself out, resulting in no effective force. This turns out to be true for a homogeneous

field, but in the case of the quadrupole field, which is an inhomogeneous field, a small

average force is left which acts in the direction of the smallest field amplitude, in our

case the center. Averaged over time we end up with a so called ponderomotive potential

or pseudopotential φpond:

φpond =
Z2e2| ~E|2

4mΩ2
rf

(2.10)

where Z is the atomic number, e is the electrical charge, ~E for the electrical field, m

for the mass and Ωrf for the angular oscillation frequency of the r.f.-field.

If an ion with mass m and charge Q = Z · |e| enters the range of the electrical field, the

following equations of motion describe the movement of the ion:

üi +
2Q

m

(
α

(dc)
i Udc + α

(rf)
i Vrfcos (Ωrf t)

)
ui = 0 (2.11)
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Substituting the following non-dimensional variables:

ai = −
8α

(dc)
i QUdc
mΩ2

rf

(2.12)

qi =
4α

(rf)
i QVrf
mΩ2

rf

(2.13)

τ =
Ωrf t

2
(2.14)

we obtain the form of the Mathieu differential equations:

d2ui
dτ2

+ (ai − 2qicos (2τ))ui = 0 (2.15)

Depending on the values of ai and qi there are stable and instable solutions for a

constant ratio of mass and charge m/e. For instable solutions the vibration of the

particle increases exponentially until it leaves the trapping region. For stable solutions

the particle stays in a small region around the trap center. Superimposing the stable

solutions for all three dimensions, we get the stability diagram shown in figure 2.7.

Figure 2.7: Stability diagrams of the Mathieu equation (2.15) - The stability
parameters a and q are plotted against each other. The left plot shows the z-stability
region, the right plot shows the superimposed z- and r-stability zones for a ring trap.
[Ghosh 1995]

For the in z-direction rotationally invariant ring Paul trap, we obtain the following
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2.2 The ion oscillating in a harmonic potential

relations of the stability parameters:

ax = ay = −az/2 (2.16)

qx = qy = −qz/2 (2.17)

If the condition ai � qi � 1 is fulfilled, stable solutions exist and can be approximated

by

u(t) ≈ Acos (ωit)
[
1 +

qi
2
cos (Ωrf t)

]
(2.18)

where ωi is defined by

ωi = βi
Ωrf

2
and βi =

√
ai +

q2
i

2
(2.19)

The lowest stability zone of a ring Paul trap is shown in figure 2.8.

Figure 2.8: Lowest stability zone of a ring Paul trap - The stability parameters a
versus q for the lowest stability zone in detail. Regions, where β < 1, are considered to be
stable. [Ghosh 1995]

We see from equation 2.18 that the motion of the confined particle can be divided in a

harmonic motion with frequency ωi, and a faster amplitude modulated motion induced

by the frequency of the r.f.-field. The first one is called secular motion and the later
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2. THEORETICAL FOUNDATION

is called micromotion. The secular motion is linked to the harmonic pseudo potential

and if the particle is cooled to a limit where its kinetic energy is comparable to ~ω,

it is well described by a quantized harmonic oscillator with energy levels correspond-

ing to the vibrational quanta. For a full description please refer to the literature, e.g.,

[Ghosh 1995, Wineland 1997].

The fast driven micromotion induces unwanted heating effects which can lead to un-

stable trapping condition, up to the loss of the ion and need to be minimized. In our

case we can use the existing dc electrodes to move the ion in the node of the harmonic

potential, thereby minimizing the micromotion.

In the common Paul trap designs, trap depths of a few hundred meV can be achieved,

therefore it is possible to trap particles out of an thermal atomic beam1.

In section 4.1, the simulations of the potentials and trajectories for the membrane trap

are based on these theoretical foundations.

2.2.2 The Hamiltonian of an ion in a harmonic potential

Now that we understand the trapping mechanism of a Paul trap, we take a closer look

at the ion confined in such a harmonic potential. The Hamiltonian for the harmonic

potential along one dimension takes the following form:

Hpot =
p2

2m
+

1

2
mω2

potx
2 (2.20)

Substituting the operators x and p with the creation and annihilation operators a† and

a:

x =

√
~

2mωpot

(
a+ a†

)
, p = i

√
~mωpot

2

(
a† − a

)
(2.21)

we end up with the following expression for the Hamiltonian of the harmonic potential:

Hpot = ~ωpot
(
a†a+

1

2

)
(2.22)

1The most probable kinetic energy of a thermal atomic beam lies in the range of 0.05 eV.
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2.2 The ion oscillating in a harmonic potential

This is the expression for the quantum mechanical harmonic oscillator with energy

eigenstates |n〉, where these so-called Fock states represent phonons. All the relations

known from the harmonic oscillator are also valid here, e.g.:

Hpot |n〉 = ~ωpot
(
n+

1

2

)
|n〉 (2.23)

2.2.3 Doppler cooling of an ion in a harmonic potential

The laser cooling of atoms, ions, or molecules with laser forces is one of the revolutionary

methods developed in the 21st century. Many quantum mechanical experiments were

only possible because of the development of this technique. Here we give just a brief

introduction to Doppler cooling and discuss the special case of an ion in a harmonic

potential. For further information about laser cooling please refer to the literature

[Hänsch 1975, Wineland 1978, Wineland 1979, Vuletić 2000].

Basic principles of Doppler cooling

Let us consider a particle moving in +x-direction with velocity vx interacting with a

counter-propagating laser beam with Intensity I and its frequency νL tuned close to a

transition of the particle:

νL =
c

λ
= ν0 + δ with δ � ν0 (2.24)

In the rest frame of the particle, the particle sees the Doppler-shifted frequency of the

laser:

ν ′L = νL

(
1 +

vx
c

)
vx�c−−−→ ν0 + δ +

vx
c
ν0 (2.25)

If we tune the laser to δ = −vx
c ν0, we find the laser in resonance with the particles

moving in the +x-direction ν ′L = ν0, but not with those moving in different directions.

In this case, only the particles moving towards the laser beam absorbs a photon with

frequency ν ′ and then re-emits another photon with frequency ν0 by spontaneous emis-

sion in a random direction. In a basic picture, the spontaneous emission in a random

direction averages to zero, resulting in a net frictional force in the −x -direction, decel-

erating the particle, therefore cooling it.
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2. THEORETICAL FOUNDATION

The frictional force Fx is given by the momentum change per absorption-emission cycle

multiplied by the net rate of such cycles [Lett 1989]:

Fx = −~k ×R(I,∆) (2.26)

where ∆ = 2πδ is the detuning in angular frequency units and k = 2π/λ is the wave

vector. The net rate R(I,∆) is equal to the absorption rate minus the stimulated

emission rate:

R(I,∆) =
γ

2

(
I/Is

1 + I/Is + [2 (∆ + kvx) /γ]2

)
(2.27)

where γ = 1/τ is the natural linewidth and Is is the saturation intensity of the transition.

In the case of the ion oscillating in a harmonic potential, we only need one laser beam

in contrast to neutral atoms, where two laser beams are necessary for each dimension.

Because of its charge, the ion is trapped in the potential and it is sufficient to cool it

in only one direction, thereby cooling the other dimensions via energy exchange. In the

case of the 40Ca+ ion the 42S1/2 - 42P1/2 transition is used for Doppler cooling.
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2.3 Light-Ion interactions

2.3 Light-Ion interactions

After understanding the trapping mechanism, the next step is to look at the possible

ways to manipulate the ion using laser beams. The light-ion interaction can be approx-

imated by a two-level system in the presence of a light wave, if the laser frequency is

close to resonance of only one internal transition of the ion. We start by deriving the

interaction Hamiltonian in a semiclassical approach and then we take a closer look at

the dynamic behavior of the ion, i.e., the concept of Rabi oscillations.

729nm

Figure 2.9: The ion interacting with laser beams - Trapped in a harmonic potential
the ion is interacting with laser beams.

At first, we need to derive the formula for the light-ion interaction Hamilton operator.

The light field can be described as an electrical field with frequency ωL propagating in

direction x:

~E(x, t) = ~E0 · exp [i (ωLt− kLx+ Φ)] +H.c. (2.28)

where ~E0 = E0~ε represents the amplitude and polarization of the laser beam. The laser-

ion interaction Hamiltonian of equation (2.1) is derived via a semi-classical approach,

which assumes that the interaction with the light field can be expressed as the induced
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2. THEORETICAL FOUNDATION

energy shift of the atomic dipole ~dge = e 〈g|x |e〉 of the |g〉 ↔ |e〉 transition1:

Hint = ~dge ~E(x, t)σ+ +H.c. (2.29)

with the abbreviations σ+ and σ− analogue to the notation of the creation and annihi-

lation operators of the harmonic oscillator

σ+ = |e〉 〈g| σ− = |g〉 〈e| (2.30)

with

σ†+ = σ−

Introduced as the coupling strength of the ion and the light field, the so-called resonant

Rabi frequency is defined as

Ω0 :=
2 ~E0 · ~dge

~
(2.31)

Now the interaction Hamilton operator expands to

Hint =
~Ω0

2

{
ei(ωLt−kLx+Φ) + e−i(ωLt−kLx+Φ)

}
σ+ +H.c. (2.32)

In the case of the ion trap, the harmonic frequency ωpot (in the order of MHz) is much

smaller than the frequencies of the laser beam ωL and the atomic transition ωion (in

the order of THz). Under these circumstances we can neglect the rapidly oscillating

terms including ωion + ωL, making a Rotating Wave Approximation. It is useful to

transform to an interaction picture via HINT = U †HintU with U = e−
i
~H0t, resulting

in the simplified expression for the interaction Hamiltonian [Leibfried 2003]:

HINT =
~Ω0

2
e−iδteiΦexp

{
iη
(
ae−iωpott + a†eiωpott

)}
σ+ +H.c. (2.33)

where the detuning is given by δ = ωL − ωion.
The position operator x was substituted in the usual way (see eq. (2.21)) with the

creation and annihilation operators and we introduced the Lamb-Dicke parameter η as

η = kL cos θ

√
~

2mν
(2.34)

1The diagonal dipole matrix elements vanish because the dipole interaction is an odd parity operator
and the atomic states have either odd or even parities. Additionally, the matrix element must take
only real values, which implies deg = dge .
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where θ is the angle between the k-vector of the laser field and the oscillation axis. We

will discuss the Lamb-Dicke Parameter and its implications at further extend in section

2.3.2.

We see from equation (2.33) that the interaction Hamiltonian couples the internal states

of the ion with the external vibration modes. It is useful to introduce a notation similar

to the dressed-states of the Jaynes-Cummings model:

|g〉 ⊗ |n〉 ≡ |g, n〉 and |e〉 ⊗ |n〉 ≡ |e, n〉 (2.35)

2.3.1 Coherent dynamics: Rabi oscillations

Since we are particularly interested in resonant transitions, we assume δ = (l−m)·ωpot =

s · ωpot where l, m and s are integers. If we expand the exponent in equation (2.33)

in η, it will result in terms containing a combination of the ions raising and lowering

operators σ± and the multiple of the annihilation and creation operators n · a and

m ·a†, respectively, rotating with a frequency δ. Resulting in a coupling of the manifold

of states |g, n〉 and |e, n+ s〉 with a coupling strength, the so called Rabi frequency

Ωn,n+s given by [Wineland 1979]:

Ωn,n+s = Ωn+s,n = Ω0 · |
〈
n+ s

∣∣∣ eiη(a+a†)
∣∣∣n〉 |

= Ω0e
−η2/2η|s|

√
(n<)!

(n>)!
L|s|n<

(
η2
)

(2.36)

where n< (n>) is the lesser (greater) of n and n+ s, η is the Lamb Dicke paramter, and

L
|s|
n<

(
η2
)
is the generalized Laguerre polynomial

L|s|n<

(
η2
)

=

n<∑
m=0

(−1)m
(
n< + |s|
n< −m

)
η2m

m!
(2.37)

The transitions |g, n〉 and |e, n+ s〉 are often called blue (red) sideband transition for

s > 0 (s < 0) and the |g, n〉 ↔ |e, n〉 - transition is a so called carrier transition. The

occupation probability for one of two coupled states, for example on a blue sideband

transition between |g, n〉 and |e, n+ 1〉, can be driven by applying a laser beam with

the detuning δ = +ωpot, resulting in so called Rabi oscillations on the blue sideband. In

an ideal case, the occupation probability is oscillating between 0 and 1 with the Rabi
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frequency Ωn,n+1. Up to this point, we made no approximations for the Lamb-Dicke

parameter η.

2.3.2 Lamb-Dicke regime

Assuming the extension of the ion’s wave function is much smaller than the wavelength,

the ion is confined to the Lamb-Dicke regime where η
√
n � 1 must hold for all times.

The interaction Hamilton operator simplifies in the Lamb-Dicke regime to

HLDR =
~Ω0

2
e−iδteiΦ

{
1 + iη

(
ae−iωpott + a†eiωpott

)}
σ+ +H.c. (2.38)

In the Lamb-Dicke regime there are only three resonances:

The first one is the carrier resonance. On a carrier transition the states |g, n〉 and |e, n〉
are coupled and oscillate with the frequency Ω0. The motional state remains unchanged.

The transition |g, n〉 ↔ |e, n+ 1〉 resonant for δ = +ωpot is called the blue sideband and

oscillates with Rabi frequency Ωn,n+1 ≈ Ω0η
√
n+ 1.

The resonant part for δ = −ωpot is the so called red sideband and drives transitions of

the type |g, n〉 ↔ |e, n− 1〉 with Rabi frequency Ωn,n−1 ≈ Ω0η
√
n.

The respective Hamiltonians take the following forms:

Hcar =
~Ω0

2

(
σ+e

iΦ + σ−e
−iΦ) (2.39)

Hbsb =
~Ω0

2
η
(
a†σ+e

iΦ + aσ−e
−iΦ
)

(2.40)

Hrsb =
~Ω0

2
η
(
aσ+e

iΦ + a†σ−e
−iΦ
)

(2.41)

2.3.3 Spectroscopy of the motional sidebands

For resolved sideband spectroscopy we make use of the quadrupole transition 42S1/2 -

32D5/2. The ion is prepared in the internal ground state 42S1/2 and the frequency of

an applied laser beam at 729 nm is scanned in discrete steps. For each measuring point,

typically consisting of a few hundred individual measurements with fixed frequency, the

laser beam is applied for a fixed duration, resulting in a probability that the ion has been
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excited to the metastable state. In the Lamb-Dicke regime the motional sidebands are

resolved and with this simple method we are able to measure the motional frequencies

of the ion.

A calculation for a spectrum “outside of the Lamb-Dicke regime” is described in section

4.5.1.

The different available transitions, including the Zeeman substructure, are shown in

figure 2.10. The different subtransitions can be accessed experimentally by inserting

the laser beam in different angles to the magnetic field and with different polarizations.

Only the sublevels with a projection on the k-vector of the spectroscopy laser can be

observed, hence only the red transitions are observable in the membrane trap.

-1/2

+1/2

S1/2

D5/2

-5/2
-3/2

-1/2
+1/2

+3/2
+5/2

Figure 2.10: Zeeman substructure of the spectroscopy transition - The allowed
subtransitions between the S1/2-state and D5/2-state which is used for sideband spec-
troscopy. The transitions, which can be observed in the membrane trap, are colored red.
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2.4 Vibrations of a membrane

In this section, we discuss how the membrane is characterized by its eigenfrequencies

and the respective quality factor and how the Hamilton operator for the membrane

vibrations can be expressed. We have to distinguish between the classical approach,

when the membrane is in a thermal regime, and the quantum mechanical approach,

when the membrane oscillations become quantized. At the end of this section, we give

a short introduction to the Michelson interferometer and how it can be used to measure

vibrations.

interferometer 
beam (729nm)

Figure 2.11: Vibrations of a membrane - The vibrations of the membrane are mea-
sured using an interferometer or the ion.

2.4.1 Vibrations of a classical membrane

Consider a homogeneous oscillating membrane, stretched in a plane of negligible thick-

ness by a uniform tension T and having a mass ρ per unit area. Furthermore, the

equilibrium position of the membrane is the xy plane and the vibration displacement

perpendicular to this plane will be given by z(x, y, t).

In figure 2.12 we see a schematic drawing of a stretched plane membrane.

If the side dx (dy) is vibrating, a force Tdy (Tdx) is acting on the side, which tends
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Tdx

Tdy

x

y

Tdy

Tdx

z

Figure 2.12: Scheme for the stretched plane membrane - On the vibrating mem-
brane in z-direction acting forces in x- and y-direction induced by the tension T .

to restore the element to its equilibrium position. That means the force Tdy along an

element of length dx produces a force [Pain 2005]:

Tdy
∂2z

∂x2
dx (2.42)

and another force Tdx acting on an element of length dy produces a force

Tdx
∂2z

∂y2
dy. (2.43)

Using Newton’s law we find that the sum of these restoring forces acting in z-direction

is equal to the mass of the element ρdxdy multiplied by its perpendicular acceleration

in direction of the z-axis

Tdy
∂2z

∂x2
dx+ Tdx

∂2z

∂y2
dy = ρdxdy

∂2z

∂t2
(2.44)

Simplifying equation (2.44), we end up with the wave equation in two dimensions

∂2z

∂x2
+
∂2z

∂y2
=
ρ

T

∂2z

∂t2
=

1

c2

∂2z

∂t2
(2.45)

where

c2 =
T

ρ
(2.46)
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2. THEORETICAL FOUNDATION

Now we need to define the initial conditions. The membrane is fixed at its edges, hence

the displacement is given by

z(x0, y0, t) = 0 ∀t (2.47)

where x0 and y0 are points on the edge of the membrane. Additionally, we define the

following initial conditions

z(x, y, 0) := f(x, y) (2.48)
∂z

∂t
(x, y, 0) := g(x, y) (2.49)

For the general solution, we make an ansatz where we separate the position and time

coordinates

z(x, y, t) = u(x, y)v(t) (2.50)

Inserting our ansatz into the wave equation (2.45), we find the following expression

∆u(x, y)

u(x, y)
=

1

c2

v̈(t)

v(t)
=: −λ (2.51)

The equation ∆u(x,y)
u(x,y) = −λ can be expanded to a form equivalent to the so called

Helmholtz equation

∆u(x, y) + λu(x, y) = 0 (2.52)

and the time dependent part of the equation can be expressed as

v̈(t) + ω2v(t) = 0 where ω := c
√
λ (2.53)

The time dependent equation (2.53) is solved using the characteristic polynomial and

the solution is given by

v(t) = c cos (ωt) + c̃ sin (ωt) c, c̃ ∈ R (2.54)

Without defining the form of the membrane more precisely, an exact solution for u(x, y)

can not be found. But it can be shown, that u(x, y) can be expressed in the following

form

u(x, y) =
∞∑
n=1

cnun(x, y) cn ∈ R (2.55)
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2.4 Vibrations of a membrane

Hence the general solution of the two dimensional wave equation is given by

z(x, y, t) =

∞∑
n=1

un(x, y) (an cos (ωnt) + bn sin (ωnt)) (2.56)

where the coefficients an and bn are defined by the initial conditions

an =
1

||un||2

∫
f(x, y)un(x, y)dV (2.57)

bn =
1

ωn||vn||2

∫
g(x, y)un(x, y)dV (2.58)

and ωn = c
√
λn.

The rectangular membrane

Now we analyze the special case of a rectangular membrane that is fixed at the edges

and in an equilibrium position:

0 < x < a, 0 < y < b

z(x, 0, t) = 0 z(x, b, t) = 0 0 ≤ x ≤ a ∀t (2.59)

z(0, y, t) = 0 z(a, y, t) = 0 0 ≤ y ≤ a ∀t (2.60)

Using the ansatz u(x, y) = X(x)Y (y) the space dependent wave equation expands to

X ′′(x)

X(x)
= −

(
Y ′′(y)

Y (y)
+ λ

)
=: −ν (2.61)

The left side of this equation simplifies to the eigenvalue problem

X ′′(x) + νX(x) = 0 (2.62)

with

X(0) = X(a) = 0

Solving the eigenvalue problem gives us the eigenvalues νn = π2n2

a2
and the respective

eigenvectors Xn(x) = sin
(
πnx
a

)
, where n is an integer. Considering the just found

solutions for the eigenvalues νn, the eigenvalue problem for Y (y) expands to

Y ′′(y) + (λ− νn)︸ ︷︷ ︸
=:χm

Y (y) = 0 (2.63)
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2. THEORETICAL FOUNDATION

with

Y (0) = Y (b) = 0

For this problem we find the eigenvalues χm = π2m2

b2
with the respective eigenvectors

Ym(y) = sin
(πmy

b

)
, where m is an integer.

Combining both solutions, we end up with the following eigenvalues and eigenvectors

for our special case of a rectangular membrane

λnm =
π2n2

a2
+
π2m2

b2
and unm(x, y) = sin

(πnx
a

)
sin
(πmy

b

)
(2.64)

Finally, adding the solution for the time dependent wave equation (see eq. (2.54)) the

universal solution for the oscillation of the rectangular membrane is given by the super-

position of all solutions

znm(x, y, t) = (anm cos (ωnmt) + bnm sin (ωnmt)) sin
(πnx

a

)
sin
(πmy

b

)
(2.65)

z(x, y, t) =
∞∑
n=1

∞∑
m=1

(anm cos (ωnmt) + bnm sin (ωnmt)) sin
(πnx

a

)
sin
(πmy

b

)
(2.66)

where n,m ∈ N and ωnm = c
√
λnm = πc

√(
n
a

)2
+
(
m
b

)2 are the eigenfrequencies for

the different modes of the membrane characterized by n,m. Hence the frequency of the

fundamental mode is

ω11 = πc

√(
1

a

)2

+

(
1

b

)2

(2.67)

In figure 2.13 examples for different normal modes are displayed. The first index gives

the number of antinodes in x-direction and the second index gives the number of antin-

odes in y-direction.

2.4.2 The membrane as quantum mechanical oscillator

When the membrane is cooled to very low temperatures, its motion becomes quantized

and therefore a quantum mechanical description is necessary. The quantized vibrational

modes of the membrane can be described by the model of the quantum mechanical
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2.4 Vibrations of a membrane

(a) (1,1) mode (b) (2,1) mode

(c) (3,1) mode

Figure 2.13: The first three normal modes of a rectangular membrane

harmonic oscillator. A quantum mechanical derivation of the harmonic oscillator can

be found in the common literature, e.g., [Cohen-Tannoudji 2007].

The Hamilton operator for the quantum mechanical oscillator is then given by

Hmem =
∑
n,m

~ωnmb†nmbnm (2.68)

where bnm and b†nm are the lowering and raising operators for the fundamental mode

znm with frequency ωnm = πc
√(

n
a

)2
+
(
m
b

)2.
2.4.3 Measuring vibrations with a Michelson interferometer

Finally, we will discuss how to measure the vibrations of a membrane. For this thesis,

a special design Michelson interferometer was developed and setup (see section 3.2). In

this section, the measuring of vibrations with a Michelson interferometer will be briefly

introduced.

The scheme of a typical Michelson interferometer, as it is also used in this thesis, is

shown in figure 2.14.
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2. THEORETICAL FOUNDATION

Figure 2.14: Scheme of a Michelson interferometer - The schematics of a typical
Michelson interferometer, where the membrane acts as a vibrating mirror. The output
signal of the photo diode is observed via a spectrum analyzer or oscilloscope and fed to the
stabilization circuit, which controls the compensation mirror via a piezo actuator.

An incident laser beam is split at a beam splitter cube, and send towards a reference

mirror and the vibrating object, i.e., the membrane. The vibration of the membrane

changes the length of one of the interferometer arms, hence changes the interfering signal

detected at a photo diode. For sinusoidal vibrations of the membrane, the detected

signal takes the following form [Dobosz 1998]:

V (t) = V cos (φ0 + φm cos (ωt+ φs)) (2.69)

where V is the Voltage amplitude, φ0 is the initial phase of the signal, which depends

on the initial optical path difference, ω is the angular frequency, φs is the vibration zero

phase and φm = 2πd/λ is the modulation phase amplitude, where d is the amplitude of

the vibrating object and λ the wavelength of light.

The displacement of the membrane corresponding to the distance between two adjacent

fringes of the same kind, e.g., intensity minima or maxima, is given by l = λ/2.

The resonance frequency can be measured by scanning the excitation frequency with a

spectrum analyzer and observing the feedback of the photo diode.
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2.5 Interactions in the combined system of ion and membrane

2.5 Interactions in the combined system of ion and mem-
brane

In this chapter we study the interactions in the coupled system of ion motion along the

z axis and the fundamental modes of the membrane. We start by deriving an expression

for the Hamiltonian for the coupling of the combined system and discuss ways to reach

the coupling.

g0

Figure 2.15: Coupling of an ion to a membrane - The coupling of the ion to the
membrane is expressed by the coupling strength g0.

At first we need to find an expression to describe the coupling of the ion and the

membrane. The coupling is caused by the Coulomb interaction between ion and the

charge distribution on the membrane induced by the applied r.f.-voltage. In the previous

sections we learned that the ion motion in a harmonic potential is well described by a

quantum mechanical harmonic oscillator and we found an expression for the membrane

equivalent to the harmonic oscillator. Hence the coupling of the two systems simplifies

to coupling two harmonic oscillators. The coupling term of such a system has the

following form [Tian 2004]:

Hmem-ion = i
~
2
g0

∑
i

(
b†nma+H.c.

)
(2.70)
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2. THEORETICAL FOUNDATION

where g0 is the coupling constant, bnm(b†nm) and a(a†) are the annihilation and creation

operators of the fundamental mode znm with eigenfrequency ωnm and the motion of the

ion, respectively, as defined in the previous sections.

The coupling constant g0 is given as

g0 = ωionznm

√
mion

mmem
(2.71)

where ωion is the frequency of the ion parallel to the membrane motion, in our case

the axial frequency. znm is the eigenfunction of the nth, mth vibrational mode of the

membrane at the position of the trap center and the respective masses of the ion and

the membrane are mion and mmem.

That means that the coupling between ion and membrane is proportional to the fre-

quency of the ion and the vibrations of the membrane, while reduced by the mass ratio

mion/mmem.

For a single ion with mion ≈ 10−23 g and a Silicon membrane with mmem ≈ 10−4 g, we

obtain a mass ratio of
√

mion
mmem

≈ 10−10, resulting in a strong reduction of the coupling

rate. The trap frequencies are limited by the experimentally achievable curvature of the

harmonic potential, usually in the range of a few MHz. Next, the coupling constant g0

scales with the eigenfunction of the nth, mth vibrational mode of the membrane at the

position of the trap center, which primarily depends on the material properties of the

membrane. For the membrane used in our experiments, we found resonance frequencies

in the range of 20 to 100 kHz.

Overall, the coupling constant g0 is typically in the regime of g0/2π ≈ 101 − 103 1/s.

Reaching the strong coupling regime

In order to reach the strong coupling regime, the coupling constant g0 needs to be

much larger than the rate of decoherence. The rate of decoherence scales with the main

dissipation factors of the ion - membrane system, i.e., the mechanical and electrical

noise. We will discuss these factors in detail in section 2.6.

For now, the simple picture that the mechanical noise decreases with the temperature

of the membrane and that the ion is well isolated from the environment due to the

ultra-high vacuum setup, while the key dehocerence factor, i.e., the heating rate of the

ion, can be minimized sufficiently, allowing to accomplish decoherence times of a few

hundred ms, is sufficient for further discussions.
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2.5 Interactions in the combined system of ion and membrane

As mentioned above, the coupling constant g0 needs to be much larger than the dissi-

pation factors. A rather obvious way to improve the coupling constant is to increase

the number of ions. The coupling constant scales with
√
N where N is the number of

ions in the trap. The collectively enhanced coupling is then gN =
√
Ng0 simply derived

from equation (2.71) by substituting mion with the mass of N ions N ·mion. The dis-

advantage of this method is that we loose the excellent motional control achievable for

a single ion.

Instead of increasing the number of ions, a different approach is to work with lighter

ions, since the trap frequency scales with 1/mion and the coupling constant only with

ωpot
√
mion resulting in a higher coupling strength. Unfortunately, the achievable in-

crease in coupling strength is rather small.

Another way to increase the coupling constant is to increase the curvature of the trap-

ping potential, resulting in higher trap frequencies and therefore higher values for g0.

This can be achieved by smaller traps or higher applied voltages. This method is limited

by the possible compensation, which must be applied by electrodes not mounted on the

oscillator.

Increasing the coupling strength on the side of the mechanical oscillator can be achieved

by using smaller, lighter oscillators, such as nanotubes, or by using thinner and smaller

membranes with more holes to reduce the mass. Decreasing the mass of the oscillator

can increase the coupling strength in two orders of magnitude compared to massive

oscillators as a Silicon membrane.

The coupling of an ion to the smallest available oscillator, another ion, was recently

achieved [Brown 2010]. In this experiment the motional frequencies of two ions in one

potential well can be brought into or out of resonance with each other, enabling a

tunable interaction.

Another approach to reach strong coupling, which is independent from the mass ratio,

was described recently and can be found in reference [Hammerer 2009]. By using a

configuration which realizes a coupled oscillator dynamics linear in the displacement of

atom and membrane, they found a theoretical solution of the coupling strength, which

is independent from the mass ratio. If this could be proven in experiment, it would give

rise to a whole new range of coupling schemes.
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2. THEORETICAL FOUNDATION

2.6 Interactions with the environment

In this section we study the influences of the environment on the interactions of the ion

and the membrane, as well as, how to minimize them. Then the results found in this

section for the dissipation rates of both coupling partners can be put into context with

the coupling constant described in the previous section.

ɣion
ɣmem

ɣmem

Figure 2.16: Interactions with the environment - The relevant interactions of the ion
and the membrane with the environment are summarized in γion and γmem, respectively.

2.6.1 Interactions of the ion with the environment

Trapped ions are one of the best controllable quantum mechanical systems and are well

isolated due to no direct contact with the environment. In particular, ion motion can

be controlled on the single quantum level and high coherence times can be achieved.

In our experiment we are interested in the axial phonon number, which is the one

coupling to the membrane. The main dissipation factor is the heating rate due to electric

field fluctuations. Anharmonicities in the trap result in small fluctuating voltages, hence

small drifts of the potential, leading to a heating rate. For our system with an ion of

charge q and mass m trapped in a harmonic potential well subject to a fluctuating
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2.6 Interactions with the environment

electric field drive ε(t), the Hamiltonian can be expressed by

H(t) = Hpot + qε(t)m (2.72)

From first-order perturbation theory, the rate of transition from the ground state of the

well (|n = 0〉) to the first excited state (|n = 1〉) can be derived

Γ0←1 =
q2

4m~ωpot
SE(ωpot) (2.73)

with

SE(ωpot) = 2

∫ ∞
−∞

dτeiωpotτ 〈ε(t)ε(t+ τ)〉 (2.74)

where SE(ωpot) is the spectral energy density of electric field fluctuations.

The heating rate, given by the rate of change of the average thermal occupation number,

can be approximated by the transition rate in eq. (2.73) [Turchette 2000]:

˙̄n = Γ0←1 =
q2

4m~ωSE(ω)
(2.75)

where ω is the frequency of the mode to be considered, in our case the axial mode.

Other effects are induced, e.g., by micromotion or by arbitrary magnetic fields, but are

not influencing the temperature.

The high frequent micromotion influences the fluorescence during detection, but it is

possible to minimize the micromotion by compensating with static electrical fields.

Arbitrary magnetic fields disturb the spectroscopy, due to shifting Zeeman levels, but

can be minimized via a shielding with high magnetic permeability or by applying com-

pensating magnetic fields.

All these effects are very small in the case of the ion trap.

So in our case the relevant decoherence rate γdec is induced only by effects influencing

the axial vibrational mode of the ion.

Typically coherence lifetimes of entangled states are in the range of several seconds,

so the decoherence rate is not the limiting factor in the combined system of ion and

mechanical oscillator.

35



2. THEORETICAL FOUNDATION

2.6.2 Interactions of the membrane with the environment

The interactions of the membrane with the environment are magnitudes higher com-

pared to the ion’s interactions. Although the membrane is also placed in an ultra-high

vacuum, it is in direct contact with the outside world via the connection of the mount.

This means the membrane is connected to a whole damping system consisting of mount,

vacuum chamber, and experiment table.

The damping mechanisms influencing the membrane motion are characterized by the

quality factor. The quality factor for an oscillating system is given by the ratio of the

stored energy and the energy dissipated per cycle and can be expressed as

Q =
f0

∆f
= π

f0

δ
(2.76)

where f0 is the resonance frequency, ∆f is the bandwidth and δ = 1/Tdecay is the

logarithmic decrement.

For typical mechanical oscillators quality factors in the order of 104−107 can be achieved.

The decoherence of a mechanical oscillator is typically fast despite high quality factors.

The coupling of the membrane to the environment introduces a dependence on the

temperature T of the bath. The resulting decoherence rate is given as

γmem,dec =
kBT

~Q
(2.77)

So not only are high quality factors important to reach small decoherence rates, but

also low temperatures. The high decoherence rate of the mechanical oscillator is the

key limiting factor in the system of membrane and ion and it is necessary to find ways

to minimize this decoherence rate in order to reach the strong coupling limit, where

g0 > (γion,dec, γmem,dec).
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In this chapter the experimental setup of the membrane trap and all the essential

components is described. At first, the membrane trap itself is discussed in detail,

starting with a description of the membrane used for the experiments in this thesis

and the fabrication process for an oscillating ion trap. Then we take a closer look at

the ultra-high vacuum setup surrounding the membrane and providing access for the

elaborate laser system, which will be described afterwards. The first section of this

chapter ends with the description of the imaging optics used for detection.

Next, the interferometer for vibration measurements, specially designed for this setup,

is described and at the end we study the stabilization circuit, implemented for the noise

reduction of the interferometer.
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3. EXPERIMENTAL SETUP

3.1 The membrane trap

For the construction of an oscillating ion trap two main requirements need to be fulfilled.

The necessary structure of an ion trap must be provided, but also allowing the oscillation

of the trap itself. In this section we show how to implement the structure of a ring ion

trap in a membrane. Our setup allows the trapping of the ion using holes in a gold coated

membrane, which is placed inside a ultra-high vacuum setup providing the necessary

isolation from environment, as well as allowing the access to the ion of the required

laser system and detection apparatus.

3.1.1 Preparation of a membrane as ion trap

In the experiments described in this thesis, a single crystal (100) Silicon membrane1 is

prepared as an ion trap. High-quality Si wafers of (100) orientation are readily available

in a wide range of diameter and thickness. Starting with a 380µm thick 10 × 10 mm

Si wafer, a 4.8× 4.8 mm window is etched to a thickness of 2.0µm. The tension of the

membrane is inflicted by the connection to the frame, which is fixated in a specially

designed mount (see below).

Figure 3.1: Schematic arrangement of the holes on the membrane - The center
hole size is 110 × 100µm and the size of the four outer holes is 165 × 150µm, which are
positioned on half the distance between center hole and frame to maximize coupling to the
(1,2)-,(2,1)-vibrational modes.

For preparing the membrane as an ion trap, five different holes are cut into the Si

1purchased at http://www.norcada.com, part number: SM10480N
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3.1 The membrane trap

membrane at the Max Planck institute for solid state research1, providing the geometry

of a ring Paul trap. The center hole size is 110 × 100µm and four holes of equal size

(165× 150µm) are symmetrically arranged around the center hole (see fig. 3.1). Every

hole acts as an individual ion trap, giving us the possibility to trap ions at different

positions on the membrane, and therefore to probe different modes of vibration.

Next, both sides of the membrane are coated with 10 nm Chromium and 100 nm gold.

The coating is applied to achieve a clean surface and a high reflectivity of the membrane.

The coating also provides good electric contact and prevents reactions with water and

other vacuum disturbing elements.

Figure 3.2: A picture of the final membrane - The final membrane readily installed
in the vacuum chamber. The 4.8× 4.8 mm window and the edges of the frame are visible,
as well as the compensation electrodes of the top layer.

A picture of the final membrane is displayed in figure 3.2 and a magnification of the

membrane showing three of the five holes is displayed in figure 3.3.

Now that the membrane is prepared as an oscillating ion trap, it is placed inside an

ultra-high vacuum setup to create the necessary environment.

3.1.2 Placing the ion trap in an ultra-high vacuum system

The membrane ion trap needs to be placed inside an ultra-high vacuum chamber to

isolate it from the environment. For mounting the ion inside a vacuum chamber a

1http://www.fkf.mpg.de
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3. EXPERIMENTAL SETUP

Figure 3.3: Magnification of the holes in the membrane - The left picture shows
a magnified picture of the holes on the membrane taken with a microscope. Two more
holes, not visible in this picture, are arranged above and below the center hole at the same
distance as the two outer holes visible in this picture. The right side shows the magnified
center hole.

frame for the membrane was constructed, that can be connected to a mount inside the

vacuum chamber.

The frame consists of two Marcor ceramic pieces, especially designed to provide optimal

optical access to the membrane and electrically isolating it from the rest of the chamber.

The membrane is fixated between the two Marcor pieces, one corner of the membrane

is glued to the first Marcor piece to avoid any further movement during the installment

inside the vacuum chamber, then the second Marcor piece is placed on top of the

membrane. To position the frame with the membrane in the center of the front viewport

of the vacuum chamber, the Marcor pieces are screwed to a mount, that is attached to

the top of the chamber.

Figure 3.4: Drawing of the mount - The membrane is fixated between two pieces of
Marcor ceramics. The Marcor pieces also provide symmetrically arranged feed-throughs
for the compensation electrodes.
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3.1 The membrane trap

Each of the two Marcor pieces also includes four symmetrically arranged feed-throughs

for the compensation electrodes (see fig. 3.4). The compensation electrodes consist of

four symmetrically arranged pins in each Marcor layer. The distance of the pins to the

center trap is d1 = 25 mm, the distance of all four pins to the membrane surface is

d2 = 15 mm. If each of the four pins of one layer has the same potential, they can be

interpret as one virtual electrode, but they also provide the possibility to create more

complex potentials, if required.

3.1.3 Setup of the ultra-high vacuum system

The membrane ion trap is placed inside a vacuum chamber, with three viewports pro-

viding access for the necessary laser beams, two feed-throughs for the electrical wiring

and two connections for the vacuum pumps and a valve. The vacuum chamber is made

of unitary stainless steel.

One large viewport is placed at the front of the chamber and two smaller viewports are

placed at an angle of 45◦ to the front viewport and 90◦ to each other at the backside of

the chamber.

Figure 3.5: Top view of the chamber - The front viewport is framed by a coil, the
small viewports are place at an angle of 45◦ and have the mounts of the couplers attached.
Also visible are the valve on the left side and on the right side a Titan sublimation pump
can be inserted.

On top of the chamber an electrical feed-through for each of the compensation electrodes

is installed, making it possible to control each of the eight compensation electrodes
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3. EXPERIMENTAL SETUP

individually. Another electrical feed-through with an angle of 45◦ to the horizontal is

installed at the bottom part of the chamber, used for the connection of the oven and

the r.f.-voltage.

The r.f.-connection is wired to an helical resonator [Macalpine 1959] and an amplifier

to provide the necessary high-voltages at the membrane trap. A frequency generator

provides the required radiofrequency at frf = 30 MHz with an amplitude of Urf =

300 Vzp.

The oven for vaporizing the Calcium is resistively heated and dirceted towards the

membrane at an angle of 45◦. The Calcium atoms leave the oven as a thermal atomic

beam towards all five trap holes of the membrane.

Additionally, there is a piezo actuator mounted to the top of the vacuum chamber, used

to excite vibrations of the membrane.

The vacuum inside the chamber is maintained by a combination of an ion getter pump

and a Titan sublimation pump.

3.1.4 The laser system of the membrane ion trap

The three viewports of the vacuum chamber give complete access to the necessary laser

beams required for trapping and controlling the ion. As we learned in section 2.1, four

laser beams with different wavelenghts are required for trapping and cooling the ions.

The so called photo ionization lasers at 423 nm and at 375 nm, ionize the neutral

Calcium atoms at the center of the trapping region [Gulde 2001]. This beam enters

through one of the small viewports, therefore reaching the trap in an angle of 45◦.

For Doppler cooling the ion and driving the fluorescence transition a laser beam at 397

nm is required. It enters the chamber through the second small viewport, 90◦ turned

to the photo ionization beam.

Via the same viewport the combined beam of lasers at 854 nm and 866 nm enters the

chamber. It is required to control the shelving of the ion in the metastable states.

The front viewport gives access to the beam of the interferometer, in our case we use

a laser at 729 nm, and the detection apparatus, which will be described in the next

section.

In figure 3.6 a schematic drawing of the previously described laser setup is displayed.
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3.1 The membrane trap

Figure 3.6: Schematic drawing of the laser setup - The photo ionization beam enters
the chamber through the smaller left viewport, while the lasers with wavelengths 397 nm,
854 nm and 866 nm enter through the right viewport. The interferometer beam with a
wavelength of 729 nm, which is also required for the sideband spectroscopy, accesses the
chamber via the front viewport.

All the previously mentioned lasers are diode lasers, that are commercially available1.

For the laser with wavelenght 397 nm, a red laser diode in combination with a frequency

doubling cavity produces the required ultraviollet light. For switching the lasers on and

off, on a very small time base, we use acusto optical modulators (AOM), which can be

controlled by the experimental control system.

A more detailed description of a similar laser system can be found in ref. [Poschinger 2010b,

Ziesel 2008].

3.1.5 Apparatus for the detection of an ion

The detection apparatus primarily consists of an EMCCD-camera2 for detecting the

fluorescence of the trapped ions. For achieving the required focus at the position of

the ion, a lens is mounted to an stage, that is adjustable in all three directions (i.e.

x-y-z-direction). Via a construction of dove tail bars, the EMCCD-camera is connected

to the system of lens and stage, attaching it to their movement. Hence, the focus of the

detection system can be moved to each of the five holes or any other desired position

on the membrane. This option is not only ideal for changing the point of view of the

camera, but also allows the movement of the measuring point of the interferometer,

which was specially implemented in this setup (see sec. 3.2). A schematic drawing of

the detection apparatus is shown in figure 3.7.
1Firma TOPTICA-Photonics
2www.andor.com
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Figure 3.7: Schematics of the detection apparatus - The EMCCD camera is con-
nected via dove tail bars to the stage and the lens. The interferometer is installed directly
behind the lens.

3.1.6 The complete setup of the oscillating ion trap

In figure 3.8 a picture of the whole setup is depicted. From top to bottom, we see the

front view of the vacuum chamber with the membrane trap in the center of the front

viewport, followed by the two stage interferometer including the imaging lens. Not in

the picture is the EMCCD-camera, which is installed at the end of the imaging optics.
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3.1 The membrane trap

Figure 3.8: Setup of the membrane trap including the interferometer - The
whole setup of the membrane trap is displayed here. At the top we see the center piece,
the vacuum chamber, including the membrane trap in the middle of the front view port.
Also visible are the helical resonator on the left side of the vacuum chamber and the
interferometer at the bottom.
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3.2 The interferometer for vibration measurement

In this section the special design of the interferometer, developed to combine the de-

tection apparatus and the Michelson interferometer, is introduced and the stabilization

circuit, implemented to reduce noise and increase stability of the interferometer, is

described.

3.2.1 The setup of the interferometer

The interferometer described here is a Michelson interferometer with a special design,

making it possible to control the measurement point of the interferometer according to

the point of view of the imaging optics.

A basic scheme of the interferometer is displayed in figure 3.9.

Figure 3.9: Schematic drawing of the Michelson interferometer - A laser beam
with a wavelength of 729 nm is split at a beam splitter cube, one path leading towards a
reference and compensation mirror, the other path towards the vibrating membrane. The
reference and compensation mirror is connected to a piezo actuator, which is controlled
by a stabilization circuit. After reflection at the reference mirror and the membrane, the
beams interfere at the beam splitter and the signal is detected with a photo diode and an
spectrum analyzer, which is also used to excite the piezo actuator mounted on the vacuum
chamber.

The incoming laser beam is split at a beam splitter cube towards the vibrating mem-
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brane and a reference mirror. The reference mirror is mounted to a piezo actuator,

which is controlled by the stabilization circuit (see sec. 3.2.2). After reflection at the

mirror and the membrane, the two beams interfere at the beam splitter cube and the

interference signal is detected with a photo diode. The output of the photo diode is

then fed into an oscilloscope or a spectrum analyzer for further analysis and into the

stabilization circuit for compensation feedback.

Figure 3.10: The interferometer design - This drawing of the interferometer shows
the breadboard with the Michelson interferometer setup. The left mount is used for the
output coupler of the laser beam, the right mount holds the reference mirror. In the center
of the breadboard the beam splitter cube is mounted and on the left side we see the beam
“lift”. Additionally, there is a lense mount for focusing the interfering beams on the photo
diode, which can be fastened to the mount.

As mentioned above, the interferometer was designed to be integrated in the detection

apparatus. A “two stage” design was developed to accomplish this. The setup of the

interferometer is placed on a breadboard with a dove tail connection fitting perfectly

into the detection apparatuses dove tail bars. The optical plane of the interferometer

lies below the plane of the imaging optics, therefore we need to combine the measuring

beam of the interferometer with the path of the imaging optics. This is achieved by a

specially designed beam “lift”, consisting primarily of two mirrors. One mirror, high-

reflective for 729 nm is tilted 45◦ to the interferometer plane, giving the measuring beam

a vertical direction. Aligned on top of this mirror, tilted to −45◦, the second mirror

couples the beam into the plane of the imaging optics, where it propagates through

the lens towards the membrane. The second mirror is coated to be high-reflective for

47



3. EXPERIMENTAL SETUP

red light, but transmissive for blue light. This allows the so called imaging beam at

397 nm to pass the “lift” to the EMCCD camera, while the interferometer beam at

729 nm is reflected and propagates through the lift to the lower interferometer plane.

For the interferometer beam and the imaging beam the same lens is used to focus on

the membrane. The interferometer beam is adjusted ideally if it overlaps with the

imaging path, combining measurement point of the interferometer and point of view of

the camera. A drawing of the interferometer design is shown in figure 3.10.

3.2.2 Implementing a stabilization circuit

For noise reduction of the interferometer, a stabilization circuit was implemented. It

takes the feedback from the photo diode, filters and amplifies the slow drifting frequen-

cies and controls the piezo actuator of the compensation mirror.

In figure 3.11 a schematic drawing of the stabilization circuit is depicted.

Figure 3.11: Schematic drawing of the stabilization circuit - The stabilization
circuit is a combination of a lowpass filter and an tunable, inverted amplifier. Additionally,
an integrating circuit can be turned on or off via a switch, as well as the inverting of the
output. The circuit diagram can be found in the appendix A.1.

The stabilization circuit is a combination of different electrical elements. At first, there

is a lowpass filter with a cut-off frequency of fcut = 1
2πRC = 10 kHz. Next, there

is an inverting amplification circuit, whose gain and offset are tunable via the two

potentiometers. An integrating circuit can be additionally activated via a switch. At

the output of the circuit an inverter is implemented, which can be switched on or off, as

required. So if the signal of the photo diode is connected to the input, the low frequencies

of the signal are filtered, phase shifted and amplified, if necessary also inverted. This
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output is fed to the piezo actuator of the compensation mirror, hence stabilizing the

interferometer.
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In this chapter numerical simulations, as well as the experimental results are discussed.

At first we study the results of the simulations of the potentials and the trajectories

for the membrane trap. Then the results of the vibrations measurements with the

interferometer are presented and we discuss a sideband spectrum, taken in a different

trap as a reference for the membrane trap. At last, the current state of the membrane

trap is described and we give an outlook on future measurements.
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4.1 Simulating the membrane ion trap

The membrane ion trap is essentially a ring Paul trap. The discussion of the Paul

trap (see sec. 2.2.1) gave us the theoretical foundation to understand the principal of

operation of the general ion trap. The simulations of the membrane ion trap are based on

these foundations, allowing us to analyze the behavior of the ion in the membrane trap.

By simulating potentials and trajectories it is possible to study the stability regions and

calculate trap frequencies. For the simulations of the experiment a numerical method

based on the boundary element method is used [Singer 2010]. In other experiments the

simulations have proven to agree with the experiment on a high level. The model of the

membrane trap including the dc electrodes, which is used for the simulations is depicted

in 4.1.

(a) Model of the membrane and the dc electrodes (b) Magnification of the model of
the membrane

Figure 4.1: Simulation model for the membrane trap - For the simulation a model
based on the geometrical attributes of the membrane is generated and segmented into a
refined mesh. (a) shows the complete model structure used to simulate the membrane trap.
The coordinate system shows the orientation of the membrane. x and y are the radial axes,
and z ist the axial axis. In (b) the magnified membrane model is depicted, showing the
refined mesh in detail.
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4.1.1 Simulations of the ponderomotive potential

At first we take a closer look at the pseudo potentials generated by the membrane trap.

The ponderomotive potential can be calculated via the definition from equation (2.10):

φpond =
Z2e2| ~E|2

4mΩ2
rf

where the atomic number Z, the electrical charge e, the mass m are well known at-

tributes of the ion. The angular oscillation frequency of the r.f.-field Ωrf is chosen to

represent the experimental value, leaving the electric field to be calculated by the sim-

ulation. The simulation allows to calculate the electric potential VE and its numerical

derivatives, hence the required electric field is given by ~E = −∇ · VE . In figure 4.2 are

the typical radial and axial potentials of the membrane ion trap depicted.

(a) Radial potential of the membrane
trap

(b) Axial potential of the membrane trap

Figure 4.2: Simulated potentials of the membrane trap - The general structure of
the potentials is similar for all relevant voltages and frequencies.

The potentials were calculated for Urf = 400Vzp, Udc = 0 and ωrf/2π = 30 MHz.

Alternating these parameters does not change the general structure of the potential,

but influences the trap frequencies and stability regions, as we will see below. Figure

4.2 shows that it is possible to create a harmonic potential at the center of the trap

only using a r.f.-voltage. Therefore, the dc electrodes can be used additionally for the

compensation of the micromotion.
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As discussed before, the geometry of the holes of the membrane represents a ring Paul

trap, although there shape was chosen to be slightly elliptical. The reason for this choice

is illustrated in figure 4.3.

Figure 4.3: Decoupling of the three modes of the ion - The elliptical shape of the
holes prevents the coupling of the radial modes of the ion. A circular shape would allow the
coupling of the radial modes, hence inducing heating effects via energy exchange between
the modes.

A circular shape of the holes would allow coupling of the radial modes, hence allowing

the exchange of energy. The Doppler cooling efficiency would decrease, since the cooling

of the first mode would simultaneously heat the second mode. The choice of the elliptical

shape is an easy but effective way to decouple the radial modes.

The data obtained from the simulations of the potentials allows us to calculate the trap

frequencies and stability parameters qi and βi. The trap is working without additional

dc voltages, i.e., the stability parameter ai vanishes from equation (2.15), i.e., ai = 0.

In table 4.1 the results for the trap frequencies and the stability parameters are listed for

different trap settings. Stable trap conditions are indicated by β � 1. The calculated

parameters show a clear trend towards higher r.f.-frequencies and the lower r.f.-voltages.
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100× Urf = 300 Vzp Urf = 300 Vzp Urf = 400 Vzp Urf = 400 Vzp

110µm ωrf/2π = 20 MHz ωrf/2π = 30 MHz ωrf/2π = 20 MHz ωrf/2π = 30 MHz

fx 2.8 1.8 3.7 2.5
fy 2.3 1.5 3.1 2.0
fz 5.7 3.4 8.7 4.6
qx 0.39 0.17 0.52 0.23
qy 0.32 0.14 0.42 0.19
qz 0.71 0.31 0.94 0.42
βx 0.28 0.12 0.39 0.16
βy 0.23 0.10 0.31 0.13
βz 0.57 0.22 0.87 0.31

150× Urf = 300 Vzp Urf = 300 Vzp Urf = 400 Vzp Urf = 400 Vzp

165µm ωrf/2π = 20 MHz ωrf/2π = 30 MHz ωrf/2π = 20 MHz ωrf/2π = 30 MHz

fx 1.8 1.2 2.4 1.6
fy 1.5 1.0 2.0 1.3
fz 3.5 2.2 4.9 3.0
qx 0.26 0.11 0.34 0.15
qy 0.21 0.09 0.28 0.13
qz 0.47 0.21 0.63 0.28
βx 0.18 0.08 0.25 0.11
βy 0.15 0.06 0.20 0.09
βz 0.35 0.15 0.49 0.20

Table 4.1: Trap parameters - For both trap sizes the stability parameters indicate better
stability for higher r.f.-frequencies. For the same r.f.-frequency a voltage of Urf = 300 Vzp

shows smaller stability parameters.

55



4. NUMERICAL SIMULATIONS AND EXPERIMENTAL RESULTS

4.1.2 Simulations of the trajectory of the ion

Another approach is to use the field simulation to calculate the trajectory of the ion.

The electrostatic potentials are used to simulate the trajectories of ions inside a dynamic

trapping potential. One can choose from two methods to simulate the ion propagation,

i.e. the Euler method or the Störmer-Verlet method. For the simulations presented here

we used the Störmer-Verlet method, which proved to be the more accurate one for the

ion simulation [Singer 2010]. The simulations of the ion trajectory provide an simple

way to determine stability diagrams, as well as a second method to calculate the trap

frequencies.

A stable trajectory is confined to a small region around the center of the trap, while

an unstable trajectory leads out of the trap. An example of a stable trajectory and an

unstable trajectory is plotted in figure 4.4.

(a) A stable trajectory (b) An unstable trajectory

Figure 4.4: Simulated trajectories of the ion - The stable trajectory (a) is confined
to a region around the trap center, while the unstable trajectory (b) leaves the trapping
region after a short period of time. All values are expressed in µm.

The trajectory of the ion starts at the origin of the trap (x = y = z = 0). The initial

velocity was calculated for a thermal atom beam by assuming the oven is directed in

y- and z-direction and perpendicular to the x-axis, hence the initial velocity has no

x-component. In figure 4.4a the trajectory is confined to the trap region, while the tra-

jectory in figure 4.4b leaves the trap region, after a short period of time. In this example

the ion escapes in the y-direction, which indicates unstable trapping parameters.

By iterating the parameters of Urf and Udc, as well as registering the stability of the
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trajectory, it is possible to derive the stability diagrams for different frequencies and

trap sizes. For the analysis of the membrane trap we calculated the stability diagrams

for both hole sizes (100× 110µm and 150× 165µm), for r.f-frequenices of 20 MHz and

30 MHz iterating Urf and Udc in a range that can be realized in the experiment.

(a) Stability diagram for the 100µm hole and
ωrf/2π = 20MHz

(b) Stability diagram for the 100µm hole and
ωrf/2π = 30MHz

(c) Stability diagram for the 150µm hole and
ωrf/2π = 20MHz

(d) Stability diagram for the 150µm hole and
ωrf/2π = 30MHz

Figure 4.5: Stability diagrams of the membrane trap - The stability diagrams
show stable plateaus for high r.f.-voltages and low dc voltages. In (a) lower voltages were
required to display the stability region.

The resulting diagrams are depicted in figure 4.5. The stable regions occur for high

values of Urf and low values of Udc. Note that only in the case of the 100µm hole and
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for a r.f.-frequency of 20 MHz the stability region was found for the lower r.f.-voltages.

As mentioned above, for stable trapping conditions no dc voltage is required, but it can

prove as a tool to lower the required r.f.-voltage.

(a) Trajectory in x-direction (b) Trajectory in y-direction

(c) Trajectory in z-direction (d) Magnified version of the trajectory in x-
direction

Figure 4.6: Trajectories for each dimension plotted against time - The ion oscil-
lates along each axis with the respective trap frequency. The parameters for these example
trajectories were Urf = 300 Vzp, Udc = 0 V, and ωrf/2π = 20 MHz for a hole size of
100× 110µm. (d) shows a smaller range of the trajectory in x-direction, making the fast
micromotion superimposed on the slower secular motion visible.
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Additionally, it is possible to calculate the trap frequencies using the obtained trajec-

tories using a Fast Fourier Transformation (FFT)1. Analyzing the trajectory for each

dimension (x,y,z) transformed to the frequency space via FFT gives us the respective

trap frequencies. Figure 4.6 displays the trajectories in x-, y-, and z-direction plotted

against the time.

(a) Frequency analysis via the FFT
method for the x-trajectory

(b) Frequency analysis via the FFT
method for the y-trajectory

(c) Frequency analysis via the FFT
method for the z-trajectory

Figure 4.7: Frequency analysis of the trajectories - The frequency spectrum for
each of the the three dimensions. The resulting frequencies agree perfectly with the pon-
deromotive potential method.

The FFT is executed using Matlab. An example for the FFT method is depicted in

figure 4.7. In each figure the first plot shows the analyzed trajectory, the second plot

displays the whole frequency spectrum, and the third plot is a magnified version of the
1This method was first implemented by Konstantin Ott.
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relevant range of the frequency spectrum.

The obtained trap frequencies are listed in table 4.2 and compared to the ones from the

potential simulation. We see that the radial and axial trap frequencies agree perfectly

for both methods.

Method Ponderomotive potential Trajectory
100× Urf = 300 Vzp Urf = 300 Vzp

110µm ωrf/2π = 20 MHz ωrf/2π = 20 MHz

fx 2.8 2.8
fy 2.3 2.3
fz 5.7 5.7

Table 4.2: Comparison of trap frequencies - The trap frequencies determined via the
potential method and the trajectory method agree well. All frequencies are in MHz

Up to this point, the trajectories were calculated for a non-vibrating membrane. Now we

add vibrations with a frequency of fmem = 20 kHz to the simulations and evaluate the

stability diagrams and trap frequencies as before. The stability diagrams are displayed

in figure 4.8. Overall, the stability regions occur for the same parameters as for the

non-vibrating case. Only the simulation of the small hole shows a stability region

at the lower r.f.-voltages for the lower r.f.-frequency, while the other stability diagrams

indicate stable trapping conditions for the higher r.f.-voltages. In figure 4.8a we increase

the range of Urf to verify that there are no more stable regions found. The comparison

with the stability diagrams of the non-vibrating membrane shows that the vibration of

the membrane has almost no influence on the stability of the ion trap.
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(a) Stability diagram for the 100µm hole, ωrf/2π =

20MHz, and fmem = 20 kHz

(b) Stability diagram for the 100µm hole, ωrf/2π =

30MHz, and fmem = 20 kHz

(c) Stability diagram for the 150µm hole, ωrf/2π =

20MHz, and fmem = 20 kHz

(d) Stability diagram for the 150µm hole, ωrf/2π =

30MHz, and fmem = 20 kHz

Figure 4.8: Stability diagrams of the vibrating membrane trap - The stability
diagrams show similar stable plateaus for high r.f.-voltages and low dc voltages as the
ones without vibrations. (a) shows the same behavior as described above. The stability
region occurs at the lower r.f.-voltages for the small hole at a r.f.-frequency of 20 MHz. The
amplitude for the simulations was set to 10µm.
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The vibration frequencies can be determined in the same way as the trap frequencies, us-

ing the FFT method. In figure 4.10 an example is illustrated for the z-trajectory shown

in fig4.9. Since the membrane is vibrating in axial direction, the vibration frequency

should show up in the frequency spectrum of the z-trajectory.

Figure 4.9: Trajectory in z-direction for a vibrating membrane - The trajectory
shows a modulation of the z-trajectory with the membrane oscillation.

On the first look the results of the FFT method show no difference to the results of the

non-vibrating membrane. But if we zoom in to the kHz range, the peak of the vibration

frequency becomes visible (see fig. 4.10b).

Summarized, the analysis of the potentials showed that it is possible to create a trap-

ping potential only using the r.f.-electrode. The stability diagrams generated via the

simulation of the trajectories are showing a tendency towards low dc voltages, which

agrees with the result of the potential method, and towards high r.f.-voltages. While it

is possible to find stable conditions without dc voltage, the trajectories show that small

dc voltages tend to improve the stability, especially for lower r.f.-voltages. Comparing

the stability diagrams for a non-vibrating and a vibrating membrane, they show the

same tendencies but the stable region of the vibrating membrane decreases slightly.

Finally, we have introduced the FFT method, which allows to determine the trap fre-

quencies frequencies from the trajectories. The results are in perfect agreement with

the ponderomotive potential method but, additionally, allow to analyze the effect of

the vibration on the frequency spectrum. As we have seen, the vibration frequency of
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(a) Frequency analysis via the FFT
method for the z-trajectory of the
ion in a vibrating membrane

(b) Zoomed in to the kHz range of
the frequency spectrum

Figure 4.10: Frequency analysis of the trajectory of the ion in a vibrating
membrane - The vibration frequencies appear in the frequency spectrum of the axial
direction and can be obtained via the FFT analysis. The parameters for these example
trajectories were Urf = 300 Vzp, Udc = 0 V, and ωrf/2π = 20 MHz for a hole size of
150× 165µm.

the membrane oscillating in z-direction, as well as the effect from additional dc fields,

appears in the frequency spectrum of the trajectory in z-direction.
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4.2 Preliminary measurements to test the interferometer

Before we discuss the measurements to determine the vibrational modes of the mem-

brane, we take a closer look at some preliminary measurements. At first, we study a

setup with a static mirror instead of the membrane to check if the interferometer is

working probably. Instead of a vibrating membrane, we use the compensation piezo

actuator to simulate controlled vibrations. In figure 4.11 the interferometer signal, de-

tected via the photo diode, and the excitation signal are displayed. When the piezo

actuator is expanding, i.e., during the slope of the excitation sine wave, the displace-

ment of the mirror corresponding to the distance between two adjacent fringes of the

same kind is given by l = λ/2. Therefore, the number of fringes N of the same kind

during one vibration cycle is given by

N =
4d

λ
(4.1)

where d is the amplitude of the mirror and λ = 729 nm is the wavelength of the laser.

By counting the fringes, we are able to derive an approximation of the amplitude of the

mirror d ≈ 1.64µm for an excitation frequency f = 10 Hz (see fig. 4.11).

Figure 4.11: Measurement of the amplitude of a vibrating mirror - Theoretical
photo detector output for a vibration frequency f = 10 Hz fitted to the experiment output
signal. The vibration amplitude obtained from the fit results is d = 1.76µm.

A theoretical interferometer output, derived from equation 2.69:

V (t) = V cos (φ0 + φm cos (ωt+ φs))
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is fitted to the obtained output signal (see fig. 4.11) and agrees well with the experi-

mental results. For the fit only the values of φ0, φm, and phis were variated. Using the

fit result for phim = 2πd/λ, we can derive a new value for the amplitude of the mirror

d = 1.76µm, which agrees with the approximated value from before.

Further measurements characterizing the dynamic behavior of the piezo amplifier and

the stabilization circuit can be found in the appendix (see sec. A.3 and sec. A.2).

4.3 Measurements of vibrational modes of the membrane

In this section the measurement results of the vibrational modes of three different ver-

sions of the membrane are compared to the respective theoretical values and to each

other.

4.3.1 First attempts with a damaged membrane

The first tests of the interferometer and the first measurements of resonance frequencies

and quality factors were carried out with a damaged membrane.

Figure 4.12: Magnification of the damaged membrane - In this magnification of
the damaged membrane the hole and the start of the fissure are visible. In the upper right
corner the unharmed trap hole can be seen.

This damaged version had a hole at one edge of the membrane and some minor fissures.

The connection to the r.f.-wire was still intact and the actual trapping hole was un-
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harmed. It was used for testing purposes until we replaced it with a new version of the

membrane.

In this first setup, the measurements taken have a more qualitative value and should

be regarded as test measurements, but are still interesting in comparison to the final

version of the membrane.

For the damaged membrane we found only one resonance frequency at fres = 21.207 kHz.

In figure 4.13 the resonance peak is displayed. We fitted a Lorentzian function to deter-

mine the quality factor of Q = 1756. For the damaged membrane a low quality factor

is reasonable.

Figure 4.13: Resonance frequency of the damaged membrane - The resonance
frequency of the damaged membrane was obtained using a spectrum analyzer connected
to the interferometer setup. The Lorentzian fit gives us the FWHM σ and via Q = fres

σ

the quality factor Q = 1756 was determined.

Another approach to determine the quality factor of the damaged membrane via a

ring-down measurement showed the expected behavior of the membrane signal, but

gave no quantitative results. In figure 4.14 the data taken from this measurement is

shown. After the excitation pulse the amplitude of the interferometer signal decreases

over time. It was not possible to determine a quality factor from this signal without

sufficient stabilization.

66



4.3 Measurements of vibrational modes of the membrane

Figure 4.14: Ring-down measurement of the damaged membrane - The amplitude
of the interferometer signal decreases after the excitation pulse as expected in a ring-down
measurement, but without stabilization of the interferometer signal it is not possible to
determine the decay time.

4.3.2 The hypertensive version of the final membrane

The final version of the membrane got overstretched during the heat up process. While

mounted between the two Marcor pieces, the membrane was stretched, due to thermal

expansion, from top to bottom more than from left to right, probably because of dif-

ferently tight screws. After the heat up process some slight convolutions were visible

and suggested an unsymmetrical tension on the membrane. During a second heat up

we slightly loosened the screws of the Marcor mount and the membrane returned to

its original state. Before restoring the membrane to its original state, we measured the

resonance frequencies of the hypertensive version.

For the hypertensive version of the membrane, we used a spectrum analyzer to scan

a frequency range and determine the resonance frequencies. In figure 4.15 the reso-

nance spectrum with labeled resonance peaks is displayed. Contrary to the damaged

membrane, we found a number of resonance peaks in the range of 50 kHz-100 kHz.

As before, we tried fitting the peaks with Lorentzian functions to determine the quality

factor, but because of the interfering of the different peaks with each other no fitting

routine seemed to quantify the peaks well enough. So the quality factors for the hyper-
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Figure 4.15: Resonance frequency spectrum of the hypertensive membrane -
The different resonance frequencies are labeled in the plot. We see two regions where
resonance peaks occur, one around 65 kHz and one around 90 kHz. The resonance peaks
are close enough to interfere with each other.

tensive membrane can only be approximated to be in the range of Q ≈ 1000-2000.

To improve the resonance spectrum, we changed the point of measurement of the inter-

ferometer and we compared the measurements of different positions on the membrane.

The resonance spectrum changed only in amplitude with the position, but the general

distribution of the peaks stayed the same. Moving the measurement point of the mem-

brane always requires a realignment of the interferometer, which most likely caused

the different amplitudes. In figure 4.16 the resonance spectra taken in the bottom-left

region of the membrane and in the center region are compared. We see that there is no

relevant change in the peak distribution.
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Figure 4.16: Resonance spectra from two different positions on the membrane -
The distribution of the resonance peaks stayed the same, when changing the measurement
point of the interferometer. The amplitude of the peaks changed with the position, probably
due to variation of the alignment of the interferometer.

4.3.3 The final version of the membrane

After loosening the screws of the mount, the membrane returned to its original state

and the resonance spectrum changed slightly compared to the hypertensive membrane.

While we found the same regions of resonance as before, some new resonance peaks

occurred at lower frequencies. The range of the resonance spectrum increased to

10 kHz-100 kHz. In figure 4.17 the resonance spectrum is displayed.

Compared to the resonance spectrum of the hypertensive membrane, new resonance

frequencies were detected at the lower kHz-range, while for the resonance peaks in the

60 kHz to 90 kHz the spectrum has changed only slightly. It was not possible to verify

if the peaks of the hypertensive membrane shifted or disappeared. In figure 4.18 both

resonance spectra are plotted.

For the determination of the quality factors of the final version of the membrane, we

implemented a new detection scheme for ring-down measurements. Contrary to the

detection via oscilloscope, as seen for the damaged membrane, we used the spectrum
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Figure 4.17: Resonance spectrum of the final version of the membrane - The
resonance spectrum of the membrane was scanned using a spectrum analyzer. This allows
to establish an overview of the resonance spectrum. The observed resonance peaks are
labeled in the plot.

Figure 4.18: Resonance spectra of the final version and the hypertensive ver-
sion of the membrane - In addition to the resonance frequencies of the hypertensive
membrane, new resonance peaks were detected for the final membrane around 20 kHz.
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4.3 Measurements of vibrational modes of the membrane

analyzer to detect the ring-down of a specific resonance frequency. This approach al-

lowed an accurate detection of the quality factors, and a benefit of this method is the

precise verification of the known resonance frequencies. In table 4.3 the resonance fre-

quencies of the final version of the membrane are listed with their respective quality

factors.

fres[ kHz] τ [ s] Q

11.868 0.048 1793
17.424 0.329 18003
19.743 0.377 23369
21.888 0.216 14860
36.005 0.044 4994
47.576 0.039 5864
60.595 0.029 5493
61.646 0.038 7318
68.597 0.036 7681
71.094 0.009 1906
73.463 0.022 5181
90.572 0.018 5140
91.855 0.013 3829

Table 4.3: Quality factors of the final version of the membrane - The quality
factors for the intact membrane for all resonance frequencies derived via ring-down mea-
surements

An example of a ring-down measurement is depicted in figure 4.19. The amplitude of the

vibration decays exponentially. The quality factor is determined using an exponential

fit

A(t) = A0e
−t/τ (4.2)

where A0 is the maximal amplitude and the quality factor is given by Q = πfresτ .

Comparing the obtained quality factors, leads to the conclusion, that the three frequen-

cies with high Q values are resonance frequencies low modes of the membrane, while the

rest of the frequencies are resonances of higher modes or the frame. To verify this ex-

planation, we calculated the theoretical values of the resonance frequencies of different
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Figure 4.19: A ring-down measurement at fres = 21.888 kHz - The ring-down mea-
surement of the vibration amplitude at fres = 21.888 kHz. The quality factor is determined
via an exponential fit.

vibrational modes using the formula found in sec. 2.4.1:

f(m,n) =
1

2π

√
Sπ2

ρh

(
m2

a2
+
n2

b2

)
(4.3)

The results are listed in table 4.4.
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4.3 Measurements of vibrational modes of the membrane

mode ftheo[ kHz] ftheo[ kHz] ftheo[ kHz]

(1,1) 21.888 17.424 19.743
(2,1) 34.608 27.550 31.216
(2,2) 43.776 34.848 39.486
(3,1) 48.943 38.961 44.147
(3,2) 55.804 44.423 50.335
(3,3) 65.664 52.272 59.229
(4,1) 63.814 50.799 57.560
(4,2) 69.216 55.100 62.433
(4,3) 77.386 61.603 69.802
(4,4) 87.552 69.696 78.972
(5,1) 78.918 62.823 71.184
(5,2) 83.347 66.349 75.179
(5,3) 90.247 71.841 81.403
(5,4) 99.102 78.891 89.390
(5,5) 109.440 87.120 98.715

Table 4.4: Theoretical vibration frequencies - For the calculation of the resonance
frequencies, we used the following values: a = b = 4.8 mm, h = 2.0µm, ρ = 3909 kg/m3,
while variating S to adjust the resonance frequency of the (1,1) mode (see eq.4.3).

Each of the three resonance frequencies with high Q value were set to be the (1,1)

vibrational mode via adjusting the stress S. Compared with the results obtained via

the ring-down measurement (see tab. 4.3) we can find matching results for each of the

three possibilities, but neither of them can be consider to match for all vibrational

modes. A more complex theoretical simulation of the membrane might be necessary

to explain these results. Interference effects should be considered as well. Note that

the resonance at fres = 19.743 kHz is only visible as a small peak, which was not

considered a resonance peak in the first general analysis. The lowest frequency found,

i.e., fres = 11.868 kHz, might be a resonance of the frame.
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4.4 Reference measurements in a cryogenic ion trap

The observable spectrum of the motional sidebands depends, among other aspects, on

the experimental setup. While the motional frequencies are primarily defined by the ion,

used for the experiment, and the trapping potential, the observable frequencies depend

on the spectroscopy laser alignment. Using the same ion and assuming similar trapping

potentials, the observed sideband spectrum may vary according to the direction of the

laser beam, compared to the magnetic field, and its polarization. As described before,

only the Zeeman subtransitions with a projection to the lasers k-vector will be seen by

the laser, hence can be observed depending on the alignment.

For comparison with the membrane trap, we chose a cryogenic ion trap as reference trap.

The cryogenic ion trap is a micro ion trap (see ref. [Poschinger 2010b]) in a cryogenic

setup. The reasons to use this trap for reference measurements were mainly the similar

axial and radial trap frequencies.

Figure 4.20: Sideband spectrum of the cryogenic microtrap - Around the centered
carrier frequency, the axial and radial motional sidebands are evenly distributed. In the
experiment, it is useful to measure the easy accessible AOM frequency and calculating the
motional frequencies in relation to the carrier frequency. The axial frequency is fax =

1.28 MHz, the first radial frequency is frad1 = 1.90 MHz and the second radial frequency
is frad2 = 2.84 MHz

The sideband spectrum in figure 4.20 was measured at a Temperature T = 220 K. Due
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4.4 Reference measurements in a cryogenic ion trap

to a different vacuum chamber, the laser beams access the trapping region from different

directions. In the cryogenic ion trap the trap axis is tilted 45◦ to the spectroscopy laser

and has projection to all motional modes, i.e. the axial and both radial modes are visible

in the spectrum. The obtained sideband spectrum shows the carrier frequency in the

center with the highest excitation probability. Around the carrier frequency the red

and blue sidebands are equidistantly distributed. In the experiment, it is reasonable to

measure the well known AOM frequency and calculate the motional frequencies relative

to the carrier frequency.

For studying the dynamic behavior of the sideband transitions, we measure the excita-

tion probability while varying the pulse length. Depending on the time the laser beam is

applied to the ion, the probability for the ion being in the excited or in the ground state

oscillates with the Rabi frequency. As shown in figure 4.21, on the carrier transition the

probability oscillates between 0 and 1, decreasing over time due to heating and other

interfering effects. The red and blue sidebands saturate at a probability of 0.5 and have

different Rabi frequencies for a thermal harmonic oscillator state [Poschinger 2010b].

Figure 4.21: Rabi oscillations in the cryogenic microtrap - For different pulse
lengths, the probability of the transitions varies. While the carrier transition oscillates
with a Rabi frequency of Ω ≈ 110 kHz, the red and blue sideband saturate at probability
of 0.5.
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4.5 Current state of the membrane ion trap and future mea-
surements

In the last year, the project membrane ion trap developed constantly to reach its current

state. The basic idea of an oscillating ion trap started with an empty table and became

a set up experiment. Unfortunately, up to this point there are no ions in the membrane

trap, but we are confident to solve all remaining minor issues in the near future. Here

we present the current state of the membrane trap and given an outlook on future

measurements.

Up to this point, all preliminary steps to trap an ion were successful and almost all

required conditions are fulfilled. In a first approach, the pressure in the vacuum chamber

was a limiting factor. With the additional Titan sublimation pump we solved this issue

and reached a pressure in the range of 10−9 - 10−10 mbar, which is typical for most ion

traps. The vaporizing oven is producing a neutral atom beam, which was observed with

two detection methods.

Firstly, we aligned the photo ionization laser in front of the tip of the oven and detected

the neutral atom fluorescence with an infrared camera. The fluorescing atoms along the

laser beam are shown in figure 4.22.

Figure 4.22: Fluorescence of the neutral atom beam detected via an infrared
camera - In front of the magnified oven tip the fluorescence of the neutral atoms along
the laser beam stands out clearly against the background.
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4.5 Current state of the membrane ion trap and future measurements

Secondly, we verified that the neutral atom beam reaches the trapping region. Therefore,

we aligned the photo ionization laser through one of the 150µm holes of the membrane

and detected the fluorescence of the neutral atoms with the detection apparatus, i.e.,

the EMCCD camera. This method also provides the precise wavelength of the photo

ionization laser to ionize at the trapping region. In figure 4.23 the signal of the EMCCD

camera is displayed. By scanning the wavelength of the photo ionization laser in an

so called symmetrical saw tooth shape, the camera signal shows fluorescence peaks on

every rising and falling slope if the wavelength matches.

Figure 4.23: Fluorescence of the neutral atom beam detected at the trapping
region via the EMCCD camera - At the center peak the oven was turned off to
verify that the peaks are actually from the atom beam. While the oven is turned on two
equidistant fluorescence peaks, one on the rising and one on the falling slope, are clearly
visible. After turning off the oven the fluorescence peaks decrease while the oven cools
down, until they disappear. The fluctuations of the signal are intensity fluctuations, which
arise from the modulation of the laser.

At this point, almost all necessary conditions for trapping ions are fulfilled. There are

ions at the trapping region and the ultra-high vacuum minimizes possible scattering at

background atoms, which can result in unstable conditions. After aligning all necessary

laser beams through the trapping hole, therefore verifying that all beams are aligned
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at the trapping region, the final step is to find the right r.f.- and dc voltages to cre-

ate a trapping potential. From the simulations we know that rather high r.f.-voltages

in combination with low compensation dc voltages provide the optimal conditions in

theory, but the high r.f.-voltages are rather challenging in the experiment. We had

to improve the shielding of the helical resonator to minimize interference with other

electrical components in the lab, especially the electrical stabilization components of

the laser system. This is still the main issue that needs improvement. A new helical

resonator design is currently developed to provide better stability of the r.f.-frequency

and it will be integrated in an improved shielding construction.

Another minor issue is stray light of the laser at 397 nm which is diffracted from the

trap hole and leads to an interference pattern on the EMCCD-camera. The detection

scheme is based on the detection of fluorescence at 397 nm, hence the stray light of the

respective laser beam needs to be minimized. This can be achieved via a tight focus

and an accurate alignment of the laser beam through the trapping hole. The current

state should allow the detection of a trapped ion, but for further improvement of the

detection process, a background free detection scheme can easily be implemented in

a future setup. A further discussion of the background free detection schemes can be

found in section 4.5.2.

For the analysis of future measurements, we simulated a possible sideband spectrum.

In the membrane trap the ion acts as a probe for the vibrations of the membrane. We

want to observe the vibrational modes of the membrane via sideband spectroscopy. The

resonance frequencies of the membrane are in the range of 20 kHz to 100 kHz, while we

calculated trap frequencies of a few MHz. This should allow a good discrimination of

the different frequencies in the sideband spectrum.

To simulate a possible sideband spectrum, we calculated the Lamb Dicke parameters

for the motional frequencies of the ion and the membrane (see table 4.5).

ηx ηy ηz ηmem20kHz ηmem100kHz

0.21 0.19 0.14 1.72 0.77

Table 4.5: Lamb Dicke parameters for the trap and membrane frequencies -
The Lamb Dicke parameters of the radial frequency are given by ηx and ηy, ηz is the Lamb
Dicke parameter of the axial frequency. The Lamb Dicke parameters of the resonance
frequencies of the membrane are in the range of ηmem20kHz to ηmem100kHz.
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4.5 Current state of the membrane ion trap and future measurements

A resolved sideband spectrum is only given in the Lamb Dicke regime, where η ·
√
n� 1.

Regarding the calculated Lamb Dicke parameters, it is obvious that the vibration of the

membrane are outside the Lamb Dicke regime, especially for a thermal distribution of

the membrane modes. Hence, it is possible to resolve the motional frequencies of a

sufficiently cooled ion (nth ≈ 20) but we have to discuss the consequence for frequencies

outside the Lamb Dicke regime, i.e., for the membrane frequencies.

4.5.1 Beyond the Lamb Dicke regime

Assuming a thermal distribution of the membrane modes, we simulate the theoretical

sideband spectrum of the membrane frequencies. The thermal probability distribution

for finding the ion in the Fock state |n〉 is described by

p (n) :=
(nth)n

(nth + 1)(n+1)
with nth =

kBT

~ω
(4.4)

where nth is the mean vibrational quantum number, kB the Boltzmann constant and

ω the respective frequency. Outside the Lamb Dicke regime the excitation probability

takes the following form (see sec. 2.3.1)

pe(t) =
∑
n

p (n) sin2

(
1

2
Ωn,n+st

)
(4.5)

where the effective Rabi frequencies Ωn,n+s are given by

Ωn,n+s = Ω0 ·Mn,n+s (4.6)

whereMn,n+s are the matrix elements defined in equation 2.36. The matrix elements for

carrier, red sideband, blue sideband and membrane frequencies1 are depicted in figure

4.24.

Finally, for the simulation of a sideband spectrum outside the Lamb Dicke regime we

have to plot the sum of the excitation probabilities for all transitions in dependence of

the frequency. The results are depicted in figure 4.25.
1We inherit the terminology of the sideband transitions, i.e., carrier, red and blue sideband, for the

membrane transitions.
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(a) Matrix elements for the Lamb Dicke parame-
ter of the upper limit of the membrane resonance
frequency

(b) Matrix elements for the Lamb Dicke parame-
ter of the lower limit of the membrane resonance
frequency

(c) Matrix elements for a typical Lamb Dicke pa-
rameter of the ion

Figure 4.24: Matrix elements for different Lamb Dicke parameters η - (a) and (b)
shows the matrix elements for high Lamb Dicke parameters as calculated for the membrane.
Compared with the matrix elements for typical Lamb Dicke parameters of the ion (c) the
oscillation of the matrix elements in (a) and (b) are faster, hence the regions, where the
carrier transition is stronger than the sidebands, are smaller.
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4.5 Current state of the membrane ion trap and future measurements

(a) Simulated sideband spectrum without
membrane vibration

(b) Simulated sideband spectrum with mem-
brane vibration

Figure 4.25: Simulation of sideband spectra - Simulation of the sideband spectrum
for a motional trap frequency of 3 MHz and a membrane resonance frequency of 21.8 kHz
compared to a sideband spectrum without membrane vibration.

For simplicities sake only one ion transition and only one membrane frequency are de-

picted in figure 4.25. In figure 4.25a the sideband spectrum without membrane vibration

is depicted, and figure 4.25b shows the sideband spectrum with membrane vibration.

A similar spectrum is expected for each of the motional sideband peaks of the ion.

Furthermore, we calculated the Rabi oscillations for a thermal distribution. The exci-

tation probability as given by equation (4.5) plotted against the time is illustrated in

figure 4.26. For nth = 1 the matrix element of the carrier transition is greater than

the one of the sideband transitions, but for nth = 20 the sideband transitions are the

preferred transition (see fig. 4.24c).

After trapping ions the first task will be to prepare the experiment for measuring a

sideband spectrum. At first it is reasonable to start without excitation of the membrane

and to accurately determine the trap frequencies. Afterwards, it will be interesting to

observe the sideband spectrum when the membrane vibrations are excited. For the

excitation we can use the piezo actuator mounted on the vacuum chamber or light forces

by using a pulsed laser beam directed on the membrane surface. The obtained results

for the resonance frequencies compared with the data collected by the interferometer

will give a value for the accurateness of the ion as a probe. Furthermore, the sideband

81



4. NUMERICAL SIMULATIONS AND EXPERIMENTAL RESULTS

(a) Rabi oscillations for nth = 1 and η = 0.2 (b) Rabi oscillations for nth = 20 and η = 0.2

Figure 4.26: Simulations of Rabi oscillations for a thermal probability distribu-
tion - The red and blue curves represent the red and blue sideband, respectively, the black
curve shows the carrier oscillations. For low mean phonon numbers nth the carrier oscil-
lates between 0 and 1 while the sidebands oscillate around 0.5. For higher mean phonon
numbers the behavior of carrier and sidebands is inverted.

spectrum observed after a short excitation pulse can provide the possibility to measure

the quality factor using the ion. Analogue to the ring-down measurements detected with

the interferometer, a ring-down measurement with the ion as probe is possible. These

are some of the possible examples for measurements using the ion as a probe, which all

can be verified and compared with the well understood interferometry technique.

4.5.2 Alternative detection methods

Instead of using the transition S1/2-P1/2 at 397 nm it is possible to include the transition

S1/2-P3/2 at 393 nm into the detection process. Utilizing a filter, which cuts off only

one of the wavelengths, a background free detection scheme can be accomplished. This

first possibility uses the laser at 397 nm to excite the ion to the P1/2 state, then using

lasers at 866 nm and 850 nm to end up in the P3/2 state via the D3/2 state. The ion

decays to the ground state via emitting light at 393 nm, which we can detect (see fig.

4.27a). Since we currently use a filter with transmission at 397 nm, for this detection

scheme an exchange of the filter would be necessary.

Fortunately, the second possibility is mainly the reversed way and hence possible with

our current filter. We can use the laser at 393 nm to excite the ion to the P3/2 state
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4.5 Current state of the membrane ion trap and future measurements

and by shining in lasers at 850 nm and 866 nm the ion ends up in the P1/2 state, which

decays to the ground state. The fluorescence at 397 nm can then be detected using

our current filter (see fig. 4.27a). Since we have a laser at 393 nm at our disposal, this

background free detection scheme can be set up simply by coupling this laser into the

fiber currently used for the laser beam at 397 nm.

A completely different approach for a background free detection scheme, is to use the

quadrupole transition at 729 nm and a laser at 854 nm to excite the ion to the P3/2.

This allows the detection of the ion via fluorescence at 393 nm, but makes the D5/2

state unavailable for using it as the dark state (see fig. 4.27b).

(a) Background free detection via 393 nm or
397 nm

(b) Background free detection via the
quadrupole transition

Figure 4.27: Background free detection schemes - (a) illustrates the second possibil-
ity of a background free detection, but the opposite way is also possible, and (b) illustrates
the third method via the quadrupole transition.
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5
Discussion

In this thesis, we have laid the theoretical foundations for empirical work with oscillat-

ing ion traps. We have described the preparation of a membrane as an ion trap which

combines the properties of a mechanical oscillator with a reliable quantum mechani-

cal system. We have provided the necessary steps to achieve the trapping of an ion.

These include the development and the setup process of the membrane trap and the

characterization of the mechanical properties of the membrane. We have performed a

numerical analysis of the membrane ion trap and given a theoretical outlook on future

measurements. Overall, the project membrane trap is on an encouraging way and we

are confident to accomplish the trapping of ions in the near future.

The current state of the membrane trap provides the starting point for a promising long-

term research project on the coupling of an ion and a membrane. First, it constitutes

the basis to investigate the mechanical properties of the trap using the ion as a probe

and to gather further experience in our understanding of the coupling of an atomic

paritcle and a mirco oscillator. Once the current system is sufficiently understood and

its properties well determined, the next step will be analyzing possible coupling schemes

and finding appropriate implementations. For instance, one may imagine a cryogenic

setup for the membrane trap, exploiting our experience made in the experiment for the

reference spectroscopy: the cooling of a membrane to low temperatures allows to reach

the strong-coupling regime where the coherent exchange of energy between the ion and

the membrane can be observed. Overall, many avenues of future research have the

potential to bear inspiring discoveries in our understanding of the boundary between

classical and quantum mechanical physics – what’s sure for now is that the future of
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the membrane ion trap promises to be exciting.
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Appendix

A.1 The Stabilitazion circuit

The stabilization circuit is described in section 3.2.2. On the next page, we present a

large verion of the stabilization circuit diagram for better viewing.
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Figure A.1: The stabilization circuit diagram
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A.2 Characterization of the stabilization circuit

The stabilization circuit is implemented to reduce the slow drifts of the interferometer.

In figure A.2 is the photo diode signal without the stabilization circuit, and in figure

A.3 we see the signal with stabilization turned on.

Figure A.2: Photo diode signal without stabilization - Signal of the photo diode
observed with an oscilloscope. Stabilization is turned off. ∆Vpp = 316 mV

Figure A.3: Photo diode signal with stabilization - Signal of the photo diode ob-
served with an oscilloscope. Stabilization is turned on. ∆Vpp = 114 mV

The effect of the stabilization circuit is hard to quantify. It is obvious that the

minimization of drifts in the signal improves the overall results. In the final resonance

spectra the background is minimized, but a quantifiable change in the precision of the

resonance frequency is hard to recognize.
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A.3 Characterization of the dynamic behavior of an ampli-
fier

For the characterization of the dynamic behavior of the piezo amplifier1 we tuned the

input frequency at a constant amplitude of 0.1 Vpp and recorded the output with an

oscilloscope. Then we plotted the output amplitude versus the respective frequency and

used an exponential fit to determine the amplification rate γamp

f(x) = Ae−γamp·t (A.1)
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Figure A.4: Amplification of the piezo amplifier - The relation between frequency
and amplification is determined via an exponential fit. The resulting amplification rate is
γamp ≈ 0.1 .

1http://www.piezomechanik.com
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