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Zusammenfassung

Die vorliegende Arbeit behandelt ein Gebiet, das experimentell bisher kaum erschlossen

werden konnte: die Thermodynamik von kleinen Systemen im Quantenregime. In kleinen

Systemen, das heißt in Systemen mit wenigen Freiheitsgraden, treten Phänomene auf,

die von der makroskopischen Thermodynamik nicht bekannt oder sogar explizit verboten

sind. Dazu zählen Nichtgleichgewichtsphänomene wie die statistische Fluktuation von

sonst wohldefinierten Systemgrößen und die Verletzung des zweiten Hauptsatzes. Wie

wichtig solche Phänomene sind, kann an biologischen Systemen gesehen werden, die sich

genau diese Effekte zunutze machen, um im menschlichen Organismus lebensnotwendige

Arbeit zu verrichten, um nur ein Beispiel zu nennen. Wenn kleine Systeme hinreichend

ungestört sind, treten zusätzlich Quanteneffekte auf, die ihre Eigenschaften entscheidend

beeinflussen, und ihrer Dynamik ein weiteres statistisches Element hinzufügen.

Während im Bereich der klassischen Physik auf diesem Forschungsgebiet bereits erste

Experimente durchgeführt werden konnten, fehlt bisher noch der entscheidende experi-

mentelle Schritt mit einem physikalischen System, das voll quantenmechanisch untersucht

werden kann. Diese Arbeit diskutiert zunächst die Anforderungen, die ein physikalis-

ches System überhaupt erfüllen muss, damit man entsprechende Experimente durchführen

kann. Die Herausforderungen im Quantenregime sind ungleich höher als im klassischen

Fall, weil Dekohärenz und Dissipation jegliche Quanteneffekte unbeobachtbar machen

können. Dann zeigen wir, dass wir mit einem bestimmten System, nämlich einzelnen

kalten Ionen, die in einer Paul-Falle gefangen sind, alle Anforderungen erfüllen können.

Alle Punkte werden detailliert untersucht und die Lösungen experimentell belegt. Dabei

ergeben sich viele Anwendungen und interessante Verbindungen zu anderen Gebieten der

Physik wie der Quanteninformationstheorie. Es wird sich zeigen, dass das vorliegende

System für die Erforschung thermodynamischer Nichtgleichgewichtsprozesse hervorragend

geeignet ist. Einige konkrete Fragestellungen aus der aktuellen Forschung werden präsen-

tiert, die mit den hier entwickelten Techniken erstmalig experimentell untersucht werden

können.
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Abstract

This thesis deals with a field of research, which is fairly new ground in experimental physics:

the thermodynamics of small systems in the quantum regime. In small systems, which

means systems with only few degrees of freedom, phenomena arise, that are unknown

or even explicitly forbidden within the thermodynamics of macroscopic systems. Among

these phenomena are non-equilibrium effects like the statistical fluctuation of otherwise

well-defined system properties and violations of the second law. The importance of such

phenomena can be seen from biological systems exploiting exactly these effects in order to

perform vital work within the human organism, just to give one example. Additionally,

quantum effects arise, when the systems are sufficiently isolated. These quantum features

crucially alter the system’s properties and introduce a further statistical element into their

dynamics.

While first experiments could be performed on this field in the classical regime, one is

still lacking the decisive step with a physical system, which allows for a full quantum

mechanical investigation. This work first discusses general requirements put on a physical

system in order to realize such experiments. The challenges in the quantum regime are

distinctly higher than in the classical case, as decoherence and dissipation can render the

observation of quantum effects impossible. Then we will demonstrate, that we can fulfill

all requirements with a specific system, namely single cold ions confined in a Paul trap. All

points will be discussed in detail and verified experimentally. In doing so, first applications

arise unveiling close connections to other disciplines like quantum information theory. We

will see, that the proposed system is in deed predestined for the investigation of non-

equilibrium thermodynamic processes. Distinct questions raised by current research will

be shown to become experimentally accessible for the first time by applying the developed

techniques.





Contents

1 Introduction 15

1.1 Non-Equilibrium Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 The Jarzynski Equality . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.2 The Clausius Inequality . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Experimental Requirements for Quantum Thermodynamics . . . . . . . . . 24

2 Trapped Ions for Quantum Thermodynamic Experiments 29

2.1 Traps and Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Quantum States of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Electronic Structure, Motion and Light . . . . . . . . . . . . . . . . . . . . 35

3 Coherent Ion-Light Interaction 39

3.1 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Atomic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Atom-Light Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.3 Carrier and Sideband Transitions . . . . . . . . . . . . . . . . . . . . 43

3.1.4 Motional State Dynamics of Phonon Distributions . . . . . . . . . . 47

3.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 The Optical Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 The Spin Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Preparation of the System 69

4.1 Doppler Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Resolved Sideband Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 System-Bath Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Multiple Ions and Mixed Strings . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Transformations of the Potential 75

5.1 Generation of Arbitrary Potentials . . . . . . . . . . . . . . . . . . . . . . . 76

9



10 Contents

5.1.1 Simulation of Electrode Geometries . . . . . . . . . . . . . . . . . . 76

5.1.2 Calculation of Electrode Voltages . . . . . . . . . . . . . . . . . . . . 78

5.2 The Transport Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Validation of the Potentials: Remote Spectroscopy . . . . . . . . . . 83

5.2.2 Non-Adiabatic Transport Potentials . . . . . . . . . . . . . . . . . . 87

5.3 The Squeezing Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 The Transformation Model . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2 Proposed Realization in the Micro-Trap . . . . . . . . . . . . . . . . 100

5.4 The Driven Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Detection of the Motional State 109

6.1 Temperature Analysis by Sideband Excitation . . . . . . . . . . . . . . . . . 109

6.2 The Doppler Recooling Method . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.1 Theoretical Model of the Scattering Process . . . . . . . . . . . . . . 111

6.2.2 Recooling Measurement of Shuttled Ions . . . . . . . . . . . . . . . . 117

6.3 Motional State Analysis by Coherent Excitation . . . . . . . . . . . . . . . 124

6.3.1 Analysis of Displacement Amplitudes . . . . . . . . . . . . . . . . . 127

6.3.2 Phase Coherence: A “Motional Ramsey” Experiment . . . . . . . . 129

6.4 Complete Quantum State Analysis . . . . . . . . . . . . . . . . . . . . . . . 132

6.4.1 Wigner Function Measurement Scheme . . . . . . . . . . . . . . . . 132

6.4.2 Implementation and Results . . . . . . . . . . . . . . . . . . . . . . . 134

6.4.3 The Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 The Phonon Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.5.1 Nondestructive Detection Principle . . . . . . . . . . . . . . . . . . . 138

6.5.2 Determination of the Filter Transmission . . . . . . . . . . . . . . . 141

6.5.3 Coherence and Time Consumption . . . . . . . . . . . . . . . . . . . 143

7 Interaction with the Environment 145

7.1 Internal State Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2 Heating Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3 Reservoir Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Conclusion and Outlook 151

9 Appendix 155

9.1 Segmented Linear Paul Traps . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.1.1 The Micro-Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.1.2 The PCB-Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



Contents 11

9.2 FPGA-Based Fast Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . 158

9.3 Realization of a Single Photon Time Stamp . . . . . . . . . . . . . . . . . . 158

9.4 Quantum State Phonon Distributions . . . . . . . . . . . . . . . . . . . . . 159

9.4.1 Thermal States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.4.2 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.4.3 Squeezed Vacuum States . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.5 Magnetic Level Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.6 Scientific Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Bibliography 219



List of Figures

1.1 Interaction and Decoherence in a Quantum System . . . . . . . . . . . . . . 18

1.2 Equilibrium and Non-Equilibrium Processes . . . . . . . . . . . . . . . . . . 20

2.1 Paul Trap Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Potential Generation Capabilities in the Paul Trap . . . . . . . . . . . . . . 32

2.3 Illustration of Thermodynamic Systems . . . . . . . . . . . . . . . . . . . . 34

2.4 Quantum State Gallery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Internal and External Degrees of Freedom . . . . . . . . . . . . . . . . . . . 36

2.6 Trapped Ion Box for Quantum Thermodynamics . . . . . . . . . . . . . . . 38

3.1 Motional State-Dependent Coupling Strengths . . . . . . . . . . . . . . . . 46

3.2 Level Scheme of the Optical Qubit . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Zeeman-Split S1/2 ↔ D5/2 Transitions . . . . . . . . . . . . . . . . . . . . . 50

3.4 State Discrimination Histogram . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 The Spin Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Optical Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Comparison Between Pulsed and Continuous Optical Pumping . . . . . . . 57

3.8 Bloch Vector Evolution during the RAP . . . . . . . . . . . . . . . . . . . . 59

3.9 Rapid Adiabatic Passage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.10 RAP Transfer Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

12



List of Figures 13

3.11 The Spin Qubit: Relevant Levels and Transitions . . . . . . . . . . . . . . . 62

3.12 Co-Carrier Rabi Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.13 Spin Qubit Excitation Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Sideband Cooling: Levels and Transitions . . . . . . . . . . . . . . . . . . . 71

4.2 Schematic Timing: Sideband Cooling . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Single Electrode Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 The Tikhonov Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 The Shuttling Potential Transformation . . . . . . . . . . . . . . . . . . . . 81

5.4 Snapshots of Transport Potentials . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 The Remote Spectroscopy Scheme . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Remote Sideband Excitation Lines . . . . . . . . . . . . . . . . . . . . . . . 85

5.7 Results of the Remote Spectroscopy Scheme . . . . . . . . . . . . . . . . . . 87

5.8 Error-Function Shaped Transport Function . . . . . . . . . . . . . . . . . . 89

5.9 Transport Phase Space Trajectories . . . . . . . . . . . . . . . . . . . . . . . 90

5.10 Schematic Timing: Transport Success Probability . . . . . . . . . . . . . . . 92

5.11 Transport Success Probability Results . . . . . . . . . . . . . . . . . . . . . 93

5.12 The Squeezing Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.13 The Squeezing Transformation: Initial and Final State Distribution . . . . . 101

5.14 Work Probability Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.15 Conditional Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 103

5.16 Nonadiabaticity Parameter as a Function of T . . . . . . . . . . . . . . . . . 106

6.1 Temperature Measurement by Sideband Strength Comparison . . . . . . . . 110

6.2 Energy and Scattering Rate Traces During Doppler Recooling . . . . . . . . 114

6.3 Schematic Timing: Doppler Recooling Experiment . . . . . . . . . . . . . . 118

6.4 Photon Count Traces During Recooling . . . . . . . . . . . . . . . . . . . . 119



14 List of Figures

6.5 Energy Histogram Gained by Recooling Method . . . . . . . . . . . . . . . 120

6.6 Transport Energy Measurement Results . . . . . . . . . . . . . . . . . . . . 122

6.7 Schematic Timing: State Analysis by Rabi Flopping . . . . . . . . . . . . . 125



Chapter 1

Introduction

In the middle of the 19th century, an epoch making technological progress inspired sci-

entists to break new ground: the invention and successful application of steam engines

gave rise to theoretical considerations about heat, work and energy in physical systems,

which finally culminated in the development of classical thermodynamics and statistical

mechanics. Since then, these theories have been extended and employed very successfully

in many areas. They are, in some sense, general-purpose theories, pertaining to generality

and the variety of physical systems they can be applied to: From biochemical processes

within our cells over traffic behavior, financial markets to cosmological structures in the

far universe, the applicability of thermodynamical concepts seems hardly limited.

All these systems have one feature in common: They are “large” with respect to the num-

ber of constituents (particles) they are composed of. Indeed, this is one of the reasons, why

statistical predictions can be so precise. The sheer plenty of particles, together with the

law of large numbers, ensures that a system’s thermodynamic quantities have extremely

well-defined values.

During the last decades, the technological progress has again given rise to reconsider-

ing our description of nature. Advances in the possibility to observe and manipulate

microscopic systems, both natural and artificially created ones, make us enter regimes,

where the premise of a large system no longer holds. Such systems are ubiquitous in

biology, chemistry or physics. For example, bio-molecules and their functioning as mi-

croscopic machines were investigated, and found to behave completely differently from

large systems. In fact, thermodynamic quantities are no longer sharply defined in this

regime, but are subject to fluctuations [Esp09]. A whole series of fluctuation theo-

rems [Eva93, Eva94, Gal95, Jar97, Cro99] has been brought forth within the last two
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16 Introduction

decades, granting deeper insight into the properties of small systems. The term thermo-

dynamics of small systems has been established for this area of research [Bus05], which

revolves around the question, how the well-known laws of traditional thermodynamics can

be applied to, or have to be modified to apply to, microscopic systems [Jar08].

In addition to the mere smallness of the systems, they mostly operate away from thermal

equilibrium. This is, actually, a property of most non-trivial physical systems; but – from

a stringent point of view – is not covered by classical thermodynamics, which deals with

states of equilibrium and the transitions between them. While in traditional thermody-

namics, for example, the second law strictly holds, it has to be revisited for the case of a

small system’s non-equilibrium process [Rit03].

Not by the investigation of steam engines, but by stretching single RNA1-molecules, first

experiments were able to confirm some major results of this new research area [Lip02]. As

a further example, the Kinesin biomolecule, which can be regarded as a subcellular motor,

was found to harness thermal fluctuations in order to perform work on the human DNA2

with impressive efficiency [Bus05].

Not only natural systems, but also artificially generated structures like nano-devices,

micro-machines and “every-day” electronics, like highly integrated circuits, nowadays

reach dimensions, that make traditional thermodynamics of large systems hit the wall

sooner or later. Already today, down-scaled electronic circuits contain structures, which

are only some nanometers in size, and contain only some thousands of electrons, for exam-

ple, and an end in the progress of miniaturization is not within sight. It is obvious, that

the upcoming, new phenomena connected with the non-equilibrium properties of small

systems have to be accounted for; interestingly – as intriguing and complicated the new

features might seem at first – nature showed us, that we might even profit from them.

In this thesis, we will make one decisive step forward, compared to all systems mentioned

above: entering the quantum regime. Although small, the systems, that have been under

experimental investigation so far, behave classically. Either, they are embedded in a

thermal reservoir, which hampers the observation of genuine quantum features, or they

are simply not small enough, having too many uncontrollable degrees of freedom. The

system being introduced here, single trapped atoms, offers the full spectrum of features

necessary for the observation of non-equilibrium phenomena in the quantum regime.

A single particle, which can be manipulated on the single quantum level, constitutes a

1 Ribonucleic acid.
2 Deoxyribonucleic acid.
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text-book example for quantum mechanics. Similarly, it can be a rolemodel for quantum

thermodynamic (qtd) systems, since it is a very well isolated system and can be easily

prepared close to the zero point of temperature. Then, the energy separation between

energy eigenstates is on the order of, or exceeds the mean thermal energy, and quantum

effects become observable. Its conceptual simplicity, and its unique properties in terms

of manipulation and detection capabilities make it a perfect workhorse for experiments

elucidating the non-equilibrium thermodynamics of quantum systems.

There is a discipline in the field of quantum mechanics, for which these findings pertaining

to non-equilibrium processes will be of fundamental interest: quantum information theory

deals with quantum systems, that allow for information processing by controlled state

transitions [Eke96, DiV95]. In analogy to classical information processing [Ben82], the

transition process is called a quantum gate and the fundamental unit of information a qubit ;

it transforms the input state into a well-defined output state after the rules of quantum

mechanics. Although the statements made here are absolutely general, the system we have

in mind is, of course, the trapped-ion quantum computer [Cir95, Sch03].

For quantum information purposes, the focus lies on processes, that are unitary and re-

versible, in order not to loose information. The systems are ultimately cold and any

upcoming of heat is suppressed as far as possible. A lot of effort is put on the goal to

avoid dissipation, and the system is isolated almost perfectly from the environment. In

this sense, such a system can be regarded as an extreme case of a thermodynamic sys-

tem [Hen07]; this is the blank, smooth side of the coin. However, the rough side of the

same coin is exactly what makes quantum information processing so demanding: The pro-

cesses are not exactly adiabatic, since they must be performed in finite time. In fact, they

are to be performed as fast as possible, so what is actually performed, is a non-equilibrium

process! Additionally, as for the current status of research, the number of particles is re-

ally small, but has to be increased in order to advance the field. In fact, it is one of the

greatest challenges in this field, to scale today’s implementations up, so as to reach, say,

a hundred qubits. Currently, it seems hardly feasible to control all degrees of freedom in

a multidimensional Hilbert space. The most promising approach concerning this matter

follows a “divide and conquer” philosophy, shuttling small numbers of qubit-carrying ions

around between processor and memory regions [Kie02].

Residual coupling to the environment is one of the main sources of decoherence in the

system, so we actually deal with weakly coupled, open systems, which constantly exchange

energy with the environment. Figure 1.1 illustrates this circumstance.
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System Environment

Figure 1.1: Interaction of a quantum system (Ĥsys) with an environment (Ĥenv), represented by
the interaction Hamiltonian Ĥint. The evolution of the total system, comprising both system and
environment, is unitary; by the action of Ĥint, their respective degrees of freedom can be entangled
with each other [Hil09]. Mostly, only the degrees of freedom of Ĥsys are directly observable, so that
tracing out the environment’s degrees of freedom leads to decoherence. This scheme can be easily
extended to the case of multiple subsystems [Paz08, Cor09] and multiple environments [Bee10].

To bring matters to a head, one could say, that quantum computation processes on the

one hand, and quantum thermodynamic processes on the other hand, just differ by the

perspective, from which the system is looked at. The controlled transport of an ion within

the trap, for instance, can be seen as an implementation of the scaled quantum computer

approach, where unwanted heating corrupts the process fidelity. Alternatively, the same

process can be seen as a thermodynamic transformation of an external potential (like a gas

being compressed), which is able to describe the system in a very natural way in terms of

work and dissipation, for example. By these different perspectives, we are able to expand

our horizons, and both research fields, quantum information and thermodynamics, profit.

So far, this aspect has been investigated on a theoretical basis [Bra08], but this work will

tackle arising issues also experimentally.

In addition to this physical relationship, utilizing trapped ions for qtd experiments can

profit from the remarkable set of quantum optical techniques having been developed for

quantum information [Nie00], quantum metrology [Ber98, Roo06] and quantum simula-

tion [Fey82, Llo96, Joh09]. Indeed, the common motion of trapped ions, and the coupling

between the information encoding, electronic structure of the ion to that motion, lies at

the heart of the original and virtually all successive quantum gate proposals [Cir95]. This

coupling is mediated by laser light and will prove to be the crucial ingredient for the

success of the qtd approach with trapped ions, too.

The controlled interaction between light and matter is not only the basis for most ion ma-

nipulation and detection solutions, it also offers possibilities going far beyond what we are



1.1 Non-Equilibrium Processes 19

used to from classical systems. Light reservoirs can be engineered so as to simulate a ther-

mal bath, whose parameters are completely within the hands of the experimenter [Poy96].

This way, the influence of the environment on decoherence mechanisms has been inves-

tigated experimentally [Mya00] by application to a quantum superposition state. These

reservoirs, however, can also be tailored to have no classical counterpart.

This thesis is structured as follows: This chapter gives a short introduction into quantum

non-equilibrium phenomena on the basis of a couple of concrete issues of current research.

A complete overview over the field of non-equilibrium thermodynamics would exceed this

thesis’s scope; rather, it will be demonstrated how interesting and rewarding the work on

this field is. Then, we raise and address the question, what general features a real, physical

system must exhibit, so that it can be used for quantum experimental experiments in order

to investigate problems of the kind presented before. After that, chapter 2 introduces the

trapped-ion system as a candidate. We shortly summarize the features and peculiarities

known about the system. This will give a first idea about the experimental potential of

the system with respect to qtd implementations. Key to the power of this approach is the

coherent interaction between light and matter. Correspondingly, chapter 3 is dedicated to

devising both the theoretical and the experimental essentials and notions of this concept.

Then, chapters 4 to 7 consequently address all requirements having been formulated at

the end of chapter 1 in detail, which were found to be necessary for the implementation

of qtd. The results presented there will build the basis for the main conclusions of this

work, which are summarized in chapter 8.

1.1 Non-Equilibrium Processes

During undergraduate lectures, every physics student learns, that the thermodynamic

properties of a large, classical system like, pressure, temperature, heat and work, are

amongst the most sharply defined quantities known in physics. This is due to the huge

number of constituents involved in the corresponding thermodynamic processes, and the

law of large numbers ensures that the uncertainties of the ensemble properties are negligible

in all conscience.

The impressive progress having taken place over the last decades in the fields of miniatur-

ization, micro-machining and nano-technology paved the way into a world, where a central

assumption of standard thermodynamics – that the number of constituents can be consid-

ered to be infinitely large – does no longer meet the physical reality. Rather, these small

systems feature two new aspects: First, fluctuations emerge in the ensemble properties;
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Figure 1.2: Visualization of the system’s state change during the transformation processes. The
system is supposed to start out from an equilibrium initial state ρi, which lies on a plane rep-
resenting the subset of equilibrium states. If the process is performed in a quasi-static way, the
system does not leave this plane and ends up in a final equilibrium state ρeq

f . If, however, the
transformation process is conducted in finite time, the system is driven out of equilibrium and the
final state of the system is a non-equilibrium state ρneq

f [And84].

sometimes, they even dominate the system’s behavior. Second, quantum effects enter the

stage, giving rise to further unexpected, non-classical phenomena. In addition to the emer-

gence of statistical fluctuations, another source of uncertainty enters the system through

quantum mechanics. In the following, we point out some recently formulated aspects of

quantum non-equilibrium processes, which seem most promising for investigation in the

experiment.

1.1.1 The Jarzynski Equality

Consider a system initially in thermal equilibrium with inverse temperature β := (kBT )−1

(here, kB is the Boltzmann constant and T the temperature), but otherwise isolated. When

one of the system’s parameters is changed by an “external agent”, its energy changes, in

general. Due to the reasons mentioned above for small systems, the work performed on

the system is not the same for every realization of the parameter change. In other words,

the value W of the work may differ from one realization to the other. Formally, this can be

accounted for by introducing the normalized work probability distribution P (W ), which

gives the probability of the occurrence of the work W . The work performed on the system

then is a statistical quantity with mean value 〈W 〉, where by 〈. . .〉, we denote average

values over many realizations of the process.

During a quasi-static (infinitely slow) process, all work performed goes into the free energy
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change of the system3, ∆F , so that ∆F = 〈W 〉. The free energy of the system is the amount

of energy, which can be used in a later process to perform work again4 (usable work).

When the process, however, is performed in finite time (which will be case for most real

processes), the system is driven away from equilibrium and ends up in a non-equilibrium

final state (see Fig. 1.2). Then, the work performed on the system not only increases

the free energy of the system, but a certain part of it is “lost” for later application and

absorbed in the irreversible work Wirr, so that we can write

〈W 〉 = ∆F + 〈Wirr〉. (1.1)

If the system was coupled to a reservoir at the end of the process, it would dissipate

Wirr by energy exchange with the bath. The free energy change is different from the

quasi-static case now. For arbitrary processes, 〈Wirr〉 ≥ 0, where the equal sign holds for

reversible, quasi-static processes. This leads us to one formulation of the second law of

thermodynamics,

∆F ≤ 〈W 〉, (1.2)

asserting that the free energy change is always smaller – or at best equal to – the work

that has been performed on the system. From this form of the second law one can already

guess, that – due to the fluctuating character of W – there may be single processes, which

in this sense violate the second law, while on average it holds [Rit03].

Equation (1.2) is an inequality. Until recently, a general, exact expression for ∆F for

arbitrary processes was not known, but in 1997, Jarzynski derived an exact equality for

the free energy difference [Jar97]

∆F = − 1
β

ln 〈e−βW 〉 ⇔ e−β∆F = 〈e−βW 〉 (1.3)

under arbitrary processes, i.e. even such ones driving the system far out of equilibrium.

This equation, meanwhile known as the Jarzynski equality, is an absolutely remarkable

result in non-equilibrium thermodynamics and its formal simplicity makes one almost

forget about its generality. Covering both equilibrium and non-equilibrium processes, it

interestingly allows for retrieving equilibrium information (∆F ) by performing only non-

equilibrium processes. The latter ones are never strictly realizable and often only hard

to reach in good approximation [Har07]. Instead, Eq. (1.3) makes it possible to map

out free energy landscapes not accessible otherwise; since ∆F is process-independent, any

3 F is an equilibrium property of the system and thus does not fluctuate.
4 In classical physics, one may distinguish between the Helmholtz free energy (at constant temperature

and volume) and the Gibbs free energy (constant temperature and pressure), respectively.
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reproducible parameter transformation can be applied in principle. Although classical in

its original form, Eq. (1.3) has been shown to be extendable to the quantum regime [Tas00,

Muk03, DR04, Che04, Tal07a], although some classical concepts like the notion of work

had to be revisited and refined [All05, Tal07b].

The Jarzynski equality gets in line with a series of fluctuation theorems [Eva93, Eva94,

Gal95, Cro99] describing the mechanisms leading to fluctuations in small systems and

making predictions about their probability of occurrence (for a review, see Ref. [Eva02]).

Experiments revealing the non-equilibrium features of small systems have only become

possible by a tremendous progress in micro-manipulation techniques. In Ref. [Lip02],

Liphardt et al. demonstrated the first verification of the Jarzynski equality in an RNA

stretching experiment. Albeit small, the system under aspect is classical. A couple of sub-

sequent experiments demonstrated the correctness of fluctuation theorems [Col05, Bli06]

and the Jarzynski equality [Bli06, Har07] in small classical systems, and their usefulness

in practical applications.

An experimental test of the Jarzynski equality in the quantum regime, however, is still

lacking. It is one of the main motivations of this thesis to demonstrate, that and how

such non-equilibrium experiments can be performed in the quantum regime. We will

see, how a verification of the quantum Jarzynski equality can be accomplished, and how

the fluctuations in work can be made visible by an experiment unveiling every single

process’s outcome; hereby, also those rare events violating the second law can be proven

(see chapter 5.3).

1.1.2 The Clausius Inequality

As we have already seen, any real process is irreversible, since it has to be conducted in

finite time. A natural question arising is, how good, or how close to equilibrium we can

perform. Again, we imagine a system, which is in thermal equilibrium at the beginning.

Its entropy change ∆S caused by a parameter transformation (cf. Fig. 1.2) can be divided

into a reversible part ∆Srev, and an irreversible contribution ∆Sirr, respectively:

∆S = ∆Srev + ∆Sirr. (1.4)

The reversible part ∆Srev = Q/T describes the heat (Q) exchange occurring during the

process (in the case of open systems), where T is the temperature of the system. The so-

called Clausius inequality states, that the irreversible entropy production is always positive
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or – at best – zero, if the process is done reversibly,

∆Sirr ≥ 0. (1.5)

Equation 1.5 is another formulation of the second law and gives a very general lower

bound of the irreversible entropy production, which is closely related to the irreversible

work 〈Wirr〉 = 〈W 〉 −∆F defined above (see Eq. (1.1)), by ∆Sirr = β〈Wirr〉 .

It has recently been shown [Def10b], that a full quantum treatment allows for deriving an

exact expression for ∆Sirr by the help of the Kullback-Leibler divergence [Ume62] (which

is also called relative entropy). For a closed equilibrium system being driven arbitrarily far

out of equilibrium, and ending up in some final state represented by its density operator

ρf , one can write

∆Sirr = S( ρf || ρeq
f ) := kBTr

{
ρf ln ρf − ρf ln ρeq

f

}
. (1.6)

Here, ρeq
f represents an equilibrium state at the end of the process, which can, for exam-

ple, result from weakly coupling the system to a reservoir. From this we see, that the

entropy change can be obtained from final states only, and that it is – roughly speaking –

determined by the “distance” of the final state from equilibrium5.

This picture is supported by an estimate on ∆Sirr, which falls back on the well known

fidelity F(ρ1, ρ2) between two quantum states ρ1 and ρ2,

F(ρ1, ρ2) := Tr
{√√

ρ1 ρ2
√
ρ1

}
, (1.7)

which is a very common measure for the “likeness” of two quantum states6. With this,

the entropy production can be estimated to be [Def10b]

∆Sirr ≥
8kB

π2

(
arccosF(ρf , ρ

eq
f )
)2
. (1.8)

This is a very interesting generalization of the Clausius inequality ∆Sirr ≥ 0 and gives an

estimate, how well a process can be done with respect to energy dissipation, when one is

“short of time”, i.e. the process has to be performed in finite time.

From this example, we can already deduce a handful of demands posed on a quantum

system in order to qualify for a real experiment. Apart from the preparation of a suitable

quantum state, the possibility to perform exact non-adiabatic transformations of a sys-

tem’s parameter, it is necessary in some cases to control the coupling between system and
5 As pointed out in Ref. [Def10b], the relative entropy does not have all properties of a true metric.
6 Sometimes, the square of this expression is defined as fidelity. Following our definition, the fidelity

reduces to the mutual overlap F = | 〈Ψ1|Ψ1〉 | for pure states |Ψ1〉 and |Ψ2〉.



24 Introduction

environment to allow for equilibration ρf → ρeq
f , for example. Additionally, the readout of

the final state may require retrieving the full quantum state, or it may suffice to extract

a more easily measurable quantity.

1.2 Experimental Requirements for Quantum Thermody-

namics

Thermodynamic effects are ubiquitous. The experimental, quantitative access to these

phenomena in the quantum regime, however, is not at all trivial. The reasons for this are

divers; quantum effects tend to emerge at low temperatures only, i.e. in systems whose

thermal energy is comparable to an energy quantum of that system. Therefore, their di-

rect observation will be restricted to microscopic systems only. Additionally, coupling to

the environment is often a source of decoherence, which prevents the observation of any

quantum effects. On the other hand, exactly this interaction with an environment is a

central concept in thermodynamics. Consider, for example, a system in thermodynamic

equilibrium with a heat bath, to define the system’s temperature. Therefore, the coupling

between system and bath has to be controllable in some sense. Additionally, the obser-

vation of thermodynamic effects in quantum systems requires a high level of control over

the degrees of freedom under aspect. Preparation, manipulation and detection of these

degrees of freedom must happen with an accuracy and sensitivity on the single quantum

level. In the following, we would like to raise and discuss the following question: What

are the basic requirements posed on a physical system to realize quantum thermodynamic

experiments?

Our approach to answer the stated question is motivated by the famous collection of David

P. DiVincenzo’s criteria about the implementation of quantum computation [DiV00]. This

motivation might seem arbitrary at first sight, but it is motivated to a certain degree by the

role information plays in thermodynamics. To start with, we repeat the five DiVincenzo

requirements of quantum computing7:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state

3. A universal set of quantum gates

4. A qubit-specific measurement capability
7 Shortened and reordered for convenience.
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5. Decoherence times longer than gate operation time

Without going into detail about each point, we recognize that the first point requires the

system to be “well characterized”, i.e. both the internal parameters of the system and

all interactions of the system with other systems or external fields should be known. For

a thermodynamic system, we raise similar demands: the system requires a set of well-

defined degrees of freedom, and the interaction between individual parts of the system

with external fields must be well-known. One could, for example, imagine the spin of a

quantum particle forming such a system. Then, the interaction between the spin particles

and the interaction with an external magnetic field could fulfill this requirement. Another

possibility is realized by the motion of an atomic particle in a potential well, interacting

with light fields.

There is, however, a crucial difference between the quantum computing and the qtd case:

while in the qubit case, only two-level systems (possibly plus ancillary levels) occur, no

such restriction is put on the thermodynamic system. On the contrary, discrete as well as

continuous variable systems with finite or infinitely many levels are conceivable. The first

requirement we put on a physical system hence reads

(I) A physical system with a well characterized degree of freedom.

The second, third and fourth point in DiVincenzo’s list address the possibility to initialize,

manipulate and read out the system state. The ability to initialize the system into a

fiducial state is certainly not only a reasonable but a necessary requirement for doing

quantum thermodynamic experiments. While the above criteria certainly refer to the

preparation to a pure state such as |0 . . . 0〉, this has to be revisited for our purposes. The

most obvious and basic state conceivable for talking about thermodynamics is certainly

a thermal state, i.e. a state, which can be assigned a certain temperature. Such a state,

however, is not a pure but a maximally mixed state (its density matrix does not exhibit

off-diagonal coherences).

This state, however, does not necessarily remain maximally mixed throughout its time

evolution. An initially thermal state can experience arbitrary interactions and transfor-

mations leading far out of equilibrium. In the course of these processes, highly non-classical

states can emerge. We demand, therefore, the system to be preparable in an initial thermal

state ρi of the respective degrees of freedom:

(II) The possibility to prepare the system in a thermal state with respect to the degree of

freedom defined in (I).
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Once prepared, the system must be accessible to manipulation from outside. In the qubit

case, unitary operations Û (quantum gates) transform the initial state |ψi〉 into the de-

sired output state |ψf〉: |ψi〉
Û→ |ψf〉. As for thermodynamics, one may be dealing with

irreversible effects, like dissipation for instance, it is not possible to exclude non-unitary

transformations from the discussion. Nevertheless, it will be sufficient and convenient in

the most cases, to consider the transformation process itself unitary, and to treat non-

unitary processes like cooling, thermal equilibration and so forth detached from the actual

transformation – see point (VI).

The set of transformations performed on the system is described by a change of a general

parameter λ of the system Hamiltonian8 in time T . A classical analogy of this situation is

the compression of a gas, for instance, where the system parameter represents the volume

the gas is confined in. This parameter is changed in time along a certain path in parameter

space, λ(t), which completely describes the process transforming the initial state ρi := ρ(0)

into the final state ρf := ρ(T ):

ρi
λ(t)−→ ρf . (1.9)

This is a very general description of the transformation process. It comprises processes

with sudden parameter changes as well as quasi-static ones with T →∞. A good control

over the process execution λ(t) is certainly one of the major experimental challenges.

Therefore, the third requirement should be stated as

(III) The ability to perform transformations of the system Hamiltonian by a temporal

change of one or several of its parameters.

After the transformation process, ρf has to be detected. That is, there has to be a

measurement procedure yielding all relevant properties of the system. This does not

necessarily have to be the whole information about the state ρf , but in some cases a

subset of quantities may suffice. For instance, while sometimes the determination of

(ensemble) average values may meet the requirements, there may also be cases where

more sophisticated, specialized schemes have to be applied. This requirement is – from an

experimental point of view – certainly among the most demanding ones, because it must

rely on interactions controllable at the single quantum level; the detection techniques must

exhibit quantum efficiencies so high that single-shot experiments can be performed. Thus,

we formulate the fourth requirement as

(IV) A measurement process extracting all necessary information from the final state.

8 Several parameters are conceivable, too. Then, λ can be written as a vector containing all individual

parameters, λ := (λ1, λ2, . . .)
T .
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The next requirement posed on a physical system suitable for doing quantum thermo-

dynamics experiments addresses the question, in how far the system is influenced by its

environment. As for quantum computing, the case is quite clear: decoherence times have

to be much longer than the timescales defined by the computing process, for example gate

times. In our case, however, the situation is slightly more involved and we want to distin-

guish between pure decoherence and dissipative effects. Of course, the loss of decoherence

on timescales shorter than typical times between preparation and detection of the state

also corrupts the qtd process. Consequently, the requirement of long decoherence times

also holds in our case:

(V) Decoherence times long enough to perform preparation, process and measurement.

Additionally, an (unavoidable) coupling to the environment leads to a corruption of rel-

evant system properties by the stochastic nature of heat exchange. On the other hand,

we do not want to restrict ourselves to isolated systems but also consider open ones. At

some occasions, the interaction with external baths may even be desired, which could

be in order to allow for system equilibration, for example. Indeed, the state preparation

defined in requirement number two can be performed by coupling the system to a thermal

bath for a certain amount of time. Isolated systems, i.e. systems not interacting with

the environment, however, must exhibit interaction rates much smaller than the inverse

duration time of a single experiment. We see from these examples that the control over

the interaction with the environment should not be restricted to “well isolated” for our

purposes. Rather, a controlled interaction is desirable, that’s why we demand

(VI) Control over the system-environment coupling.

The strength and type of interaction can range from completely isolated to a strong cou-

pling regime, in which the energy exchange with the environment dominates the system

dynamics. This also includes time-dependent couplings, such that switching between an

isolated and an open system is possible.

The above criteria are meant to yield a guide to possible physical implementations of

qtd experiments. As could be seen, the analogy with the DiVincenzo criteria is revoked

at distinct, crucial points. The diversity of processes and systems conceivable in qtd

physical systems is huge. Accordingly, the six requirements were formulated as universal

as possible; nevertheless, they will prove very helpful as a checklist, filling the “toolbox”

for experimental quantum thermodynamics with concrete solutions.
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Chapter 2

Trapped Ions for Quantum

Thermodynamic Experiments

In the preceding chapter, we have analyzed what general requirements a physical system

must meet to be suitable for quantum thermodynamic experiments. These requirements

are diverse and put high demands on both the system properties and our experimental

abilities to manipulate and control them. Now, we substantiate the discussion introducing

a specific physical system, whose applicability in the context of quantum thermodynamics

is going to be under close scrutiny by this work. Cold trapped ions have proven as systems

offering unrivaled properties in the field of quantum optics, quantum information and

quantum metrology [Ste97, Win98, Bla08]. In a long series of groundbraking experiments

performed over the last decades they have been a paramount example for precision and

control. This development has been substantially supported by the great advances in

laser techniques and by the knowledge gathered about the interaction of light with atomic

particles.

There are mainly two trapping techniques for single atomic ions: Paul traps based on

the confining action of static and time-dependent electric fields on the one hand, and

Penning traps utilizing static electric and magnetic fields, on the other hand. They can be

regarded as the longest and best established single particle trapping techniques offering the

longest storage times known (∼ months [Die98]). One of the advantages of the Paul trap

approach is that it is possible to cool the confined atomic ion by laser light – provided that

the ion offers a suitable cooling transition. Although laser cooling has also been achieved

in Penning traps [Tho09], the Paul trap has the great advantage of inherently confining the

29



30 Trapped Ions for Quantum Thermodynamic Experiments

particles “at rest” at a well-defined point in space1. This is especially of advantage when

the ion is illuminated by laser light, where both intensity and duration of the exposure

are critical.

2.1 Traps and Potentials

We utilize a segmented, linear Paul trap for qtd experiments. In contrast to conventional

Paul traps offering fairly isotropic confinement in all three dimensions, the linear trap is

designed to create anisotropic trapping potentials. When in one – the axial – direction,

the ion is much weaker confined than in the other two radial directions, then the trap

can be considered to be in effect one-dimensional, see Fig. 2.1. Single ions kept in such a

potential configuration will arrange in a linear string, whereas their alignment follows the

trap axis; they are, of course, kept at distance by their mutual Coulomb repulsion. All

experiments presented within this thesis were performed in such a linear trap.

(a) (b)

Electrode segments
(dc)

AC

ac

dc

dc
ac

Front view Side view

Trap axis

End-cap electrodes
(dc)

Ring electrode 
        (ac)

Ion

+ ++

Front view

Figure 2.1: Paul trap designs. (a) Conventional Paul trap with hyperbolic electrodes. The end
cap electrodes give rise to static confinement in one direction, and a pseudo potential resulting
from ac voltages applied to the ring electrode provides confinement in the orthogonal directions.
(b) Schematic front and side view of a linear, segmented Paul trap. Again, the confinement in the
radial directions stems from a pseudo potential generated by ac voltages. The ac electrodes are
elongated along the trap axis. A whole set of dc electrodes/segments replace the end caps and can
be used to generate local axial potentials. Two or more ions in the same axial potential arrange
in a string aligned along the trap axis (red), when the axial confinement is weak compared to the
radial one.

1 In Penning traps, the magneton motion generally prevents this feature. There are, however, techniques

to tackle this drawback [Pow02].
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The alternating current (ac) trapping fields of the Paul trap give not only rise to the so-

called pseudo potential in the radial directions, but also causes micromotion. This small

amplitude oscillation is the immediate action of the ac field and is oscillatory with the ac

drive frequency (typically in the radio frequency (rf) regime, i.e. some tens of megahertz;

the ac fields are therefore most often called the rf fields.). This micromotion can be

effectively canceled out, because its amplitude disappears at the minimum of the pseudo

potential (rf node) [Sch08]. When, due to imperfect trap construction or stray fields, the

ion is not trapped in the rf node, static compensation fields can be applied to push the

ion into the right position.

Axial Confinement

The axial confinement is generated by static electric fields. While two end cap electrodes

biased to a positive voltage (for positive ions) were used in the traditional Paul trap, the

linear trap design makes it possible to partition the axial electrode into several segments.

Each of these segments contributes to the axial trapping field; this contribution is given by

its individual voltage. By this segmentation trick it becomes feasible to generate almost

arbitrary electric (axial) potentials for the ions. Originally proposed to scale up quan-

tum computation operations by shuttling ions between different processing and memory

regions [Kie02], this procedure is much more versatile as will become clear in the course

of this work.

Figure 2.2 shows two special field configurations of our segmented trap (see chapter 9.1.1),

illustrating its capabilities to actually realize multiple traps for confining several ions or

small sets of ions independently. These kinds of potential configurations have applications

not only in quantum information [Kie02], quantum simulation [Wun09] and quantum

metrology [Hub10], but give also rise to quantum thermodynamic investigations [Hub08b].

Altogether, single ions in a linear, segmented trap form a system, where it is possible to

hold single quantum systems in arbitrary, external potentials. Multiple particles confined

in the same potential, i.e. in close vicinity to each other, interact via the Coulomb force.

Single subsystems, each consisting of single or several particles can be realized indepen-

dently. They can be split, merged and their constituents can even be redistributed. Thus,

both single particles and small ensembles of particles and even whole sets of subsystems

can be generated, analyzed and made interact by a proper choice of the potentials. Last

but not least, it is even possible to trap different ion species with different particle masses

within the same potential.
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Figure 2.2: Demonstration of the capabilities to generate a variety of multi-trap potentials within
the utilized segmented Paul trap (cf. 9.1.1). In the first case, a set of 15 individual traps was realized
by exploiting the high segmentation of the trap. Each trapping well can store one or more ions,
depicted by the circles. Below, a 2-1-3 configuration of adjacent traps is generated. The individual
wells can have different or equal frequencies, arbitrary separations and they can be merged and
split by applying suitable time-dependent voltages.

Time-Dependent Potentials

The physics of trapped ions becomes even more interesting when not only static but also

time-dependent potentials are considered. Then, the ion experiences time-dependent forces

that will change its state of motion. As an analog, imagine a classical gas confined within a

certain volume (see Fig. 2.3(a)). When a plunger is pushed in, i.e. the confining potential

is changed, forces act on the particles, giving rise to a change of their state of motion.

The final state of the gas then depends on the way the potential is “transformed”. There

will be, for instance, a qualitative difference if this transformation is performed very slow

or fast. We can translate this simple thermodynamic system into our single ion approach,

when the confining “box” is replaced by the electric axial potential, cf. Fig. 2.3(b). In
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perfect analogy, the state of the ion – represented by its spatial or motional wave function

– changes under potential transformations. Pushing the plunger is then equivalent to

making the potential stiffer, i.e. increasing the trap frequency in the case of a harmonic

potential. This can happen, too, in various ways. In the single particle case, however, it

is the ion’s quantum state of motion, which is influenced by the potential transformation.

Consequently, quantum features of the system emerge and give rise to a behavior different

from a classical gas. In the pushing case, for example, some amount of force must be

exerted to compress the gas. This means, that work is performed during the process and

the system’s energy changes accordingly. However, there is no 1:1 quantum analog of

classical work performed on a system, since there is neither a path nor a force which could

be multiplied or integrated, respectively. Other quantities (pressure, entropy, ...) familiar

from classical systems must be revisited in the quantum case. In quantum mechanical

systems, another interesting feature arises in contrast to classical ones: uncertainty exists

for two reasons: apart from the probabilistic distribution of system properties due to a

finite temperature, uncertainty arises due to the inherent statistical character of quantum

processes. That implies, that even at zero temperature, a measurement outcome is not

predictable in general. This feature is inherent to quantum measurements.

2.2 Quantum States of Motion

The potential engineering possibilities presented above pave the way to introduce the

specific degree of freedom best suited for qtd experiments: the motion of a single ion

represents a well-defined degree of freedom with respect to requirement (I) postulated in

chapter 1.2. It is a very well isolated quantity and its interaction with other ions within

its vicinity is well understood. The electric potentials couple to the ion charge and hence

influence its state of motion. The motion of a particle in a confining potential is quantized,

i.e. the energy eigenstates of the system are in general infinite but discrete.

The Harmonic Oscillator Potential

There is one kind of potential predestined for investigation in ion traps: the harmonic

potential. This is due to the fact that the lowest order term of most confining potentials

around their minimum is quadratic. Because of its microscopic extent, a cold ion expe-

riences only a very small vicinity around the potential minimum, i.e. the harmonic part

of the potential. That means, the implementation of an outstanding textbook example is

provided almost for free. In this case, the harmonic oscillator H = p2

2m + m
2 ω

2
zz

2 and its
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(b)(a)

Figure 2.3: Time-dependent potentials change the system’s state. (a) shows a classical gas
confined in a certain volume V1. Its temperature is given by T1. By “transforming” the confining
potential, here pushing a plunge into the gas vessel, the state of the system is changed. Depending
on the temporal realization of the process, the state looks differently afterwards. For example, the
temperature can change to T2 for a non quasi-static process. Similarly, the quantum state of an
ion confined in a potential could be “squeezed” by a temporal change of the potential. Here, the
frequency of the harmonic potential is changed from ω1 to ω2, the spatial wave function of the
ion changes accordingly from Ψ1 to Ψ2. Again, the final state critically depends on the process
realization.

eigenstates |n〉, n = 0, 1, . . . with eigenenergies En = ~ωz(n + 1
2) define the framework of

the quantum thermodynamical system. Here, p and m are the momentum and mass of the

particle, respectively, and ωz is the angular frequency of the potential along the z-axis.

The energy quantum of this system is often called a phonon following the terminology

for vibrational quanta in solid state physics. The harmonic oscillator belongs to the best

investigated physical concepts. For its formal simplicity, it is best-suited for a comparison

between experiment and analytical calculations. Nevertheless, trapping potentials for ions

are by no means restricted to be harmonic, but can go beyond this limitation.

The motion of a trapped ion can take on strongly non-classical quantum states, including

highly entangled, intriguing ones like the Schrödinger cat states, which have been realized

in various systems [Mee96, Bru96a, Mon96, Our06]. Figure 2.4 illustrates the vast vari-

ety of states by their Wigner function representations (cf. chapters 6.4 and 9.4). These

examples can only grant a short glance at the experimental and theoretical diversity of

the system we are dealing with [Ben03, Häf05a, Lei05]. The following chapters will show

how such states can be generated and manipulated experimentally.
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Coherent State

Thermal
states

Fock state

“Schrödinger Cat”Squeezed
state

(a) (b)

(d)

(c)

(e)

Figure 2.4: Illustration of quantum states. The states are represented by their Wigner function
W (x + iy) in complex phase space. (a) A coherent (Glauber) state |α〉. Its representation is
Gaussian. (b) A Fock state |n〉 with n = 2, i.e. the second energy eigenstate of a quantum
harmonic oscillator. (c) Different thermal states; temperature increases from left (almost ground
state) to right. (d) A squeezed vacuum state: uncertainty in position is reduced at the expense of
uncertainty in momentum. (e) A “Schrödinger Cat” state, a superposition between two coherent
states 1√

2
|α〉+ |−α〉. Note the interference fringes in between the Gaussian amplitudes.

2.3 Electronic Structure, Motion and Light

As we have seen, the motion of a trapped ion is the degree of freedom most usable for qtd

experiments. Accordingly, up to now we treated the ion as a point-like, charged particle

moving in an external electric potential. The ion is, however, not point-like but exhibits

a rich internal, electronic structure, too. While this electronic structure seems completely

dispensable from a fundamental point of view, it shows that it offers exactly those features

making the trapped-ion approach so promising: coupling the electronic and the motional

degree of freedom by virtue of coherent laser light.

Light is able to influence the ion’s motion because of the momentum transfer between
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the ion and a photon that occurs during an emission or absorption process. Controlling

the ion-light interaction thus means controlling the ion motion. The ability to control

the interaction between light and matter was subject to a tremendous development in

the last decades that paved the way for the emergence of modern quantum optics. The

extremely high accuracy of the interaction between light and the electronic structure of

the ion can thus be transferred to the state of motion. As we will see in chapter 3, it is

then possible to manipulate the ion’s motion deterministically and with high fidelity by

adding or subtracting single quanta of motion, for example.

0

1

...

0

1

...

n = 0
n = 1
n = 2

n = 0
n = 1

n = 2

n = 0
n = 1

n = 2

Interaction Time

Excitation Probability

Figure 2.5: The internal, electronic structure (depicted by a two-level system) forms a composite
system together with the ion motion (here, the harmonic oscillator). By virtue of coherent light
(blue and red arrows), these two degrees of freedom can be coupled and coherent dynamics between
them become feasible (see text for further details).

Figure 2.5 illustrates the coupling of the internal energy levels – represented by a simple

two-level subsystem – to the motional degree of freedom, the well-known harmonic os-

cillator energy ladder in this case. The composite system consists of a double ladder of

energy levels, each of which can be associated with the respective internal state |0〉i or |1〉i
(the splitting between the electronic states is mostly much larger than the spacing of the

oscillator states, so this picture of a double ladder is justified). Laser light of the correct

energy (frequency) and momentum can change the internal state alone or go along with a

change in the phonon state. This way it becomes possible to influence the ion motion on

a single quantum level in a very controlled and deterministic manner.

We will first profit from these abilities when it comes to the preparation and the readout

of the motional state. The well-established techniques of laser cooling (see chapter 4)

allow for preparing the system in a very low-temperature initial state. Also, only by the

described coupling to the internal dynamics, it becomes possible to determine the full

quantum state of motion. Otherwise it would be very hard (impossible in the most cases)

to measure low-excited states of motion.

The foundations of these techniques were mostly developed in the context of quantum
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information experiments with single atoms or ions. In the case of the Paul trap, the

internal state of the ion thereby stores the quantum information. The motion of two or

more ions in the same potential is then utilized as a “bus” to exchange information between

the ions. Especially, an ion’s internal state evolution can thus be made conditional on the

other ion’s state. This is the prerequisite for performing entangling two-ion quantum gates

and thus for performing quantum computation tasks. Due to the close relationship between

quantum information and quantum thermodynamic topics, this work will use notions and

concepts coming from the area of quantum information, like the qubit, describing a simple

quantum two-level system, in our case embedded in the electronic structure of the ion.

Artificial Baths and Reservoirs

The interaction with light offers another interesting possibility, namely to “engineer” the

coupling between the ion and an artificial environment [Die08]. The interaction with

a large reservoir normally leads to decoherence, connected with a loss of the quantum

features. It is therefore of great interest to understand the mechanisms and attendant

circumstances under which the decoherence takes place.

As has been shown theoretically [Poy96] and experimentally [Mya00], tailored laser light

fields can mimic the interaction with a reservoir, but in contrast to the “natural” case, the

reservoir’s properties and its interaction with the system now are perfectly controllable

by the experimentalist. In a thermodynamic context, the possibility to have exact control

over the system-bath interaction is a very fascinating idea, pertaining to the realization

of open, closed (i.e. completely isolated), and mixed-form systems.

Altogether, our quantum thermodynamic system presents itself like it is illustrated in

Fig. 2.6. Single ions carrying the internal structure of (at least) a qubit system are confined

in several individual traps. The potentials making these traps can be static or time-

dependent, harmonic or of arbitrary shape. The ions interact via the Coulomb force

and form “crystals”, i.e. regular spatial arrangements within each trap. Each ion can be

individually excited and coherently controlled, and its motional state can be manipulated

and measured by laser light.

The influence of the system’s surroundings – the environment – can be kept small to

guarantee an isolated system or an open system can be implemented by allowing for

coupling to thermal baths. Also artificial baths like external, electric noise sources or light

induced “baths” are feasible.

Because – as aforementioned – the coherent interaction between light and the ion forms
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Environment

coherent laser excitation

spontaneous processes

interaction with
   environment ions with

internal
structure

complex potential configurations
facilitated by a segmented trap design

Figure 2.6: Illustration of a trapped ion box for quantum thermodynamics. Single ions and
strings of ions confined in arbitrary potentials can be made interacting with each other or evolve
independently. The ions of each string are coupled via the Coulomb force. Both their internal
and external quantum states can be manipulated and read out by interaction with light. Both
isolated and open systems are realizable; the coupling to a bath can be additionally mimicked by
electromagnetic fields and even be switched on and off.

the basis for virtually all measurements in this context, the next chapter will introduce

the corresponding theoretical framework, and then present experimental implementations

of the needed quantum two-level system within the internal level structure of 40Ca+.



Chapter 3

Coherent Ion-Light Interaction

In this chapter, a theoretical model is presented describing the coherent interaction of the

ion with a light field. This kind of interaction lies at the heart of almost all experiments

presented later and hence constitutes an essential part in our quantum thermodynamics

toolbox. The model comprises both the electronic and the motional degrees of freedom.

After that, two physical implementations are presented. It is shown, how the theoretical

framework developed beforehand applies to each of them, and specific assets and drawbacks

are discussed.

3.1 Theoretical Framework

In the following sections, a theoretical model will be introduced that describes our physical

system very accurately: an atom, experiencing a harmonic potential and interacting with

a light field. The internal structure of the atom is described as a simple two-level system,

a qubit. This simplification is justified very well in most cases, since mostly only two

electronic levels are coupled by a light field. The ion experiences a potential, which we

assume to be harmonic. This is where the ion’s external, motional degrees of freedom come

into play1. Finally, the interaction between the ion and a light field must be accounted for.

This interaction gives rise to coherent dynamics of the internal, atomic degrees of freedom

but also to a coherent coupling between the internal and the external degrees of freedom.

From a quantum information point of view, the internal dynamics correspond to single

qubit rotations. By the coupling to the ionic motion, mutual qubit coupling (quantum

1 Indeed, in the case of cold ions and static potentials, the assumption of a harmonic potential is

excellent, since then, the ion is well located in the minimum of the potential.

39



40 Coherent Ion-Light Interaction

gates) can be accomplished.

3.1.1 Atomic Hamiltonian

The full Hamiltonian Ĥtot of an atom in an external potential that interacts with a light

field can be logically separated into two parts: the atomic part (both electronic and

motional) on the one hand, and that of the atom-field interaction, on the other hand:

Ĥtot = Ĥatom + Ĥatom−light = Ĥelec + Ĥmot + Ĥatom−light. (3.1)

The light field itself shall not be perturbed by the interaction, so its contribution to Ĥtot

is omitted. As for the electronic contribution, we restrict ourselves to that of the qubit

levels, which we denote by |↓〉 ≡ |0〉i and |↑〉 ≡ |1〉i to avoid confusion with motional

eigenstates. The associated eigenenergies are E↓ and E↑, where ~ω0 = E↑ − E↓ is the

energy level separation. Then,

Ĥelec = Ĥqubit = E↓ |↓〉〈↓|+ E↑ |↑〉〈↑| . (3.2)

The energy zero point can be shifted right in between the two levels, so that E↑ = −E↓ =
1
2~ω0. This results in

Ĥelec =
1
2

~ω0 (|↑〉〈↑| − |↓〉〈↓|) =
1
2

~ω0σ̂z, (3.3)

where the spin operator σ̂z := |↑〉〈↑| − |↓〉〈↓| was introduced2.

The part describing the motion of the ion within the harmonic potential is a simple

harmonic oscillator Hamiltonian with frequency ωz,

Ĥmot =
p̂2

2m
+
m

2
ω2
z ẑ

2 = ~ωz
(
â†â+

1
2

)
, (3.4)

where ẑ and p̂ are the position and momentum operators, respectively, and m is the

particle mass. â† and â are the creation and annihilation operators of the oscillator quanta

(phonons):

â† |n〉m =
√
n+ 1 |n+ 1〉m , â |n〉m =

√
n |n− 1〉m (3.5)

for all n ≥ 0, but â |0〉m = |0〉m, where the oscillator eigenstates are denoted |n〉m for all

integer n ≥ 0. The full wave function of the ion |Ψ〉 = |ψ〉i ⊗ |ϕ〉m comprising both the

2 The index only symbolically indicates the direction of the quantization axis and must not be confused

with the trap axis direction; indeed the magnetic field intersects the trap axis under 45◦.
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internal (subscript i) and the motional (subscript m) degrees of freedom can be written

as a superposition of the basis states {|s〉i}s=↓,↑ and {|n〉m}n≥0,

|Ψ〉 =
∑
s=↓,↑

∞∑
n=0

cs,n |s〉i ⊗ |n〉m =
∑
s=↓,↑

∞∑
n=0

cs,n |s, n〉, (3.6)

where we introduced the more concise notation |s, n〉 := |s〉i ⊗ |n〉m. The subscripts will

be omitted when the meaning is obvious.

3.1.2 Atom-Light Hamiltonian

The Hamiltonian Ĥatom−light models the interaction between the atom and the light. It

would be convenient to find an expression describing all the various qubit-light interactions

presented in this work (stimulated Raman, optical dipole/quadrupole interactions). Indeed

it is possible to derive a concise, uniform formalism for all of these variations with all the

diversity accounted for by only slight modifications.

At the beginning, we consider a single propagating light field3

E(r̂, t) = εE0 cos(kr̂ − ωLt+ φ) =
εE0

2

(
ei(kr̂−ωLt+φ) + e−i(kr̂−ωLt+φ)

)
(3.7)

with electric field amplitude E0, wavevector k, normalized polarization vector ε and fre-

quency ωL, that interacts with a single atom. If the atomic wave function extent is small

compared to the wavelengths of the light fields in question (i.e. kr � 1), it is justified to

neglect higher orders in the multipole expansion of the electronic states,

eikr ≈ 1 + ikr + . . . (3.8)

Using only the first term entails the common dipole approximation for electric dipole al-

lowed transitions, while for dipole forbidden transitions, the quadrupole component (sec-

ond term) has to be taken into account. In the following, we assume that the light field

described by Eq. (3.7) couples to an electrical dipole moment d̂, giving rise to the Hamil-

tonian [Lei03]

Ĥatom−light = −d̂ · Ê =
1
2

~Ω
(
σ̂+ + σ̂−

) (
ei(kr̂−ωLt+φ) + e−i(kr̂−ωLt+φ)

)
, (3.9)

where σ̂+ := |↑〉 〈↓| and σ̂− := |↓〉 〈↑| are the spin flip operators and

~Ω = E0 〈↑| ε · d̂ |↓〉 (3.10)

3 A standing wave configuration could be assumed here, too.
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defines the Rabi frequency Ω. It is a measure for the coupling strength between light field

and atom.

As the ion is confined in a one-dimensional potential along the z-axis, the position-

dependent expression kr̂ can be written as kr̂ = kẑ ·cos θ, where θ is the angle under which

the light beam intersects the trap axis and k = |k| = 2π/λ, with λ being the wavelength

of the monochromatic light field. Furthermore, we can express the position operator ẑ in

terms of the creation and annihilation operators of the harmonic oscillator, ẑ = z0(â+ â†),

where z0 = |z0| =
√

~/(2mωz) is the extent of the ground state wave function4 for a

particle of mass m in the harmonic well with frequency ωz, yielding kr̂ = kz0 cos θ(â+ â†).

z0 points along the trap axis, which determines the direction of the ion movement. Now

we introduce the Lamb-Dicke parameter

η := kz0 = kz0 cos θ = k

√
~

2mωz
cos θ =

√
Erecoil

~ωz
, (3.11)

which is proportional to the ratio between the extent of the wave function along the

axial direction z and the wavelength of the light field. The expression after the second

equal sign elucidates the physical meaning of η as the square root of the ratio between

the recoil energy of the ion gained by a photon absorption/emission process (Erecoil =

(~k cos θ)2/(2m)) and the phonon energy. Loosely speaking, the Lamb-Dicke parameter

is a measure for the interaction strength between the light and the vibrational modes of

the ion and is hence of great importance within the context of this work. This becomes

obvious when Eq. (3.9) is rewritten in terms of η using kr̂ = η(â+ â†),

Ĥatom−light =
1
2

~Ω
(
σ̂+ + σ̂−

) (
ei(η(â+â†)−ωLt+φ) + e−i(η(â+â†)−ωLt+φ)

)
. (3.12)

It is useful to transform this Hamiltonian into the interaction picture with respect to the

atomic Hamiltonian Ĥatom. The resulting Hamiltonian in the interaction picture is

ĤI
atom−light = U †(t)Hatom−lightU(t), (3.13)

where U(t) = exp
(
− iHatomt

~
)

achieves the unitary transformation. Doing this, we neglect

terms exp(±i(ωL +ω0)) oscillating at very high frequencies (rotating wave approximation)

and end up with

ĤI
atom−light =

1
2

~Ω σ̂+ exp
{
iη
(
âe−iωzt + â†eiωzt

)}
e−i(δt−φ) + h.c. (3.14)

Here, we introduced the detuning δ := ωL − ω0 of the laser with respect to the atomic

transition frequency.
4 z0 = 9.5 nm for 40Ca+ in a trap with ωz = 2π × 1.4 MHz.
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The Lamb-Dicke Regime

In a last step, we will write the first exponential in a series and truncate terms of order η2

and higher. This is formally justified if η
√
〈â+ â†〉 � 1, so if η

√
2n+ 1� 1 (this condition

marks the borderlines of the so-called Lamb-Dicke regime). The physical interpretation

of this formal condition is that the extent of the motional wave function of the harmonic

oscillator in a Fock state |n〉, which is z0

√
2n+ 1, must be smaller than the wavelength of

the interacting light.

Under the assumption that the Lamb-Dicke condition is met, Eq. (3.14) simplifies to

ĤI
atom−light =

1
2

~Ω σ̂+
{

1 + iη
(
âe−iωzt + â†eiωzt

)}
e−i(δt−φ) + h.c. (3.15)

Eq. (3.15) is our final result modeling the interaction between the ion and the light field. It

describes the dynamics of the atom’s degrees of freedom (electronic plus motional) being

subject to illumination by a light field. These dynamics crucially depend on the detuning

δ of the light.

3.1.3 Carrier and Sideband Transitions

Carrier Transitions

It is possible to literally read the resonances of the atom-light interaction from the three

terms of Eq. (3.15). First, neglecting terms proportional to η (which means that there is

no interaction between the light and the vibrational modes), there is one resonance for

δ = 0. The corresponding part of the Hamiltonian ĤI
atom−light is5

ĤI
car =

1
2

~Ω |↑〉〈↓| e−iδt + h.c. (3.16)

It describes pure qubit transitions not involving the motional degrees of freedom. These

transitions |↓, n〉 ↔ |↑, n〉 are not accompanied by a change in the phonon number distri-

bution and are called carrier transitions.

The dynamics of an ion in a Fock state of motion |n〉, generated by the carrier Hamiltonian

Eq. (3.16) are sinusoidal Rabi oscillations |↓, n〉 ↔ |↑, n〉 with angular frequency Ω.

5 In the following, we set φ = 0 for convenience.
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Red Sideband Transitions

The second term in Eq. (3.15) is proportional to η and reads (cf. Eq. (3.5))

ĤI
rsb =

1
2

~Ω iη σ+â e−i(δ+ωz)t + h.c.

=
1
2

~Ω iη
√
n |↑, n− 1〉〈↓, n| e−i(δ+ωz)t + h.c. (3.17)

It models the simultaneous absorption of a photon, changing the qubit state from |↓〉 to

|↑〉, accompanied by the reduction of the phonon number by one (the analogous statement

holds for the stimulated emission of a photon, which increases the phonon number). Such

a transition, which has its resonance at δ+ωz = 0, is called a red sideband (rsb) transition,

as it is red detuned from the carrier transition.

The Hamiltonian Eq. (3.17) is well-known from the Jaynes-Cummings model [Jay63,

Cum65], describing the interaction between a two-level atom and a single, quantized elec-

tromagnetic mode. It is a textbook model for quantum electrodynamics, and builds the

basis for cavity quantum electrodynamics (QED) research. The creation (annihilation) of

a phonon in our system can be identified with the emission (absorption) of a photon in

the Jaynes-Cummings model.

Blue Sideband Transitions

In the very same way, the third term in Eq. (3.15) leads to so-called blue sideband (bsb)

transitions, which are resonant for δ − ωz = 0:

ĤI
bsb =

1
2

~Ω iη σ+â† e−i(δ−ωz)t + h.c.

=
1
2

~Ω iη
√
n+ 1 |↑, n+ 1〉〈↓, n| e−i(δ−ωz)t + h.c. (3.18)

Here, the absorption of a photon is accompanied by the excitation of one phonon. Apart

from this, there is a crucial difference between red and blue sideband transitions: while

light resonant with the blue sideband affects all phonon states |n〉, this holds only true for

|n > 0〉 on the rsb transition. The reason for this is the existence of the ground state of

motion, â |0〉m = |0〉m. This peculiarity of the rsb interaction can be exploited to generate

(motional) state-dependent interactions.
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Coupling Constants

The coherent dynamics on the carrier and sideband transitions can be described by Rabi

oscillations between the respective levels

car : |↓, n〉 ↔ |↑, n〉

rsb : |↓, n〉 ↔ |↑, n− 1〉

bsb : |↓, n〉 ↔ |↑, n+ 1〉 (3.19)

for all n ≥ 0 except n = 0 on the rsb. As for state dynamics, the treatment of a qubit plus

the external harmonic potential produces mainly two new features, that can be directly

read from the Hamiltonians Eqs. (3.16)-(3.18). The first emerging feature are the sideband

resonances at (positive and negative) integer multiples m of the trap frequency δ = mω0.

The lowest order – for our interests the most important ones – are the first sideband

transitions, |m| = 1. Second, the coupling constants, i.e. all Rabi frequencies, now depend

on the motional quantum number n. In lowest order of η, these coupling constants have

already been derived with the carrier and sideband Hamiltonians,

Ωcar ≈ Ω

Ωrsb ≈ η
√
nΩ

Ωbsb ≈ η
√
n+ 1 Ω. (3.20)

A rigorous treatment of the coupling constants (without the truncation of higher order

contributions in Eq. (3.14)) yields exact expressions for the resonant6 Rabi frequencies

Ωn,n+m for a transition between |↓, n〉 and |↑, n+m〉, i.e. for an m-th red (blue) sideband

transition for m < 0 (m > 0), and a carrier transition (m = 0), respectively. It can be

seen from Eq. (3.14) that the coupling constant for a non-vanishing η is modified by the

operator eiη(â+â†), resulting in a factor of [Win98]

Ωn,n+m

Ω
= 〈n+m| eiη(â+â†) |n〉 = e−η

2/2 (iη)|m|
√
n<!
n>!

L|m|n< (η2) (3.21)

for a transition from n to n + m, where n< := min(n, n + m) and n> := max(n, n + m)

and L|m|n< is the generalized Laguerre polynomial7 of order |m| (which reduce to the normal

Laguerre polynomials for a carrier transition, since then |m| = 0, n< = n> = n and

L0
n(x) = Ln(x)). It should be noted, that the expressions for the rsb transitions given here

are valid for n > 0, and of course Ωn,n′ = 0 for n′ < 0 or n < 0.

6 The generalized Rabi frequency reads
√

Ω2
n,n+m + ε2, where ε = δ −mωz is the detuning from the

m-th sideband resonance.
7 An explicit expression is Lαn(x) =

∑n
k=0(−1)k

(
n+α
n−k

)
xk/(k!).
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We explicitly list the expressions for |m| ≤ 1, as they will be of importance in subsequent

sections,

Ωn,n+m

Ω
=


e−η

2/2 L0
n(η2) = 1− η2(n+ 1

2) +O(η4) for m = 0

ηe−η
2/2
√

1
n L

1
n−1(η2) = η

√
n+O(η3) for m = −1

ηe−η
2/2
√

1
n+1 L

1
n(η2) = η

√
n+ 1 +O(η3) for m = +1.

(3.22)

These expressions are in accordance with the results in Eq. (3.20) gained directly from the

interaction Hamiltonians, where we neglected all terms of order η2 or higher. For practical

use it is more convenient to rewrite the Rabi frequencies in terms of a directly measurable

quantity like the ground state carrier Rabi frequency Ω0,0 = Ωe−η
2/2,

Ωn,n+m

Ω0,0
=


L0
n(η2) = 1 − η2n + O(η4) for m = 0

η
√

1
n L

1
n−1(η2) = η

√
n + O(η3) for m = −1

η
√

1
n+1 L

1
n(η2) = η

√
n+ 1 + O(η3) for m = +1.

(3.23)

Figure 3.1 shows the coupling constants calculated from the exact expressions in Eq. (3.23)
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Figure 3.1: Relative coupling strength |Ωn,n+m/Ω0,0| as a function of the phonon number n for
carrier (car, m = 0), red sideband (rsb, m = −1) and blue sideband (bsb, m = +1) transitions.
All values were calculated using the exact expressions from Eq. (3.23). (a) Coupling strength
for a Lamb-Dicke parameter resulting from the interaction with the 729 nm laser coupling the
levels in the optical qubit. (b) The same for the Lamb-Dicke parameter resulting from the Raman
interaction with the spin qubit. For this higher η, one can clearly see the breakdown of the
monotonic approximations, which are also given in Eq. (3.23).

as a function of n. While for small values of η, the validity of the Lamb-Dicke approxi-

mation manifests itself in the linear shape of the carrier couplings, the sideband couplings
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are approximately proportional to
√
n (in accordance with the lowest order expressions

in Eq. (3.23). A fairly different behavior shows for higher η. In these cases, the Lamb-

Dicke regime is limited to very small values of n only. It is noticeable that there exists a

maximum in the sideband couplings, which comes along with a vanishing dependence on

n.

As we are dealing with laser cooled ions, mostly very low mean phonon numbers occur

in the experiment. For instance, with a typical trap frequency ωz = 2π × 1.4 MHz, the

theoretical (two-level) limit for Doppler cooling is about 9 phonons and after sideband

cooling, we end up with n < 1, so that the Lamb-Dicke condition is very well met.

3.1.4 Motional State Dynamics of Phonon Distributions

The dynamics of a single qubit in a Fock state of motion undergoes a perfect Rabi oscilla-

tion in the excitation probability P↑(t) as a function of the interaction time t (cf. Fig. 3.12

later). This means, there is only one frequency – the Rabi frequency Ω0 in the resonant

case – in the Fourier spectrum of the oscillations P↑(t). Additionally, the amplitude of the

oscillation is constant and maximal, implying a 100% population swapping between the

two states.

From Eq. (3.21) we learned, that the Rabi frequency on a transition |↓, n〉 ↔ |↑, n+m〉
depends on the phonon state |n〉 of the ion motion. If the ion is not in a Fock state of

motion, but in a general superposition state, the oscillation will also be modified by the

respective Rabi frequencies Ωn,n+m. This fact can then be utilized to deduce the phonon

number distribution P (n) from the Fourier components of the oscillation dynamics.

In general, the motional state of the ion can be written as a linear superposition of Fock

states

|ϕ〉 =
∞∑
n=0

eiϑn
√
P (n) |n〉 , (3.24)

with P (n) ≥ 0 and
∑

n P (n) = 1, and phases ϑn. Consider an ion initially in state |↑, ϕ〉.
In accordance with the considerations made above, the excitation probability P↑(t) as a

function of the atom-light interaction time t then contains contributions from all states

|n〉 weighted with their respective probability P (n) [Win98]

P↑(t) =
1
2

∞∑
n=0

P (n)
(

cos(Ωn,n+mt) e−t/τc + 1
)
, (3.25)

where we accounted for amplitude reduction by decoherence processes by introducing the
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coherence time τc
8.

Equation (3.25) builds the basis for one of the most important motional state analysis

tools. That’s because the phonon distribution can be directly deduced from simple Rabi

oscillations for a wide range of phonon distributions9. The exact procedure will be pre-

sented in detail in chapter 6.3.

3.2 Implementations

Two concepts to implement an effective two-level quantum system – a qubit – in the elec-

tronic level structure of a single 40Ca+-ion will be presented and discussed in the following

chapters: the so-called optical qubit10 and the spin qubit (details can also be found in

Ref. [Pos09]). Thereby, it will be shown that having both concepts – which partially build

upon each other – at hand gives a very powerful set of possibilities to prepare, manipulate

and readout the state of the ion. Many experimental issues concerning decoherence times

and laser stability differ for the different realizations and will be discussed. The proper

choice of the qubit system, or rather the choice of the specific set of levels involved and

the way they are coupled, can help to minimize experimental problems significantly.

3.2.1 The Optical Qubit

The most obvious requirement for the experimental implementation of a qubit within the

electronic level structure of an atom are long lifetimes of the two states it consists of. These

lifetimes have to be much longer than experimental timescales to avoid errors introduced

by relaxation via spontaneous emission. The optical qubit consists of the stable, non-

decaying ground state 4 S1/2 and the metastable excited state 3 D5/2, see Fig. 3.2(a). This

state decays back into the ground state via a quadrupole transition after a mean lifetime of

1.2 s [Bar00], so that sub-percent loss of population is guaranteed for experiments lasting

as long as ∼ 10 ms.

On the other hand, the upper state’s long lifetime implies an extremely narrow linewidth

8 In principle, the coherence time also depends on n. This can be exploited for state analysis under

certain circumstances, too [Bud02]. As long as this dependence is small enough, it can be neglected

and a constant τc can be assumed.
9 The same phenomenon has been exploited in cavity-QED to show the light field’s quantiza-

tion [Bru96b].
10 The name is inspired by the energy difference between the two qubit-levels, which allows for being

covered by a laser in the optical wavelength range – 729 nm in our case.
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Figure 3.2: Relevant levels and transitions for the implementation of the optical qubit system.

(a) Excitation of the qubit transition by a narrow bandwidth laser at 729 nm. The level D5/2 has

a lifetime of about 1.2 s; its population can be depleted on a dipole transition via P3/2.
(b) The dipole transition S1/2�P1/2 is used for fluorescence detection and for Doppler cooling. Two
repump lasers at 866 nm and 854 nm prevent population trapping in D3/2 and D5/2, respectively.

transition and requires a highly stable laser source at 729 nm to drive transitions between

|0〉 ≡ |S1/2〉 and |1〉 ≡ |D5/2〉. For this purpose, an amplified diode laser locked to an ultra

stable, high finesse cavity is used. The stabilized laser’s spectral width is smaller than

≈ 5 kHz and provides up to 140 mW of light power to the ion. Focused down to a beam

waist of ≈ 15µm, this leads to typical Rabi frequencies Ω/(2π) of a few megahertz.

Figure 3.2 depicts all relevant transitions for the optical qubit. Due to the intrinsic long

lifetime of D5/2, it has to be possible to deplete (quench) the excited state, too. This

is achieved by the help of additional levels: a short laser pulse at 854 nm of typically

some microseconds duration couples the excited state to the rapidly (τ = 6.8 ns [NIS10])

decaying level P3/2, so that the ion ends up in ground state again, after emission of a

photon at 393 nm.

Doppler Cooling

The ion is Doppler cooled on the S1/2 � P1/2 transition, see Fig. 3.2(b). The excited

level P1/2 decays after τ = 7.1 ns [NIS10], mostly back into S1/2, but also with a small

probability of about ≈ 1/16 into D3/2 [Lia95]. An additional laser at 866 nm repumps

this population back to P1/2. Similarly, the quench laser at 854 nm is used to repump

population from D5/2, which can be eventually populated by background gas collisions,
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for instance11. Together with the repump lasers, a closed cooling cycle can be established.

Zeeman Splitting
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Figure 3.3: (a) Energy diagram showing the Zeeman splitting in the S1/2 and D5/2 fine structure

by a static magnetic field B. Ten transitions emerge, because transitions with |∆m| ≤ 2 are

allowed in the quadrupole interaction case. P1-P5 transitions start or end in S1/2,m = + 1
2 ,

M1-M5 transitions start or end in S1/2,m = � 1
2 , respectively.

(b) All ten transitions in frequency space. The lower axis shows the frequency shift of the line
in units of µBB/h relative to the case B = 0, where all lines are degenerate. The upper axis
shows the shift in MHz for the actual magnetic field. The heights of the lines are given by the
squared Clebsch-Gordan coefficients of the angular momenta involved. The transition strengths of
the individual lines additionally depend on the light polarization (see also text).

When the ion experiences a magnetic field, then of course each fine structure level with

angular momentum J is Zeeman-split into 2J + 1 sublevels, labeled with their magnetic

quantum number m = �J/2, ...,+J/2. As such a Zeeman splitting is required for the

implementation of the spin qubit, a constant non-zero magnetic field was applied at the

ion’s position throughout all experiments (see chapter 3.2.2).

This implies that out of one transition ten possible quadrupole transitions between S1/2

and D5/2 emerge; they are depicted and labeled in Fig. 3.3(a). Figure 3.3(b) shows all

lines in frequency space, their height given by the squared Clebsch-Gordan coefficients

C(m,m′)2 for transitions |S1/2,m〉 → |S1/2,m
′〉. Additionally, some of the transitions

can be suppressed by a proper choice of beam direction and polarization [Roo00]. In our

11 All experiments were carried out under ultra high vacuum conditions. The residual gas pressure

amounted to ≈ 3× 10�10 mbar.
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experiments, the polarization vector of the 729 nm beam, the magnetic field vector and the

beam direction were pairwise orthogonal, while the beam intersects the trap axis under

an angle of 45◦. This strongly suppresses all unwanted transitions but P1,M1,P5 and

M5 [Roo00]. When other transitions are necessary, the polarization can be adapted.

Our qubit states should now correctly be labeled |0〉 ≡ |S1/2,m = +1/2〉 and |1〉 ≡
|D5/2,m = +5/2〉 (the choice of these specific magnetic sublevels will become obvious

in chapter 3.2.2), i.e. the qubit transition is P1. As, however, the Zeeman-splitting makes

no fundamental difference for the understanding of the optical qubit implementation, it

will be neglected as far as possible until chapter 3.2.2 introduces the spin qubit.

State Preparation

The preparation of the optical qubit in state |0〉 is almost trivially achieved by exclusive

application of the two repump lasers (854 nm and 866 nm, respectively), which deplete the

D-levels, as all decay paths from the short living P-levels finally end up in the ground

state. This process is a way of optical pumping (like any basic preparation procedure

used) because all unwanted levels are either directly decaying (P-manifold) or coupled

to (D-manifold) such decay paths ending up in |0〉, while the ground state itself remains

untouched by the lasers.

If, as in our case, one has to cope with a Zeeman-split ground state, the simultaneous

application of a σ+-polarized beam parallel to the magnetic field makes sure that the ion

ends up in the correct m = +1/2 level, because it only couples the m = −1/2 level to P1/2,

while the m = +1/2 level cannot be excited to P1/2 under absorption of a σ+-polarized

photon.

Coherent Dynamics

As for the formal treatment of the coherent dynamics introduced in chapter 3.1, we consid-

ered a dipole qubit transition, interacting with a single light mode. In fact, the situation

is slightly different in the present case. The S1/2 ↔ D5/2 transition of the optical qubit is

dipole forbidden. Nevertheless, the results are completely applicable. Only the expression

describing the Rabi frequency has to be adapted. This is because the first term in Eq. (3.8)

leads to a vanishing coupling for the dipole forbidden transition. Taking the next, leading

order term, into account leads to the desired modified expression for the Rabi frequency,

~Ω = E0 〈↑| (kr)(εd) |↓〉. Besides this, the formalism can be applied without modification.
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State Discrimination

The S1/2 → P1/2 transition at 397 nm is not only used for Doppler cooling, but due to

its high fluorescence rate, it is also predestined for the discrimination of the qubit state.

The technique applied for this purpose exploits the fact that an ion initially in the state

S1/2 exhibits resonance fluorescence on this transition on illumination by light at 397 nm,

while an ion in state D5/2 does not, because the laser does not couple this level to the S-

or P-manifold. Of course, the repump laser at 866 nm has to prevent population trapping

in D3/2 during this procedure.

The fluorescence light at 397 nm is collected and imaged to both an electron-multiplying

CCD-camera12 and a photomultiplier tube13 (PMT). While the camera is mainly used

for monitoring purposes, the PMT yields quantitative fluorescence data used for state

detection. Despite of losses of fluorescence light that are mainly due to the limited light

collection solid angle (≈ 2.5 % of 4π [Mai06]), the quantum efficiency of about 50 % in

the detector and absorption losses in optical elements, we typically end up with 3 × 104

photons per second14. As for state discrimination, we have to distinguish between a bright,

fluorescing (|0〉) and a dark (|1〉) ion, a very short time of the order of a millisecond suffices

to collect some tens of photons for a bright ion in contrast to almost zero for a dark one

(there is always a small amount of residual background light collected by the optics that

does not originate from fluorescence; it can be efficiently suppressed by spectral and spatial

filtering, however).

The number of photons obtained by either a dark or a bright ion during a certain detection

time is Poissonian distributed. This means that the two cases can be distinguished if their

probability distributions do not overlap. Figure 3.4 illustrates this situation.

At first sight, a longer detection time should always produce a clearer separation of the

distributions and therewith a smaller discrimination error, which is obviously given by

their mutual overlap. However, for longer detection times the finite lifetime of the |1〉-
state leads to discrimination errors. This is because population in |1〉 can eventually decay

during the measurement process into S1/2 and is then mistakenly identified as state |0〉. An

optimum detection time can be computed from fluorescence rates and the decay time (see,

for instance [Roo00]). Usually, we choose the detection time as small as possible to profit

from short experiment times, as long as the discrimination error is smaller than other pre-

12 EMCCD Camera, iXonEM DV860-BI (back-illuminated) by Andor Technology.
13 P25PC by ET Enterprises.
14 For simultaneous detection with camera and PMT, the fluorescence light is shrared by a beamsplitter;

additionally, narrow spectral filters prevent detection of other light sources.
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Figure 3.4: Histogram of the number of photons collected during a time span of 2 ms. The

Poissonian distributions for a bright ion having scattered some tens of photons and that of a dark

ion, where only background light was detected, are clearly separated. For the production of these

data, the state preparation was repeatedly alternated between |0〉 and |1〉. Once a discrimination

threshold (arrow) is obtained by such a gauge measurement, it can be applied to discriminate

unknown qubit states in following experiments by comparing the measured fluorescence counts to

the threshold.

dominant error contributions. Under typical experimental conditions, the discrimination

error can be asserted to be smaller than 10−3.

It is worth mentioning at this point that the described procedure fulfills the requirement

of a projective quantum measurement. Any superposition state a0 |0〉 + a1 |1〉, where

a0 and a1 are complex amplitudes which satisfy |a0|2 + |a1|2 = 1, is projected onto |0〉 or

|1〉, with probability |a0|2 and |a1|2, respectively. This means in particular, that successive

measurements of the qubit state can be performed and yield the same result. We will make

use of this fact in chapter 6.5 to measure single quanta of motion in a non-destructive way.

Stability Issues

The optical qubit presented here has a long but finite lifetime (τ � 1 s), which leads to an

exponential decay of the Rabi oscillation contrast with time constant τ . As typical Rabi

oscillation periods achieved on this transition are of the order of microseconds, this is not

a crucial problem for the observation of coherent dynamics.

A much more critical subject in terms of coherence loss is the non-monochromaticity of

real laser sources. Fluctuations in the electric field phase corrupt the qubit’s relative phase

between |0〉 and |1〉. This leads to a loss of contrast on the timescale of the inverse laser
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linewidth. On the other hand, the overlap between the transition’s linewidth – which is

extremely small – and the spectral laser profile determines the coupling strength between

laser and atom. So, if the laser linewidth is too large, the coupling becomes small and the

Rabi oscillation period can become too long to observe coherent oscillations.

Fluctuations in the laser’s (center) frequency ωL result in fluctuations in detuning and

therewith in Rabi frequency. This, again, leads to a loss of contrast by dephasing. Simi-

larly, fluctuations of the level separation ω0, caused by magnetic field noise or drift, can

cause decoherence on different timescales. These issues will also be subject to experimental

investigation in chapter 7.1.

3.2.2 The Spin Qubit

The previous chapter introduced an implementation of a qubit system comprising the

ground state and a metastable state of 40Ca+. As discussed, high laser stability require-

ments have to be met for driving coherent dynamics in this system. On the other hand,

the qubit state discrimination can be accomplished fast and with high accuracy.

S1/2
m = 1/2 }
m = 1/2

∆Z 2π × 19 MHz=

Figure 3.5: The spin qubit comprises the two Zeeman sublevels of the ground state S1/2. The
splitting ∆Z is caused by a homogeneous, static magnetic field.

Instead of two different fine structure levels, both levels of the so-called spin qubit emerge

from the S1/2 ground state by application of a moderate magnetic field, which splits it

into two magnetic sublevels

|↓〉 := |S1/2,m = −1/2〉 and

|↑〉 := |S1/2,m = +1/2〉 ,

respectively, as can be seen in Fig. 3.5. The Zeeman splitting ∆Z := (E↑−E↓)/~ depends

in first order linearly on the magnetic field and amounts to 19 MHz for a magnetic field15

of 6.8 Gauss, which equals the value applied in our experiments. Of course, all other fine

structure levels are subject to Zeeman splitting, too; this has already been discussed, cf.

Fig. 3.3(a). The natural lifetime of the two different magnetic sublevels amounts to many

years and has no practical influence on our experiments. Indeed, scattering events caused
15 A short review of relevant quantities is given in section 9.5.
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by residual light entail a much shorter, effective lifetime. In the following, the preparation

and readout of the spin qubit system will be discussed before we address the controlled,

coherent coupling of the qubit levels by laser light.

State Preparation

At the beginning of any experiment, the qubit has to be initialized in a specific state. This

shall be |↑〉 in the following, although all methods presented in this section analogously

apply to the case in which the system is desired to start from |↓〉. Two different ways to

initialize the qubit by optical pumping were used, depending on accuracy requirements.

Both methods employ laser pulses that are selective on the qubit state and thus achieve

to deplete only one of the two states while the other remains untouched; into the latter,

of course, all population is pumped into.

The methods differ in their respective ways to achieve state selectivity: One relies on laser

polarization, the other one on the frequency separability of the levels [Ben08a]. In the

first case, we exploit the fact that a σ+ circularly polarized beam driving the S1/2 − P1/2

transition will indeed couple |↓〉, but not |↑〉 to P1/2, as there is no P1/2-level with m = +3
2 .

Thus, all population ends up in |↑〉 after some microseconds, as long as the repump lasers

prevent population trapping in one of the D-states. This is exactly the way the optical

qubit is prepared, too, when the degeneracy of the S1/2-states is lifted by the magnetic

field (see chapter 3.2.1). Figure 3.6(a) illustrates the polarization selective excitation into

P1/2 and the following spontaneous decay back into both qubit levels. This method suffers

from the fact, that small fractions of π- or σ− polarization in the exciting beam deplete

the |↑〉 level. Therefore, the polarization purity of the pumping beam is crucial for the

pumping efficiency.

The second method (see Fig. 3.6(b)) makes use of the fact that all different lines on

the quadrupole transition (P1, M1, ...) are well separated by frequencies of the order

of megahertz, which can thus be individually addressed by the narrow linewidth laser at

729 nm16.

The following pulsed scheme achieves the frequency selective optical pumping. (i) A π-

pulse on the M1 transition transfers population from |↓〉 into D5/2 but leaves |↑〉 untouched.

(ii) A quenching pulse at 854 nm depletes D5/2 into P3/2. From here, it decays into either

D3/2 or, in most cases, back into S1/2 (either |↑〉 or |↓〉). The number of pumping cycles can

16 In contrast, this is not the case for the 397 nm transition, as the Zeeman splitting of both S1/2 and

P1/2 is of the order of the transition linewidth.
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Figure 3.6: Two optical pumping schemes. (a) Polarization selective pumping. A beam at 397 nm
continuously excites the S1/2 � P1/2 transition. Its polarization ensures that only the state |↓〉 is
excited so all population is trapped in |↑〉. (b) Frequency selective pumping. A narrow linewidth
laser at 729 nm drives the transition M1, cleaning out all population in |↓〉. The repumper at 854 nm
ensures a closed cycle via P3/2. After some cycles, all population resides in |↑〉. For simplicity,
only relevant levels and splittings are drawn.

be minimized by adjusting the quenching beam polarization to minimal σ� components.

This entails the highest probability to end up in |↑〉 after each cycle, because the path via

(P3/2,m = 1
2) into |↓〉 is suppressed.

The repump laser at 866 nm prevents population trapping in D3/2 and is constantly

switched on. After a couple of iterations, the ion will have decayed into |↑〉 and stay

there as it is protected against laser excitation.

The efficiency of the polarization selective pumping is about 98 %. It is mainly limited by

parasitic polarization components of the pumping beam. These can be caused by imperfect

polarizers, birefringent windows in the beam path or by misalignment between the beam

and the magnetic field axis.

Figure 3.7(a) shows the results of the pulsed, frequency selective optical pumping for

different numbers of pumping cycles N . The pumping efficiency increases with N and

saturates at a level as high as 99.6 %. Additionally, the pumped scheme proves to be

very robust in terms of single pulse duration (at 729 nm) for higher N . This implies that

intensity or alignment drifts in the pumping beam are not critical. Note that the results

given here are not corrected for detection efficiency; in fact, they reflect the combined

preparation and discrimination error.
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(a) (b)

Figure 3.7: Frequency selective optical pumping results. For each measurement, the ion was

prepared in |↓〉 by application of circularly polarized light at 397 nm. The graphs show the proba-

bility to find the ion in |↑〉 after the pumping. (a) The pulsed scheme ensures very high efficiency

increasing with pumping cycle number N . It saturates at a combined readout and pumping effi-

ciency of 99.6 %. The wide plateau for higher N indicates the scheme’s robustness against pulse

area errors, mostly caused by intensity drifts.
(b) For comparison, the results of continuous illumination by the same lasers is shown. While the
overall duration is comparable to the pulsed scheme, the saturating level does not reach the same
high level (see text for further details).

For comparison, Fig. 3.7(b) shows the results of a measurement where both the pumping

and the quenching beam were continuously switched on: the efficiency saturates at a much

lower level around 93.3 %. This is due to the fact, that the quenching beam couples the

metastable state to the quickly decaying P3/2 level and thereby interferes with the coherent

population transfer during the pump pulse.

State Discrimination

As the Zeeman splitting of the spin levels is on the order of the linewidth of the S1/2−P1/2

transition, it is not possible to distinguish the two qubit states by simply tuning a narrow

bandwidth laser to resonance with only one qubit level, because both Zeeman levels will

fluoresce almost equally strong. Instead, to achieve state discrimination, we build upon

the high detection efficiency of the optical qubit and establish a procedure that performs

an unambiguous mapping between the spin qubit levels and the optical qubit levels S1/2

and D5/2.

The procedure relies on the fact that it is possible to transfer the population of exactly
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one of the qubit states – in our case |↑〉 – to the D5/2 level without affecting the population

in the other qubit state; if this is given, then the discrimination procedure described in

chapter 3.2.1 can be utilized to read out the D5/2 population and therewith indirectly

the spin qubit’s state. In other words, an ion in state |↑〉 will be transferred into the

level D5/2, and a subsequent illumination on the S1/2 − P1/2 dipole transition will yield

no fluorescence, whereas an ion in state |↓〉 will not be transferred but resides in the S1/2

manifold, which strongly fluoresces on the dipole transition. This procedure is commonly

named ion shelving [Nag86] because it prevents the qubit state from interacting with the

fluorescence laser by putting it into a “safe place” – D5/2.

Rapid Adiabatic Passage

The population transfer is accomplished by a method called Rapid Adiabatic Passage

(RAP) [Wun07]. It makes a high transfer efficiency of over 99 % possible and is very robust

against drifts of experimental parameters. The transfer efficiency of a simple π-pulse, for

example, critically depends on the exact pulse area and on laser detuning. If either laser

intensity, beam alignment, laser frequency or magnetic field are subject to temporal drift,

the transfer efficiency and consequently, the detection efficiency would decline. The RAP

method, however, has the advantage to be robust against both frequency and laser intensity

drifts.

The basic idea behind the RAP can be most easily understood in a Bloch vector picture.

Here, the south pole represents state |0〉, from where the population is to be transferred,

and the north pole represents state |1〉, the destination of the population transfer. The ion

state is represented by a vector17 ψ pointing from the center to the surface of the sphere,

see Fig. 3.8(a). At t = 0, all population is supposed to be in |0〉, so ψ is pointing straight

downwards to the south pole.

When a laser field is applied to the two-level system, the dynamics of ψ obeys the differ-

ential equation ψ̇ = −Ω × ψ, where Ω = (Ω0, 0, δ)T describes the light field with Rabi

frequency Ω0 and detuning δ. From this, it is immediately obvious that the dynamics of

the two-level system is simply described by a rotation of the state vector ψ around an axis

which is given by −Ω, i.e. by the amplitude and detuning of the laser field18.

For a resonant π-pulse, Ω is aligned along the x-axis, and the state vector evolution is

17 The formal definition of the vector is ψ = (u, v, w)T = (2Re ρ01, 2Im ρ01, ρ11−ρ00), where ρij = 〈i| ρ |j〉
and ρ is the density operator of the two-level state.

18 Here, we neglect all decoherence-inducing effects like spontaneous decay.
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(a)

t=-T/2

t=+T/2 (b)

Figure 3.8: (a) Evolution of the state vector ψ(t) and the interaction vector Ω(t) during a RAP-
pulse. ψ(t) performs small precession movements around the time-dependent interaction vector
but otherwise follows its trajectory from |0〉 to |1〉 adiabatically. The parameters for the RAP are
∆δ = 2π × 100 kHz, Ω̃ = 1 MHz, τ = T/3 = 100µs. (b) Probability to find the ion in the |1〉 state
during the RAP pulse. The final transfer efficiency is around 99.9 %. The small oscillations are
due to the precession movements of ψ.

described by a straight trajectory on the sphere’s surface from south to north pole, repre-

senting a complete population transfer from |0〉 to |1〉. ψ is orthogonal to Ω throughout

the whole interaction time T . That’s why an orientation error of Ω will directly imply an

incomplete transfer. The same holds true for a deviation of the interaction time from the

perfect T = π/Ω0 duration, because then, the state vector “overshoots” its destination.

The idea behind the RAP, however, is to introduce a time-dependent rotation axis �Ω

and to design it that ψ remains almost parallel to it throughout the whole time evolution,

see Fig. 3.8(a). Then, by moving Ω slowly from south to north pole, the state vector is

“dragged” along with Ω, from |0〉 to |1〉. The specific trajectory of the “dragging” has

no major influence on the transfer efficiency as long as the initial and final orientation

of Ω, respectively, is correctly aligned along the z-axis, and as long as the evolution is

slow enough to allow the state vector to follow the trajectory of Ω. Formally (and in the

limit of infinitely long interaction time), the two-level state remains in an eigenstate of the

system Hamiltonian, which is adiabatically changed by altering the parameters Ω0 and δ.

The following choices for the parameters amplitude Ω0(t) and detuning δ(t) = ωL(t) �
ω0 realize the described trajectory: the detuning is swept linearly over resonance from

δ(�T/2) = �∆δ to δ(+T/2) = +∆δ in a total interaction time T (typical parameters used

are ∆δ = 2π×50 kHz and τ = T/3 = 50µs.) Simultaneously, the laser field amplitude and,
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Figure 3.9: Population mapping between |↑〉 ↔ D5/2 and |↓〉 ↔ S1/2, respectively (Electron
Shelving) by a Rapid Adiabatic Passage (RAP). (a) A chirped pulse on P1 transfers all population
from |↑〉 = |S1/2,m = + 1

2 〉 into |D5/2,m = + 5
2 〉, while |↓〉 remains untouched. Subsequently, the

same detection scheme like for the optical qubit can be applied to distinguish the S1/2 from the
D5/2 level (see chapter 3.2.1). (b) The RAP is achieved by a specially shaped laser pulse. Its
frequency is chirped linearly across the resonance of the transition (P1), while at the same time its
amplitude develops such that the result is a Gaussian envelope. The dynamics generated by such
a pulse is robust against frequency and amplitude drifts and yields very high transfer efficiencies.

by implication, Ω0 is altered in a Gaussian shape according to Ω0(t) = Ω̃ exp
(
− t2

2(τ/2)2

)
,

where Ω̃ is the peak amplitude of the pulse and τ is the full e−
1
2 width of the pulse, cf.

Fig. 3.9. This parametrization ensures that the x-component Ω0(t) of Ω almost vanishes

at the beginning and at the end, while the z-component δ(t) linearly evolves from south

to north direction19. The adiabaticity of the process is given, if |Ω̇|/|Ω| � |Ω|.

Figure 3.8 shows the trajectory of the state vector ψ and the interaction vector Ω for

a Rapid Adiabatic Passage. The only system-dependent parameter is Ω̃, the peak am-

plitude of the chirped pulse, which can be optimized for maximal efficiency experimen-

tally. The frequency range ∆δ, however, underlies another restriction: it must be chosen

small enough to avoid excitation of other transitions. In our case, the corresponding un-

wanted absorption lines20 are at least some megahertz away from the |S1/2,m = +1/2〉 →
|D5/2,m = +5/2〉 line, which is used for the RAP. Here, the Gaussian shape of the chirped

pulse points out to be advantageous again, as its frequency spectrum is very well concen-

trated around resonance, whereas a simple, short square pulse has frequency components

19 The truncation of the Gaussian can be chosen such that its effect is negligible.
20 These come from transitions between different Zeeman sublevels in S1/2 and D5/2, respectively (cf.

Fig. 3.3). Additionally, each transition exhibits motional sidebands (see chapter 3.1.3) whose excita-

tions have to be avoided.
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at its inverse duration, which can be several hundreds of kilohertz away for a short π-pulse,

for example21.
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Figure 3.10: Population transfer efficiency for (i) one RAP pulse, and (ii) two subsequent RAP
pulses on the transitions P1 and P2, respectively, as a function of the detuning from the atomic
resonance. For the RAP pulses, this means that the chirp’s center frequency is off from resonance
by the given frequency. (iii) shows the efficiency of a π-pulse with a Gaussian amplitude envelope
to suppress Fourier sidebands. One can clearly see the robustness of the RAP technique against fre-
quency offsets, a very common error source in real experiments. The transfer efficiency is enhanced
by the second pulse (ii) from 95 % to 99.6 %. For each experiment, the ion was first Doppler cooled
and prepared in |↑〉 by optical pumping. The results are not corrected for preparation errors.

A transfer probability of 95 % can be easily reached by a single passage. At this point,

however, it is possible to exploit the fact that due to the Zeeman splitting, several tran-

sitions from S1/2 to D5/2 can be driven independently, see Fig. 3.3. Thus it is possible to

perform a RAP on the P1 transition, that eventually leaves some residual population in

the |S1/2,m = +1/2〉 level. A second passage on the P2 transition will transfer the resid-

ual population into |D5/2,m = +3/2〉 without affecting the previously shelved population

(under state discrimination aspects it is irrelevant, how the population spreads over the

Zeeman sublevels of D5/2). By this combination of two passages, the transfer efficiency

can be significantly increased. Finally, it should be noted that in perfect analogy, it is also

possible to shelve the |↓〉-population using the M1/M2 transitions.

21 We also tested resonant, Gaussian shaped pulses. These, however, still suffer from frequency and

amplitude drifts.
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Laser Driven Transitions

In contrast to the optical qubit discussed in chapter 3.2.1, where the energy difference

between the qubit states ~ω0 was in a frequency range easily accessible by an optical laser

(729 nm), the energy gap of the spin qubit is of the order of some megahertz. Thus, it

would in principle be possible to drive transitions between the Zeeman levels utilizing a

highly stable radio frequency source, for example. A photon of such an electromagnetic

field with the corresponding wavelength 2πc/ω0 ≈ 100 m, however, bears a negligible

momentum compared to a photon with an optical wavelength. This implies that it is not

possible to influence the motional state of the ion with a single radio frequency photon,

which is, however, a key requirement for most of our experiments.

(a)

S1/2

P1/2

P3/2

R2/CCR1

}

}
}∆Z

δR

R∆
Trap axis

729 nm

Magnetic
field direction B

Raman: R1, CC Raman: R2(b)

Figure 3.11: Relevant levels of the Raman transitions and beam directions. (a) Raman transitions

driven by two beams; their frequency difference is δR, while their absolute detuning from P1/2 is

∆R � δR. For δR = ∆R, resonant transitions between |↓〉 and |↑〉 can be driven. The splitting of

the P-levels is neglected as it is small compared to ∆R.
(b) Sketch of the Raman and 729 nm beam directions and the magnetic field vector B (top view).
R1 is horizontally polarized, parallel to B. The co-propagating beam CC is vertically polarized,
driving both σ+ and σ� transitions. R2, propagating orthogonally to R1/CC, has circular polar-
ization.

Therefore, the spin qubit levels are not coupled by a single light field but by two optical

fields driving Raman transitions between |↑〉 and |↓〉. The Raman process can be thought

of a two photon process consisting of a combined stimulated absorption and a stimulated

emission of a photon via an intermediate, virtual level (see Fig. 3.11(a)). The intermediate

level must be far off the resonances of all (real) levels; otherwise, one of those could be

populated in the course of the Raman process and its spontaneous decay would destroy

the coherence of the process.
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For resonant Raman transitions, the frequency difference of the two light fields (indicated

by subscripts I and II, respectively) ωR := ωI − ωII must equal the qubit state level

separation, ω0 = ∆Z. In this case, the detuning δR := ωR − ω0 is zero. The energy of

the virtual level is counted relative to the P1/2-level and is denoted by ~∆R, where ∆R is

positive for blue detuning and negative for red detuning from the S1/2 − P1/2 resonance.

It is reasonable to speak of one Raman detuning ∆R for both beams, since it is typically

three orders of magnitude larger than the Zeeman splitting of the fine structure levels,

|ωI − ωII| ∼ ∆Z � ∆R.

Figure 3.12(a) shows coherent transitions (Rabi oscillations) between the states of the

Raman qubit. These data are obtained by preparing the ion in |↑〉; then, a resonant

(δR = 0), rectangular Raman pulse of duration t drives the ion into a superposition

a |↑〉 + b |↓〉 with complex amplitudes a and b, |a|2 + |b|2 = 1. The excitation probability

|b|2 = P↓(t) can then be read out by the detection scheme presented above.

The results exhibit the expected periodic and coherent exchange of population between |↑〉
and |↓〉. The time period of the population exchange is 2π/Ω0 ≈ 12µs. The oscillations

have an almost perfect contrast, which is maintained over many periods (Fig. 3.12(b)).

This proves a low decoherence rate, which can be estimated to be larger than 1 ms. Another

reason for the high visibility modulation is the special Raman beam configuration (CC, see

below) used for the experiment, which effectively leads to η = 0. This means that there is

only one Rabi frequency – that of the carrier transition – contributing to the dynamics,

i.e. there is no dephasing of the signal.

Modifications to the Interaction Framework

After the preceding chapters showed how the spin qubit is initialized and read out, the

following section addresses how to drive coherent transitions between the qubit states. The

formalism developed in chapter 3.1 describes the interaction of a single light field with a

two-level system. In the present Raman case, the situation looks at first more complicated.

After all, the Raman scheme comprises two optical light fields and three energy levels (see

Fig. 3.11(a)). If, however, the Raman detuning is large compared to the Rabi frequency,

then the dynamics of the virtual level can be adiabatically eliminated [Mar94, Lei03] and

the dynamics of the system reduces to that of an effective two-level system driven by a

single light field. The reason for this is, that – due to the large detuning ∆R of several

gigahertz – the dynamics in the virtual level has an extremely small amplitude (small

population) and is very fast compared to the time scales of the qubit state evolution. The
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Figure 3.12: Rabi oscillations on the carrier transition in the spin qubit. Laser interaction leads
to a periodic exchange in population between |↑〉 and |↓〉 for δR = 0; the quantity shown is the
probability to find the ion in |↓〉 as a function of the Raman pulse time, i.e. the interaction time
between the light field and the ion. (a) was recorded with higher intensity and shorter time steps,
while (b) shows the long-term behavior and thus the coherence of the interaction. The interaction
was generated by the Raman R1/CC configuration, which has a Lamb-Dicke factor η = 0, so that
motional dephasing does not occur.

“effective” field coupling the spin qubit levels can be obtained from the two Raman beams

I and II following the replacement rules that are summarized in Table 3.1 and are shortly

treated in the following.

The first replacement regarding the single field frequency by the frequency difference of

the Raman beams represents the energy conservation law for the Raman process. The

detuning from the atomic resonance is redefined accordingly.

The driving field’s phase has to replaced by the phase difference of the two Raman beams.

As these two beams are derived from one and the same laser source, their relative phase is

fixed very well from the beginning on. Phases imprinted by modulators are electronically

controllable with very high precision, so that the main contribution to relative phase
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Quantity Single beam Raman configuration

Field frequency ωL (ωI − ωII)

Detuning from atomic resonance δ ωL − ω0 (ωI − ωII)− ω0

Field phase φ (φI − φII)

wavevector keff k (kI − kII)

Lamb-Dicke parameter η kz0 cos θ 2kz0 sin(φ/2)

Resonant Rabi Frequency Ω0
ΩIΩII
2∆R

Table 3.1: Replacement rules for the Raman configuration. Indices I and II denote quantities of

the respective Raman beam. φ is the angle between beam I and II and ∆R is the Raman detuning

with respect to the P1/2-level.

fluctuations originate from fluctuations in the index of refraction of the air the two beams

pass on their different paths to the ion. These fluctuations can be caused by air convection,

for example, and can be minimized by mechanical shielding. To avoid such influences, it

is important to keep the path length that the two beams have to propagate separately as

short as possible.

The two photon process can be figured as the combined absorption from beam I and a

stimulated emission into beam II (or vice versa), so that the net momentum transfer to

the ion is ~(kI − kII) =: ~∆k instead of ~k for a single beam configuration. The next

replacement we have to perform therefore reads k → ∆k. Accordingly, the Lamb-Dicke

factor η = kz0 has to be replaced by

η = kz0 → ∆k z0 = |∆k|z0 cos θ. (3.26)

When, as in our case, the beams are aligned such that ∆k points along the trap axis,

cos θ = 1. When φ denotes the angle between the two beams, we can write |∆k| =

2k sin(φ/2) and it follows

η = 2kx0 sin(φ/2). (3.27)

In these equations, k = 2π/λ is the wavevector of a single Raman beam (λ ≈ 397 nm).

The effective two-level Rabi frequency Ω for transitions between the qubit states de-

pends both on the single beam (dipole) Rabi frequencies ΩI,ΩII and the Raman detuning

∆R [Win98],

Ω =
ΩIΩII

2∆R
. (3.28)

Here, ΩI and ΩII describe the well-known resonant single beam Rabi frequencies on the

respective dipole transitions. That is, the overall coupling between the qubit levels is
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proportional to the inverse Raman detuning. This functional relationship between the

coupling strength and the Raman detuning is of great importance: In spite of a large

Raman detuning, high beam intensities can lead to population in P1/2 and therefore to

decoherence due to spontaneous emission. This excitation, however, scales like 1/∆2
R, in

contrast to the coupling strength, which scales like 1/∆R after Eq. (3.28). Thus, when

∆R is increased, the probability for decoherence processes vanishes quadratically, while

the coupling decreases only linearly; this, however, can be efficiently compensated for by

higher laser intensities.

Raman Beam Geometry

In total, the two Raman beams have to perform a process with |∆m| = 1. Hence, both

the polarization and the beam directions relative to the magnetic field are relevant for the

interaction. Two different beam setups – with respect to direction and polarization – were

realized in the experiment. The first beam pair (I/II)=(R1/R2) consists of orthogonal

beams called R1 and R2, respectively, while for the second one (I/II)=(R1/CC), the beam

called CC (co-carrier) co-propagates with R1. Figure 3.11(b) sketches all beam directions

relative to the trap axis. R1 is aligned perpendicular to the magnetic field and has linear

π-polarization (parallel to the magnetic field, so ∆m = 0). R2 propagates parallel to the

magnetic field and perpendicular to R1. It is circularly polarized (σ+). CC has a linear

polarization, which is orthogonal to B. Due to its propagation direction perpendicular to

B, its polarization vector has both σ+ and σ− components.

The reason for the two different setups R1/R2 and R1/CC, respectively, is wellfounded

by the fact that the R1/CC-configuration does not couple to the motion of the ion in

contrast to R1/R2. Only by application of R1/R2, an interaction of the light with the

external degrees of freedom becomes feasible. This is due to the Lamb-Dicke factor η,

which vanishes for co-propagating beams, which can be read from Eq. (3.27) with φ = 0.

The following table summarizes values of η for the transitions of the optical qubit one the

one hand and the spin qubit on the other hand. The Lamb-Dicke condition is formally

fulfilled for n � nc. For these values an axial trap frequency of ωz = 2π × 1.4 MHz was

assumed.

Transition (λ) η nc

Optical qubit (729 nm) 0.058 148

Spin qubit (397 nm) R1/R2 0.21 11

R1/CC 0 (∞)
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Figure 3.13: Excitation spectrum in the spin-qubit system, generated by the Raman beam
configuration R1/R2. In addition to the carrier resonance (δR = 0), which is the only one that
would appear in the R1/CC case, there are sideband resonances of order m at detunings equal to
integer multiples of the axial frequency, δR = m · ωz.

The Rabi oscillations shown in Fig. 3.12 were generated by the R1/CC beam combination.

The visibility of the population transfer amounts to ≈ 99 %, and there can be seen no de-

phasing caused by motional excitation. In contrast, the R1/R2 configuration does couple

to the axial modes of the ion motion: Fig. 3.13 shows an excitation spectrum generated

by R1/R2 beam combination; in addition to the carrier transition, multiple sideband res-

onances22 appear at δR = m ·ωz. The axial frequency ωz can be measured very accurately

by such an excitation spectrum.

Both R1, R2 and CC are derived from a single laser source23, a frequency doubled and

amplified diode laser system. The frequency of each of the three beams can be shifted over

many megahertz by individual acousto-optic modulators (AOM). While the frequency of

R1 is always kept constant, the Raman detuning δR of the respective beam combination

is controlled through the AOM frequency of R2 or CC, respectively.

22 Note that due to keff ||z, no radial modes can be excited.
23 TA-SHG Diode Laser by Toptica Photonics.
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Chapter 4

Preparation of the System

As stated in requirement (II) in chapter 1.2, the motional state of the ion must be prepared

in a thermal state. We characterize a thermal state by its mean phonon number n (see

chapter 9.4.1). As our interest concentrates on states exhibiting quantum features, the

preparation of low excitations n = O(1) is desired. The key to the preparation of these

states is laser cooling; two techniques working in two different parameter regimes are

distinguished: Doppler cooling and resolved sideband cooling.

Doppler cooling is also used for the actual “catching” of the ions out of a thermal ion beam

(∼ 300 ◦C). From this can be seen, that this cooling technique is optimal for a quick and

effective reduction of the ion velocity at high energies. It is limited by the spontaneous

emission of a photon from the excited state and reaches – for typical parameters – n ≈ 10

(which corresponds to a temperature of ∼ 1 mK. In order to render the ion such that it is

mostly found in the absolute ground state of motion (n < 1), more sophisticated cooling

techniques have to be applied.

The ground state of motion |n = 0〉 is not only a special case of the thermal states for

n→ 0; it is, of course, also the lowest Fock state of motion. Thus, it bridges, so to speak,

between these two classes of states – especially from a practical, experimental point of

view. Although the criterion mentioned beforehand does not require the preparation of

non-thermal states, the possibility to do so is very convenient and sometimes facilitates

experimental schemes. The generation of a variety of motional quantum states has been

demonstrated in ion traps; see for example Refs. [Mee96, Mon96, Roo99, Lei05, Häf05a].

69



70 Preparation of the System

4.1 Doppler Cooling

Doppler cooling takes place on an atomic transition with short cycling times. In our case,

the transition S1/2−P1/2 at 397 nm is used. The theoretical limit of the method given by

β−1 = ~Γ/2 and corresponds to n ≈ 7.5 for 40Ca+ in a trap with ωz = 2π × 1.4 MHz1.

Here, Γ is the spontaneous decay rate of the upper level (Γ = 2π × 22.4 MHz on the

S1/2 − P1/2 transition used).

As the trap frequency is much smaller than the scattering rate, ωz � Γ (weak binding),

motional sidebands are hidden within the absorption line and cannot be addressed individ-

ually. In this case, the lowest final temperature is reached for a red detuning of δ = −Γ/2.

For a different (red) detuning, the final temperature is higher [Win79]. This means, that

hotter motional states can be easily accomplished by “imperfect” Doppler cooling gener-

ated by a different detuning. Such a preparation method will always rely on a suitable

measurement of the ion’s state of motion, which will be explained and demonstrated later

in chapter 6.

Doppler cooling is one of the most time consuming steps in the experiment and usually

takes ∼ 1 ms; while this is not a problem in terms of coherence or isolation issues –

since it takes place before the preparation is finished – it significantly contributes to the

experimental repetition rate.

4.2 Resolved Sideband Cooling

This section describes a cooling technique [Neu78, Die89] that allows for cooling the ion

almost into the ground state of motion (In Ref. [Roo99], 99.9 % ground state population

has been demonstrated, for example). It is, however, based on the following requirements.

First, the ion must initially be already cold enough, that the Lamb-Dicke criterion (see

chapter 3.1.2) is fulfilled. That is, a preceding cooling step – e.g. Doppler cooling – has

to be applied. Second, unlike the Doppler cooling, this method requires strong binding

conditions, which are given when the cooling transition’s linewidth Γ is small compared

to ωz. The |S1/2,m = +1
2〉 ↔ |D5/2,m = +5

2〉 transition fulfills this condition very well

as its natural linewidth of ≈ 1 Hz has to be compared with typical trap frequencies of

≈ 1 MHz. The necessity of the strong binding requirement is obvious, since the method

1 Strictly, this applies only to real two-level systems. Incidential decay into one of the D-levels has to

be prevented by repump lasers, as has already been explained in chapter 3.2.1. These issues lead to

the observation of a somewhat higher cooling limit (n ≈ 10).
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relies on exciting the ion on motional sidebands by a narrow linewidth laser. Therefore,

these sidebands must be spectrally resolvable, which is the case if �� ωz, and if the laser

linewidth is small enough (� ωz), too. In our case, the spectral width of the excitation is

indeed dominated by the finite laser linewidth of ≈ 5 kHz for a weak beam.

excitation

quenching
...

...

...

...

854 nm

729 nm

0

Figure 4.1: Schematic of the levels and transitions involved in the sideband cooling process. A
red sideband π-pulse on the S1/2 → D5/2 transition decreases the phonon number by one. Due
to the long lifetime of the D-levels, the population is quenched by a short, weak pulse at 854 nm
into P3/2, from where it quickly decays back into S1/2. This decay happens preferably without a
change in phonon number, as such processes are suppressed in the Lamb-Dicke regime.

When the above requirements are met, the laser can be tuned to the frequency of the first

red sideband, δ = ω0 � ωz. A π-pulse on this transition excites the ion from |S, n〉 →
|D,n� 1〉, lowering the vibrational quantum number by one (cf. Fig. 4.1). In the Lamb-

Dicke regime, the following decay back into S1/2 happens with high probability on the

carrier transition |D,n� 1〉 → |S, n� 1〉. The ion thus loses one phonon, while the initial

internal state is restored. This means, that a cooling cycle is established. The procedure

continues until all population is trapped in the “dark” state |S, 0〉, which is not affected by

the laser light. This simple scheme is, however, not sufficient for a practical application,

since the long lifetime of the D5/2-state would lead to extremely long cycle periods. For

this reason, the D5/2-state is coupled to P3/2 by irradiation with a short and weak beam

at 854 nm. This effectively quenches the D5/2-state population via P3/2 and it ends up

in S1/2 again. As both the excitation and the quenching beam duration are on the order

of a few microseconds, the whole cooling procedure consisting of 10 to 50 cooling cycles

consumes about 100 to 500µs.

Eventually, the decay from P3/2 → S1/2 may end up in the wrong Zeeman level m = �1
2 .

For that reason, a weak σ+ polarized repump beam (397 nm) is applied from time to time
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Figure 4.2: Timing schematic for performing pulsed sideband cooling. After Doppler pre-cooling
and a short optical pumping pulse at 397 nm, preparing the ion in |S1/2,m = + 1

2 〉, the pulsed
excitation and quenching of the D5/2-level population takes place. Instead of switching both
excitation (729 nm) and quenching (854 nm) laser, only the latter is operated in a pulsed mode,
while the former continuously irradiates the ion. This is legitimate, since the interaction with
the quenching laser completely freezes the coherent dynamics caused by the cooling laser. This
effectively implies a pulsed interaction with the excitation laser. After a certain number of cooling
cycles, a weak pumping pulse (397 nm) is applied to avoid population trapping in |S1/2,m = − 1

2 〉.
We typically apply five periods, each comprising ten excitation/quenching cycles.

to avoid population trapping. As this laser drives a dipole cycling transition, it must be

strongly attenuated, short (≈ 5µs) and applied as scarcely as possible to avoid heating by

fluorescence scattering. Figure 4.2 shows a schematic timetable2.

As we have seen in chapter 3.1, the duration of a π-pulse depends on the phonon state n.

This means, that the duration of the |S, n〉 → |D,n− 1〉 pulses should be ideally adapted

to the current mean phonon number during the cooling process. In the experiment, the

duration of the π-pulses was increased stepwise to compensate for decreasing coupling

strengths as the ion becomes cooler.

With this cooling method, it is possible to generate states that are found in the ground

state of motion with a probability of far over 98 % [Die89]. As for our purposes, we are

mainly interested in thermal states with n ∼ 1, it provides an optimal method to prepare

the initial state. The lowest temperature reached in the micro-trap amounted to n ≈ 0.2,

higher values can be easily achieved by interrupting the procedure after a certain number

of excitation pulses.

2 The described cooling mechanism is for obvious reasons called pulsed sideband cooling, in contrast to

continuous cooling, where the ion is uninterruptedly irradiated by the same lasers.
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4.3 System-Bath Coupling

This section is intended to shortly describe another approach to prepare a thermal state,

that in some sense inverts the previous methods: while so far, we considered preparing

the thermal state by cooling, it is also possible to reach the desired state by heating up

a previously cold state. This cold, initial state can be, for example, a state with n ≈ 0

originating from sideband cooling. Any ion trap exhibits a natural heating rate that

mainly stems from coupling between the charged ion and fluctuating electric fields on the

electrode surfaces (see also chapter 7.2). This interaction leads to a motional heating of

the confined ion. The mean phonon number n of the thermal state is thereby found to

increase linearly with time. Typical heating rates are on the order of one phonon per

millisecond, depending on trap characteristics. As the heating rate can be determined

accurately in the experiment, and the heating time can be implemented very easy, this

offers a perfect means to realize small changes in temperature. Additionally, the effect is

well reproducible and involves minimal experimental effort.

Apart from the “natural” heating, it is possible to introduce artificial sources of noise con-

tributing to the overall heating. Electric field noise generated by time-dependent voltages

applied to a trap electrode can be adjusted roughly in amplitude by a proper choice of the

distance between the electrode and the ion, and very accurately by electronic means. Even

the noise spectrum can be easily controlled when the noise is generated by an electronic

device, and multiple noise sources are feasible.

4.4 Multiple Ions and Mixed Strings

Several different cooling techniques exist that allow for preparation of a low thermal

state of the ion [Ste86, Ita95, Mon95, Esc03]. Especially when it comes to the cooling

of longer linear strings of ions, other schemes than the ones presented here may become

advantageous. A method based on the phenomenon of electromagnetically induced trans-

parency [Mor00, Sch01b], for example, allows for efficient cooling of ion strings in spite

of their complicated mode spectrum (N ions in a linear trap exhibit N different axial

oscillation modes. Each of these modes has to be cooled). Then, even long, mixed ion

strings, i.e. those consisting of different ion species, can be cooled.

As for mixed ion strings, it is possible to make use of the sympathetic cooling effect [Bow99].

To this end, 40Ca+-ions are directly cooled by conventional techniques, while those ions

which are not directly affected by the laser light (“dark ions”) are indirectly cooled via
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the Coulomb interaction with the cold 40Ca+-ions. This approach helps to overcome the

necessity to provide many different laser wavelengths that would be necessary to cool the

different species directly (some ion species cannot be directly laser cooled at all, due to the

lack of suited transitions, or the needed laser wavelengths). A recent application of sym-

pathetic cooling in the quantum information context is described in [Hom09] and [Jos09],

for example, where mixed strings consisting of 9Be+ and 24Mg+ reach near-ground state

population, while only the 24Mg+-ions are directly (Doppler and sideband) laser cooled.



Chapter 5

Transformations of the Potential

The transformation of the external potential – as it was discussed in the context of the

third quantum thermodynamics criterium (chapter 1.2) – is performed in a controlled

way in order to act on the system’s state. This chapter addresses the question how

such transformations can be implemented in the trapped ion approach. In our case, time-

dependent electric potentials interacting with the charged particles are used to realize these

transformations. For a start, it is helpful to neglect all internal structure and to describe

the ion as a pointless particle with charge e in a one-dimensional electric potential. The

general motional Hamiltonian

Hmot =
p2

2m
+ e φ(z, t) (5.1)

models this situation. Of course, the potential is a function of the axial position z. The

time-dependence, however, is a novel feature within this work. Changes in the electric

potential φ(z, t) affect the motional state of the ion. Such a change is normally performed

by altering a system parameter λ(t) in a controlled manner in time, φ(z, t) = φλ(t)(z),

while t ∈ [0, T ]. For the realization of such potential transformations, it is necessary to be

able to generate arbitrary electric potentials φ(z, t).

The following section explains how a desired potential can be realized by applying suitable

voltages to the trap electrodes. It is a nontrivial task to find those voltages generating

exactly the right potential configuration φ(z), because it postulates a detailed knowledge

of the trap geometry and the electric fields generated by the electrodes.

In sections 5.2-5.4, a selection of applications of these techniques and the associated,

resulting potential transformations will be presented.
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5.1 Generation of Arbitrary Potentials

This chapter devises the theoretical basis for the calculation and simulation of arbitrary

trapping potentials in a Paul trap. The presented methods are very general and their

applicability in terms of trap geometry, for example, is not at all restricted to the demon-

strated ones. Apart from the pcb-trap and the micro-trap design (see chapter 9.1), they

have also been used to investigate two-dimensional trap structures, for example.

5.1.1 Simulation of Electrode Geometries

We consider an axial electric potential at a fixed time φ(z), i.e. here, we consider the static

problem. This potential originates from electric charges on the trapping electrodes. Each

electrode i = 1, . . . , N is thereby kept at a constant voltage Vi. The potential can therefore

be written as a linear superposition of these voltages. If the z-axis is subdivided into M

discrete points zj (j = 1, . . . ,M), we can write the potential at any of these points as

φj := φ(zj) =
N∑
i=1

Aij · Vi

⇔ φ = A v. (5.2)

with φ = (φ1, . . . , φM )T , v = (V1, . . . , VN )T and with the electrode potential matrix A

with entries Aij . This matrix describes the influence of the i-th electrode on the overall

potential at position zj . Each row i of A can be interpreted as a position-dependent

function describing the potential generated by the i-th electrode (in units of Vi), when all

other electrodes i′ 6= i are grounded (Vi′ = 0). The matrix A is independent from a specific

voltage configuration and is solely given by the trap geometry, i.e. the shape and size of

the electrodes (the electrode material is treated to be perfectly conducting). This is a

very good assumption for the used gold coating. It is, however, possible to take dielectric

materials into account, too, see Ref. [Sin10]).

Then, the potential generation can be logically divided into two parts: First, the matrix A

can be calculated independent from voltage constraints and independent from the desired

potential. And second, for each desired potential φ, there has to be found a set of voltages

v fulfilling the matrix equation (5.2).

As for the first problem, today’s technological state of the art allows for segmented trap

geometries in such a geometric complexity that conventional simulation techniques like

the finite element method (FEM) fail. This is mainly due to the fact that precise discrete
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models of complex geometrical structures require a fine spatial meshing. This, however,

entails a strongly increasing number of geometric primitives, and most algorithms offer a

too bad complexity scaling with this number.

We were able to overcome this obstacle by solving the boundary element problem of the

segmented trap design. That is, all electrode surfaces (in contrast to the whole electrode

volume, for example) are subdivided into small areas with a uniform surface charge [Poz02];

these surface charges can be calculated from the respective, given electrode voltages Vi,

which are unity for segment i and zero for all others. This calculation scales like the

third power of the number of surface elements, but can be significantly accelerated by the

fast multipole method [Gre88, Nab94]. This method speeds up matrix inversion problems

occurring during the calculation to iteratively obtain the solution. Details can be found

in Refs. [Sin10, Car88, Gre97, Car99, Nab94, Gum05, She07], for example. Thus, the

problem can be solved with an effort which increases only linearly with the number of

surface elements, and allows for an efficient calculation of the matrix A.

Segment no.
0      1 ...                                        10 ...      13 ...                                       32

Figure 5.1: Potentials of the 33 opposing electrode pairs 0 to 32 calculated on the axis of the
micro-trap (cf. chapter 9.1.1). While each of these pairs is biased to 1 V, the others are grounded.
The different shapes of the graphs result from both the different widths of the respective electrodes,
and their distances from the axis (see text for further details).

Figure 5.1 shows the results of the calculation for the micro-trap (see also section 9.1.1).

Hereby, it was assumed that opposing electrode pairs are biased to the same voltage

(1 V) and all others are grounded. Each of the graphs represents a row of the matrix A.

Thus, the data depicted in Fig. 5.1 contain the full information about the influence of the

trap geometry on the electric fields. One can clearly recognize the electrode widths by
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the heights and spatial extents of their ranges of influence; the different trapping zones

are also clearly visible: in the processing zone on the right hand side, the electrodes are

narrower but have a smaller distance to the trap center than on the left hand side (loading

zone). As a rule of thumb, the bell curve shaped region of influence of one electrode pair

has a (half maximum) extent of about its width to each side of its maximum. Such results

are very helpful for the development of new trap designs, see for example Ref. [Sch06].

5.1.2 Calculation of Electrode Voltages

When the matrix A, that contains all information pertaining to the trap geometry, is

known, it is still an open question, which voltages v = {Vi} must be applied to obtain

a specific potential φ(z). Any voltage vector v solving the matrix equation (5.2) is a

solution to this problem, so in principle all that has to be done is inverting the matrix

A. Several circumstances make this straight forward approach unfeasible: First, there is

mostly no exact solution to the problem, because φ is not an exactly realizable potential

(note that in general M � N). In those cases, an approximate solution has to be found.

Usually, the potential’s exact shape is only interesting in a very local vicinity around the

ion. The potential in trap regions far away from the ion may deviate from the exact shape.

Secondly, when a specific electrode’s contribution becomes insignificant, because it is far

apart from the ion, its voltage is ill-determined. These cases have to be treated adequately

by the algorithm.

The way the inversion problem was solved begins with a singular-value decomposition of

the matrix A to identify its critical, singular values. Hereby, the real N ×M matrix A is

decomposed into the product

A = USW T , (5.3)

of the unitary matrices U (N ×N) and W (M ×M), and the diagonal N ×M matrix S

with non-negative entries sk, k = 1, . . . ,min(M,N). This decomposition is part of many

standard numerical libraries and can be performed for any input matrix A. The wanted

inverse can then be written as

A−1 = WS−1UT . (5.4)

This step is numerically trivial, because the inverse of the unitary matrices is simply given

by their matrix transposes and the entries of S−1 are given by 1/sk. Now, the advantage of

the decomposition becomes obvious, since small values of sk indicate an (almost) singular,

critical value. A simple way to overcome these singular values would be to introduce a cut-

off for their diverging inverse values. Instead, the Tikhonov regularization [Tik77] method
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implies a more clever, steady behavior by making the displacement 1/sk → sk/(s2
k + α2).

The latter expression behaves like the original 1/sk for large values sk � α, has its

maximum at sk = α and tends to zero for small, critical values sk � α, cf. Fig. 5.2. From

this we can see, that the choice of α is a compromise between exactness and boundedness

of the results. For α = 0, the exact solution (if existent) is obtained, whereas large values

of α guarantee small inverse values and thus bounded voltage results.
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Figure 5.2: Graphs of the regularization terms for α = 0.1 [Sin10]. The Tikhonov term (red)
avoids divergence for s → 0 in contrast to the exact 1/s-term (black). The asymptotic behavior
for s� α, however, is identical. The second regularization term (blue) vanishes quadratically for
s� α, i.e. for uncritical values, but steadily approaches unity for the singular case s→ 0.

We label the regularized quantities with index α in order to avoid mistaking them for the

exact expressions. Then, the approximate solution for v is

vα = WS−1
α UTφ, (5.5)

with S−1
α being the regularized matrix with entries sk/(s2

k + α2).

Before the problem of finding an optimal α is addressed, another constraint regarding

time-dependent voltages, i.e. series of voltage configurations, has to be accounted for. In

order to avoid voltage jumps between two consecutive time steps, we postulate that each

voltage should be as close to its previous value as possible. This is achieved by modifying

Eq. (5.5) by

vα = WS−1
α UTφ+WDαW

Tv0, (5.6)

where v0 represents the previous voltage set. The second term in Eq. (5.6) contains a

diagonal matrix Dα with entries dk = α2/(s2
k + α2). dk tends to zero for sk � α, so that
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uncritical voltages are only affected little by the second term, cf. Fig. 5.2. For all critical

voltages indicated by a value sk � α, however, the first term in Eq. (5.6) vanishes due

to the regularization replacement, and what remains is the contribution from v0, since

then, dk ≈ 1. Here, the choice of α determines how strong the algorithm tries to generate

similar voltages in a (time) series of voltage sets.

The algorithm described above minimizes ||Avα−φ||2 +α||vα− v0||2 with respect to the

Euclidian norm for given A, φ, v0 and α. That is, the potential φ is reproduced as good

as possible under the constraint that solutions similar to the previous one are preferred.

What remains is to find the proper value of α. Doing so, one has to find a compromise

between the boundedness of the voltages and their mentioned continuity. Under practical

circumstances requiring |Vi| ≤ Vmax for some maximal voltage Vmax, α can be iteratively

increased to fulfill this constraint on the one hand, and to obtain as continuous voltage

sets as possible, on the other hand.

In chapter 9.2, the hardware-side demands of generating fast, synchronous and parallel

trap voltage updates is discussed, and the utilized solution is described, too.

5.2 The Transport Transformation

As a first example of a controlled potential transformation we implemented the Hamilto-

nian

Hmot =
p2

2m
+
m

2
ω2
z (z − z0(t))2 . (5.7)

It describes the familiar harmonic confinement of constant frequency ωz, see for instance

Eq. (3.4). The position of the potential well, however, is now no longer static but moves

along the trap axis.

The system parameter λ(t) ≡ z0(t) gives the time-dependent position of the harmonic

potential minimum. In the case of a slow, adiabatic change of z0(t) on timescales large

compared to ω−1
z , a cold ion will always reside in the minimum of the potential well

throughout the transformation and its (center of mass) position will follow z0(t) (see

Fig. 5.3). For that reason, this kind of transformation can be used to realize a transport

of the ion along the trap axis, following z0(t), which is called transport function. When

the transport function is linear in time,

z0(t) = z0(0) +
t

T
(z0(T )− z0(0)) (5.8)

and the transport is adiabatic, i.e. T � ω−1
z , then the ion is shuttled with constant velocity

from z0(0) to z0(T ). Other transport functions are also possible, and can be advantageous
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z0(0) z0(t)

= const.

...

z

Figure 5.3: Illustration of the transport transformation. The electric potential experienced by
the ion is parabolic at all times with constant curvature ωz. The potential is shifted as a whole
along the trap axis, with z0(t) describing the time-dependent position of the potential minimum.
When the ion remains in the potential minimum throughout the process – which is the case for
slow transformations – then z0(t) defines the classical trajectory of the ion.

over the linear transport pertaining to unwanted motional excitation by the transport.

For slow transports, however, the differences are negligible.

Shuttling Ions

We denote by {Vi}(z0) a set of electrode voltages that results in a harmonic potential with

its minimum at position z0. In the experiment, we pre-calculated such voltage sets for all

values of z0 ranging from the very left to the very right end of the trap. Figure 5.4(a)

shows these voltages {Vi}(z0) as functions of z0. One can clearly see that the constraint

|Vi| ≤ 10 V is obeyed and that each voltage varies fairly smoothly. This is important

because very high frequencies, kinks or even unsteady jumps are not exactly realizable

by the electronics. Figure 5.4(b) shows the simulated axial potential φ(z), resulting from

voltage sets corresponding to two different positions z0. A quadratic fit in the vicinity of

the potential minimum yields the simulated trap frequency ωsim(z0)1. The two examples

also demonstrate that the trap depth exceeds 1 eV for all positions z0. This is sufficient

to prevent ion loss even for fast transports.

To realize the Hamiltonian Eq. (5.7), it would suffice to produce potentials with static

frequency ωz only. To allow for a more general discussion2, the frequency may also vary

with the position, i.e. ωz = ωz(z0). Indeed, the trap frequency was kept almost constant.

1 The fit also yields the simulated minimum position and the offset position φ(z0).
2 The reason for this will become clear in chapter 5.2.1.
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Figure 5.4: (a) Electrode voltages {Vi}(z0) for all relevant values on the z-axis. For each parameter
z0, a harmonic well with its minimum at z0 and a frequency of ωz(z0) results from applying the
voltages to the trap electrodes. The trap frequency ωz(z0) is obtained from a quadratic fit (thin
lines) to the simulated potential φ(z) (thick lines), as shown in (b) for two different values of
z0 (black and red color, respectively). The deduced parameters are z0 = 3.205 mm (4.601 mm),
ωz/(2π) = 1.49 MHz (1.46 MHz) and φ(z0) = −1.27 V (−1.27 V) for the potential on the left (right)
hand side.

With the calculations presented above, one finally ends up with the mapping3

(z0, ωz(z0))↔ {Vi}(z0), (5.9)

i.e. for each axial position given, exactly those voltages can be applied that result in a
3 In fact, the real potential can have a non-zero offset voltage φ(z0) 6= 0, resulting in an additional term

in Eq. (5.7), which means that it is dispensable as long as it is kept constant. In the experiment,

such an offset voltage must be applied to keep the ion in the rf node (cf. chapter 2.1). It is, however,

possible to generate the potentials with constant φ(z0) and hence this parameter is omitted from the

following discussion.
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trap at z0 with the right frequency ωz(z0). The voltage sets were calculated on a spatial

5µm-grid. For arbitrary, in-between positions, the voltages were linearly interpolated.

In order to realize a transport of the ion between two positions z0(0) and z0(T ), it is

then possible to subsequently apply the voltage sets corresponding to z0(t), with t =

0, ∆t, 2∆t, . . . , N ·∆t := T implying a transport in N steps.

5.2.1 Validation of the Potentials: Remote Spectroscopy

The task to realize potentials of the form φ(z, t) = m
2eω

2
z(z − z0(t))2 giving rise to the

Hamiltonian Eq. (5.7) is an optimal opportunity to test the voltage generation techniques

described in chapter 5.1. This is for two simple reasons: First, the potentials have a conve-

nient shape, i.e. their simple, parabolic form is completely defined by the two parameters

z0(t) and ωz and they can be easily calculated. The second and foremost benefit is, that

these harmonic trap frequencies can be measured with high accuracy by spectroscopic

means. The harmonic trap frequency experienced by the ion is, of course, directly given

by the resonance frequencies of the carrier and the first red motional sideband. In the

following section, it will be shown how transport potentials can be validated by a highly

accurate and versatile method.

Remote Spectroscopy Scheme

In order to measure the trap frequency ωz(zP ) at some probing position zP on the trap axis

spectroscopically, it is necessary to measure an excitation spectrum of a narrow linewidth

transition there. In our case, this is most easily done by exciting the S1/2 → D5/2 transition

by the 729 nm laser. As the probing positions can be several millimeters apart from the

initial trapping position, all lasers necessary for cooling, pumping, excitation and readout

of the ion’s state plus all imaging optics would have to be moved and realigned for almost

each new position. This would be a very tedious procedure. Instead, we developed a

measurement scheme, that requires the relocation of the excitation (729 nm) laser only. All

other components remain at the same position, where trapping, preparation and readout

are well-established.

The application of the measurement scheme presented in the following is also a proof of

principle of a much more general application of the ion as a local field probe. In our case,

the electric field, which gives rise to the confinement of the ion, is probed. In general, it

is possible to precisely investigate arbitrary fields following this scheme [Hub10].
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(i)
cooling

(iii) spectroscopy
pulse

(iv)
shuttling back

(v) fluorescence
detection

camera &
photomultiplier

(a)

(b)

(c)

(ii)
shuttling

V i V i+1 V i+2V i-1

zs zp

Figure 5.5: Illustration of the measurement procedure: (i) Cooling and preparation of the ion at
starting position z0 and (ii) transport of the ion to the probing position zp. There, a spectroscopy
pulse with a certain detuning excites the ion (iii). After shuttling the ion back (iv), the quantum
state of the ion is read out (v). After many repetitions for different detunings, an excitation
spectrum of the ion at zp is obtained, from which the trap frequency ω(zp) can be deduced.

The measurement scheme is illustrated in Fig. 5.5. It consists of the following steps:

(i) An initial voltage configuration is chosen to trap and cool the ion at the starting position

zs := z0(0). All lasers necessary for cooling, repumping, state preparation and detection

are aligned to interact with the ion at this position. Additionally, zs is the position where

fluorescence emitted by the ion can be detected by a photomultiplier tube and a camera.

(ii) The ion is shuttled to the probing position zp := z0(T ). This happens in the way

described above by subsequently applying the voltage sets {Vi}(z0(t)) with t = 0 to T .

(iii) A spectroscopy pulse is applied at the probing position zp. Now, the voltages are

exactly {Vi}(zp). Resting at zp, the ion is exposed to a spectroscopy pulse of fixed duration

(100 µs) and frequency f = δ/(2π). This excites the ion into the upper state |D5/2〉 with

a probability P (f).
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(iv) The ion is shuttled back to zs, inverting step (ii).

(v) Having arrived back at the starting position, the state of the ion is read out by

illuminating it on the cooling transition. Whenever fluorescence at a level above a certain

threshold is detected, the ion is found in the ground state |S1/2〉, while a low fluorescence

level indicates that the ion has been excited to the state |D5/2〉.

The excitation probability for a specific detuning P (f) at the remote position zp is obtained

by averaging over many repetitions of steps (i) to (v). By varying f , a spectrum of the

quadrupole excitation at the remote position is obtained without moving any lasers or

imaging optics but the spectroscopy laser used in step (iii).
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Figure 5.6: Resonances of the first red sideband excitation on the S1/2 → D5/2 transition. The
two peaks are measured at different trap positions along the trap axis. The resonance frequencies
are given with respect to the carrier resonance fcar, so that the trap frequency at the respective
trap position can be read off. The full width at half maximum of the peaks equals 8 kHz and
determines the measurement accuracy. The different peak heights stem from slightly different field
intensities experienced by the ion.

The frequency difference between the red sideband and the carrier transition yields the

angular trap frequency, ωz = 2π(fcar − frsb). Figure 5.6 shows two rsb resonance peaks

obtained at different positions within the trap volume. The carrier frequency does not

depend on the trapping potentials; it is therefore sufficient to measure it once. To exclude

carrier frequency changes caused by magnetic field or cavity drifts, it was checked at

different trap positions during the measurements. It turned out that fcar drifted on scales

almost negligible for the measurement (< 10 kHz per hour).
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It is noticeable that each iteration cycle (i)-(v), including two ion transports of duration

T , results – due to the binary nature of the projective readout – in exactly one bit in-

formation about the spectrum. Therefore, thousands of transports, each relying on the

calculated potentials, are performed for the determination of one frequency ω(zp). The

transport, however, can be performed so fast (∼ 100 µs) that its contribution to the overall

experiment duration is secondary; this is still dominated by cooling and detection times

(∼ milliseconds).

Implementation and results

To implement the measurement scheme, we first calculated voltage sets {Vi}(z), where z

covers the whole extent of the trap in steps of 5 µm. For arbitrary positions, the voltages

can be interpolated. Each set results in a certain, wanted frequency ωsim(z). That means

that for each arbitrary position z in the trap, there can be found a set of voltages resulting

in a potential with its minimum at z and with trap frequency ωsim(z). Then, in order to

shuttle the ion, we simply subsequently apply the voltage configurations for z = z0 ... zp.

The calculated voltages are tested with high axial resolution, i.e. in small steps of zp, in

two far distant regions of the trap. Doing this, both small local deviations are detectable

and the stability over the whole trap structure can be tested for. To see a variation in

ω(zp) when increasing zp, it is of advantage that small variations of the trap frequency

around its means value occur. This is a reliable way to ensure that the ion in fact probes

the remote position, and does not get “stuck” somewhere on its way.

Figure 5.7 shows the expected, simulated trap frequencies together with the measured

ones. The data are in excellent agreement with the predicted frequencies. On both ends

of the investigated trap structure, the predicted course of ωsim(z) is confirmed within

the spectroscopic accuracy of 0.6%. The mean deviation of all measured data points is

only 0.73%. Note that the solid line shown in Fig. 5.7 is based solely on geometric data

from a technical drawing of the trap; there is no free parameter being used to match the

simulations with the measurement.

These measurements render the whole potential generation process – including simulations,

voltage calculations and voltage generation – as very reliable. They showed, that we can

confide in numerical predictions on a percent level. The potential generation tools can

hence be used in more complicated and involved applications.



5.2 The Transport Transformation 87

1.30

1.35

1.40

1.45

1.50

1.55

 

 

 

A
xi

al
 tr

ap
 fr

eq
ue

nc
y 

[2
π 

M
H

z]

3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8

-2

0

2

 

 

R
el

at
iv

e 
de

vi
at

io
n 

[%
]

Absolute trap position [mm]

(a)

(b)

Figure 5.7: (a) Harmonic trap frequency as a function of the position along the trap axis.
The electrode voltages were calculated and applied such that the trap frequency shows a small
oscillatory variation around a mean value of about 2π × 1.4 MHz to see the ion proceed along
the axis. The solid line shows the frequency of the wanted harmonic potential ωsim(z). The data
points are the spectroscopically measured, real trap frequencies ωz(z). The error bars show the
uncertainty due to the finite resonance linewidth. (b) Relative deviation of the measured from the
simulated frequency |ωz(z)− ωsim(z)|/ωsim(z).

5.2.2 Non-Adiabatic Transport Potentials

The transports implementing the remote spectroscopy scheme were realized with a linear

transport function, and the transport time was much larger than an oscillation period of

the ion within the local potential. This was advantageous, since the motional state of

the ion is to be heated, or rather excited, as little as possible by the shuttling procedure;

otherwise, a decline in laser excitation might occur.

In most cases, however, it is desirable to perform the transport as fast as possible. From a

thermodynamic point of view, a fast transformation of the potentials is necessary to drive

the system far out of equilibrium. For instance, a quick displacement of the potential will
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transform a thermal state into a state with a non-equilibrium phonon distribution, while a

slow, quasi-static transformation does not alter the state at all (within its moving frame).

For scaling up the linear ion trap quantum computer approach [Cir95], it is also necessary

to be able to shuttle the carriers of information – the ions – around between different pro-

cessor and memory regions [Kie02]. The time consumption of these shuttling processes,

compared to the actual information processing tasks (quantum gates) is tremendous. Es-

timates hint that the ion is by far most of the time being shuttled around. Hence, it is

clear that not only reliable, but also very fast transport processes have to be realized in

this context.

As already mentioned, the timescale of the problem is determined by the “force” keeping

the ion at rest, i.e. by the harmonic oscillator frequency. On timescales T � 2π
ωz

, the

processes can be regarded quasi-static. Transports have been investigated experimentally

in the context of scalable quantum computing [Hen06, Bla09], and can be realized with

high fidelity; all these transformations, however, were performed in the adiabatic regime4.

The following section investigates what happens, when the transformation time T is on

the order of the oscillator’s time period, T = O( 2π
ωz

). For this purpose, it is convenient to

define the dimensionless quantity

τ := T · ωz
2π

(5.10)

giving the transport duration in units of one ion oscillation period. We will present

theoretical investigations first, and then quantitative measurement results of non-adiabatic

ion transports.

For this purpose, transports of the same kind as utilized for the remote spectroscopy

scheme (see above) are considered: An initially cold ion resides in a harmonic potential,

whose minimum position z0 is moved along the trap axis according to some transport

function z0(t). For experimental reasons, it is convenient to consider closed round trips

starting from z0(0), reaching z0(T/2) after time T/2; then, the ion is shuttled back to its

starting point again by exactly reverting the protocol in time. Thus, the ion resides at the

same place for preparation and detection.

In contrast to the slow transports applied for remote spectroscopy, a linear transport

function seems to be unsuitable for fast transports for the following reasons: Due to the

unsteady behavior of z0(t) at the beginning and the end of the shuttling procedure, the

ion sustains “kicks” at t = 0, t = T/2 and t = T , which are stronger the faster they are

4 In Ref. [Cou08], non-adiabatic shuttling of ultracold neutral atom clouds is reported, albeit in a much

slower parameter regime (ωz ∼ 2π × 101 Hz compared to ωz ∼ 2π × 106 Hz in our case).
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performed. From this point of view, the transport function should be differentiable at

least twice. For that reason, an error-function5 shaped transport function

z0(t) =

{
fσ(t) for 0 ≤ t ≤ T/2

d− fσ(T − t) for T/2 < t ≤ T
, fσ(t) =

d

2

(
1 +

Erf [(4t/T − 1)σ]
Erf[σ]

)
(5.11)

was implemented. Here, d := z0(T/2) − z0(0) is the one-way transport distance. fσ(t) is

infinitely differentiable, i.e. it starts and ends with vanishing accelerations, and offers a

free parameter σ, by which the transport character can be continuously chosen between

linear, sigmoid and step-like (see Fig. 5.8).
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Figure 5.8: Parametrization of the utilized transport function (one way). In simulation and
experiment, a smooth transport with σ = 2 was chosen. For σ → 0, a linear transport results,
while for σ →∞, the transport distance d is covered in a discontinuous step. These extreme choices
for σ imply “kicks” to the ion, resulting in excess motion. The transport back (T/2 < t ≤ T ) is
realized exactly time-reversed.

Ion Trajectory Simulations

The dynamics of the ion motion in a perfect transport potential is governed by the differ-

ential equation

z̈(t) = − e

m

∂φ(z, t)
∂z

= −ω2
z (z(t)− z0(t)). (5.12)

Accompanying the measurements, we performed calculations giving the classical trajectory

z(t) of the ion after Eq. (5.12), where the corresponding transport function z0(t) is to be

5 Erf(x) := 2 π−1/2
∫ x

0
e−t

2
dt.
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set in. Here, a voltage update rate of 1 MHz was considered, so that z0(t) was indeed

piecewise constant. This has a smaller effect on the dynamics, the slower the transport is

realized. Another step towards a more realistic description and away from the idealized

case was done by using the real electric potentials, deduced from field calculations, instead

of using the theoretical, perfect harmonic potentials assumed in Eq. (5.12); the differences

in the quantitative results are minimal, however, since the potentials seen by the ion have

very small anharmonic contributions.
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Figure 5.9: Phase space trajectories of an ion for two different transport durations. (a) The
red dashed line shows a transport (τ = 20/5 = 4) with low final motional energy, indicated by a
closed trajectory. For τ = 16/5 = 3.2 (black solid line), the ion does not reach its starting point
again at t = T , but has a final energy of 171 meV. (b) In this closeup view, the trajectory of a
slow transport with τ = 100 can be seen (black solid line). Only small excursions and velocities
occur during the transport, so that the exact duration has a minor impact on the final energy.
Discontinuities in the trajectories result from a 1µs time discretization to account for experimental
constraints.

Figure 5.9(a) shows typical phase-space trajectories (z(t), ż(t)) of an ion subject to shut-

tling in a trap with transport duration τ . For τ = 4, the ion returns to z(0) at the end of

the trip and has zero velocity. Whereas for τ = 3.2, i.e. the transport time is not equal to

2k × (2π/ωz) with integer k ≥ 2, the ion does not return to (0, 0), but has a large excess

velocity (energy) at the end of the transport (equivalently, it can happen that the ion ends

up with ż(T ) ≈ 0, but a large displacement from the potential minimum). The occur-

rence of these “resonances” in transport fidelity is typical for fixed-frequency transports

(cf. Refs. [Rei06, Huc07]).

Thus we see, that for such fast transports the transport duration critically influences
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the final energy. For adiabatic shuttles T � 2π/ωz, this dependency is much weaker,

since the energies occurring during the transport are much smaller, anyway. This can be

comprehended by the aid of Fig. 5.9(b), where for comparison, the trajectory for a shuttle

with τ = 100 is plotted. The excursion in phase space, i.e. the velocities and spatial

displacements during the transport process, are much smaller than for the fast cases.

Those cases, where the ion returns to its initial state (z(t), ż(t)) = (0, 0), are most desirable

for transport processes, because they make a time-consuming and potentially internal-

state destroying recooling of the ion superfluous. The question of how to implement

such transports as quick and conservative as possible was subject to intensive studies.

Different transport functions [Rei06, Sch06] and the possibility of utilizing optimal control

techniques have been discussed [Mur09].

Measurement of the Transport Success Probability

The transports were realized in the pcb-trap and covered a transport distance of 2×2.0 mm,

starting from electrode 10, the return point was close to electrode 13 (see Fig. 9.2). The

potential transformations giving rise to the ion transports were generated in the same

way described above: the voltages of all 15 electrode pairs were updated with an update

time of 1µs. The voltages were derived from commercial analog-out cards6 and were

calculated such that ωz ≈ 2π × 200 kHz stays constant throughout the transport process.

The transport function was sigmoid with σ = 2, cf. Fig. 5.8.

The chosen voltage configuration {Vi}z0(0) at the beginning and the end of the round-trip

does not necessarily result in a potential ideally suited for laser-ion control. Especially

in our case, a potential with different frequency and depth pointed out to be preferable

for laser manipulation (trapping, cooling, etc.). For that reason, we decided to make the

transport independent from other demands and inserted a potential morphing step at the

beginning and the end of the transports; this is also included in the timing illustration

shown in Fig. 5.10. The morphing procedure linearly transforms those voltages optimal

for laser interaction into the “transport voltages” at t = 0. The same happens in time-

reversed order after the transport at t = T . This morphing transformation was performed

in 10µs.

After initial cooling of the ion and the morphing step, the ion is shuttled back and forth.

Then, it is recooled for 1 s to make sure that each ion is recooled into the same initial

state, no matter how high the energy was it returned with. Fluorescence detected during

6 National Instruments NI PCI-6733 High-Speed Analog Output, 1 MS/s, 16-Bit.
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Figure 5.10: Schematic timing of an experiment determined to yield the probability of a successful
round-trip shuttle of a single ion. At first, the ion resides in a static, harmonic laser-interaction
potential (see text). After preparation by means of Doppler cooling, the potential is morphed into
the first transport potential by varying the corresponding electrode voltages linearly. Then, the
ion is shuttled back and forth symmetrically in time T . After another morphing step (symmetrical
to the first one) restoring the interaction potential, the ion is detected and recooled on the 397 nm
transition. Detection of fluorescence indicates a successful transport without ion loss.

recooling after the shuttling indicates a successful transport. Then, the procedure is

started again. After ni repetitions (i gives the number of the loaded ion), the ion is

eventually lost due to excitation by the transformation process. Then, a new ion (i+ 1) is

loaded into the trap and is shuttled till it leaves the trap after ni+1 successful transports,

and so on.

After N ions (i.e. i = 1, . . . , N , N is about 102 to 103), the values ni are binned such that

their histogram gives the probability Pτ (n) that an ion survives at least n shuttle processes

of duration τ . As the individual transports can be regarded independent from each other,

this probability is equal to p̃nτ , where p̃τ is the single transport success probability and n

is the number of successful transports carried out in a row. Thus, an exponential fit to

Pτ (n) gives the single transport success probability p̃τ .

The results for different transport velocities can be seen in Fig. 5.11. For very slow

shuttles (τ = 100), the ions almost never get lost due to the transformation and the

success probability is as high as 99.8(2) %. Reasons for an ion loss in this regime can be a

still high inital temperature of the ion giving rise to unstable trajectories, or background

gas collissions (indeed, the ion loss rate due to background gas collissions could not be

neglected in the case of transports with high success probability. An ion loss measurement

without executing the transport was performed to correct for this effect).

It is remarkable that from the adiabatic regime down to τ = 4, the success probability
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Figure 5.11: Transport success probability as a function of transport time τ (�, scale on the
left). Slow, “quasi-static” transports with large τ show a success probability close to unity. Even
for τ = 4, the probability is still as high as 99.0(1) %. In an intermediate region 2 < τ < 4, the
probability ranges between 80 − 90%, before it drops to virtually zero for τ ≤ 2. This behavior
can be explained by the maximal energy occuring during the process, shown by the red line (scale
on the right). If it becomes too high, the ion gets eventually lost, even if its final excitation would
be low again.

is still as high as 99.0(1) %. In such a fast transformation, the ion undertakes only two

oscillations until it is dragged back to the starting position again. Calculations show, that

the displacement from the minimum of the instantaneous potential is as high as 300µm

for a transport with τ = 4. The corresponding potential energy is 30 meV.

With decreasing τ , there can be distinguished a second regime with success probabilities

of 80 − 90 %, but remarkably lower than in the adiabatic case. This regime is delimited

by transport times 2 < τ < 4; these are transports, during which the ion undertakes only

a couple of oscillations on its way to the return point and back. For faster transports

(τ ≤ 2), p̃nτ abruptly drops to zero within the error bars. Ion losses for τ < 4 can be

made plausible by calculating the maximum energy occurring during the whole transport

process. This energy is also plotted in Fig. 5.11 (right scale) as a function of τ ; it shows

that in this regime, the maximum energy becomes as high as 100−1000 meV – even if the

final energy of a successful transport would be very small again. This energy corresponds

to approximately one third of the theoretical potential depth and can be the reason for ion

loss due to anharmonicities in the potential or a coupling between axial and radial modes.

The measurements presented here give a good insight into the motional dynamics of the



94 Transformations of the Potential

shuttling potential transformation. The results we gained from these experiments will be

still refined in chapter 6.2.2, where we will introduce a technique to measure the final

energy of the ion after the transformation process.

5.3 The Squeezing Transformation

In the previous chapter, the situation of an ion in a harmonic oscillator potential with

constant frequency but time-dependent position was treated. From both a theoretical

and practical point of view, this kind of transformation entails – because of its concep-

tual simplicity – an enormous potential. This chapter introduces a transformation of the

quantum harmonic oscillator that is, under these aspects, in no way inferior to the shuttle

process7. The transformation of interest is that of a harmonic oscillator whose frequency

ωz is parametrically changed, while the position of the potential minimum remains fixed.

Hence, it complements in some sense the transport transformation. The corresponding

Hamiltonian reads

Hmot =
p2

2m
+
m

2
ω2
z(t) z

2. (5.13)

The transformation parameter of the system is λ(t) ≡ ωz(t). By the illustration of

Fig. 5.12, it becomes clear, why such a transformation is also-called squeezing : a parti-

cle confined in the time-dependent potential experiences something like a squeezing force

when ωz(t) is increased in time. In such a classical picture, one could also say that the

“volume” the system is confined in, is decreased.

In this chapter, we are particularly interested in thermodynamic properties of this pro-

cess. It is not only a nice analogue to the classical text book example of an ideal gas

being confined in a volume, which is subject to compression or expansion (cf. Fig 2.3 in

chapter 2.1), but has – under certain circumstances – analytical solutions. It is one of this

chapter’s core themes to derive and discuss exactly these solutions, and to show that the

model can be experimentally realized by the help of trapped ions.

7 In another context, this kind of transformation has recently been proposed for the simulation of

cosmological particle creation [Sch07], for example.
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(t)

Figure 5.12: Illustration of the squeezing potential transformation. While the position of the
potential minimum (with respect to space and voltage) remains unchanged, its harmonic frequency
ωz(t) is changed in time. Mostly, we consider increasing frequencies, but in general arbitrary
transformation paths are possible.

5.3.1 The Transformation Model

We consider a one-dimensional quantum harmonic oscillator in z-direction with time-

dependent frequency ωz(t) defined by Eq. (5.13). The particles8 confined in this potential

are supposed to be in thermal equilibrium at t = 0 with inverse temperature β,

ρ(0) =
1
Z

exp(�βHmot), (5.14)

but the system is supposed to be isolated for t > 0. When the transformation ωz(0) →
ωz(T ) is conducted in time T , the state of the particle changes. We denote by |n(t)〉 and

φn(x, t) := 〈x|n(t)〉 the eigenstates of the instantaneous system Hamiltonian Hmot(t), and

En(t) = ~ωz(n(t) + 1
2) are the corresponding eigenenergies.

Solving the Schrödinger Equation

In order to solve the oscillator dynamics, we follow the work detailed in Refs. [Def08,

Gal09, Def10a] and apply a Gaussian wave function ansatz by Husimi [Hus53]:

ψ(z, t) = exp
(
i

2~
[
a(t) z2 + 2b(t) z + c(t)

])
. (5.15)

8 The model is realized with a single particle at a time. The notion of an ensemble of particles is to be

understood as an ensemble of single particles which are prepared and manipulated one after the other.

Each particle is weakly coupled to the same thermal bath and thus the density operator of the whole

system is that of a thermal state. As all realizations of the system are completely independent of each

other, it is justified to speak of a thermodynamic ensemble of non-interacting particles. Nevertheless,

experiments with a small number of (interacting) particles are possible, too.
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In combination with this ansatz, the Schrödinger equation yields a set of three coupled

differential equations for the coefficients a(t), b(t) and c(t),

ȧ(t) = − 1
m
a2(t)−mω2

z(t) (5.16)

ḃ(t) = − 1
m
a(t) b(t) (5.17)

ċ(t) =
i~
m
a(t)− 1

m
b2(t), (5.18)

with m being the mass of the ion. We note that the solutions of Eqs. (5.16)-(5.18) are

solely determined by the conduct of the process ωz(t). The first of the three, Eq. (5.16), is

of the Riccati type and can be mapped to the equation of motion of a classical harmonic

oscillator with time-dependent frequency [Def08],

Ẍ(t) + ω2
z(t)X(t), (5.19)

by setting a(t) = mẊ(t)/X(t). This equation is not analytically solvable for general

transformations ωz(t). For special realizations, however, there is an analytical expression

for X(t). One is given in Ref. [Def08] for a process, where ω2
z(t) is linear in time.

From the solution of Eq. (5.16), the other two time-dependent coefficients can be calculated

one after the other; hence, the wave function at any given time can then be obtained

according to Eq. (5.15).

Work Performed on the System

As already discussed in chapter 1.1.1, the energy of the system under the squeezing trans-

formation will change, when the transformation is performed. Depending on the exact

shape of the transformation, i.e. ωz(t) in our case, however, this energy change can be

of very different quality. Even under the assumption that all processes begin and end in

the same potential (fixed ωz(0) and ωz(T )), the potential results of the transformation

couldn’t be more diverse: for a quasi-static realization, for instance, all work performed

merely increases the free energy, ∆F = 〈W 〉. For arbitrary processes, however, some part

of the imparted work is absorbed within the irreversible work ∆F = 〈W 〉 − 〈Wirr〉. For-

tunately, the Jarzynski equality (1.3) makes it possible to calculate ∆F from the work

probabilty distribution P (W ) for arbitrary processes and it is valid in both the classical

and the quantum regime.

The distribution of the work performed on the system shows that its value is subject to

fluctuations. While in macroscopic physics, work is a well-defined quantity, there are, in
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fact, fluctuations around a mean value. These fluctuations can only be observed in small

systems, as their magnitude falls off quickly with the system size [Cro99]. In the following,

we will derive P (W ) for the case of the squeezing transformation and will show that it is

possible to detect fluctuations and even those processes running against the second law of

thermodynamics by using trapped ions in the micro-trap. A definite measurement scheme

to verify the Jarzynski equation is proposed and investigated quantitatively.

In addition to fluctuations, which also occur in purely classical systems, the notion of work,

howsoever familiar and well-defined in classical physics, has to be completely revisited in

the quantum case. This already becomes obvious by its definition in classical mechanics

as the integral of a force along a certain path; both doesn’t exist in the quantum world.

In particular, the idea of a system propagating along a path contradicts the uncertainty

principle. Consequently, it has been pointed out recently, that work is not a quantum me-

chanical observable, but rather a time-ordered correlation function [Tal07b]. Nevertheless,

the notion of work has by no means lost its justification in the quantum world. On the

contrary, its extension into the quantum regime is fruitful and sheds light on processes on

the border area between the classical and the quantum world.

While in a classical system work is a continuous variable, this cannot be the case in an

energy-quantized system. When a system with instantaneous energy eigenvalues En(t),

n = 0, 1, . . . is subject to a transformation of the Hamiltonian, work W can be defined as

the difference outcome of two energy measurements at t = 0 and t = T , respectively, and

can hence be written as W = Em(T )− En(0).

The transformation changes the system state and thus – in general – the distribution

of the energy eigenstates. This is modeled by the transition matrix9 Pm,n, which gives

the conditional probability to find the state in |m(T )〉 if it had initially been in |n(0)〉.
The distribution of W is hence discrete and only has non-zero contributions for values

W = Em(T )−En(0) for all combinations of n and m. Each of these combinations occurs

with probability Pm,n · Pn; the total probability distribution can hence be written as

P (W ) =
∞∑

m,n=0

δ[W − (Em(T )− En(0))] Pm,nPn, (5.20)

where δ is the Dirac δ-function. The discrete character of this distribution is due to

the quantized energy spectrum; the transition from discrete to continuous distributions

has been studied and found to be caused by either high temperatures or non-adiabatic

processes [Def10a]. Both cases imply a higher mean energy in the system.
9 Note that the off-diagonal elements in the density matrix of the input state have no influence on the

work distribution [Tal08].
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Equation (5.20) is not only interesting because it shows a way how to calculate and measure

the work probability distribution; the origin of the work fluctuations can be seen from it,

too: On the one hand, statistics enters through the thermal probability distribution Pn

of the input states. On the other hand, the matrix Pm,n, describing the dynamics of the

process and the outcome of the second measurement, introduces uncertainty due to the

quantum process itself. While the density operator of the final state can – at least in

principle – be calculated exactly for the final state, the result of the energy measurement

cannot be predicted, i.e. the work performed on the system is subject to fluctuations.

The transition matrix element n→ m can be calculated from the wave function overlap of

the transformed state U(T ) |n(0)〉 and the final state |m(T )〉, where U(t) is the propagator

corresponding to the system Hamiltonian,

Pm,n = |〈m(T )|U(T ) |n(0)〉|2

=
∣∣∣∣∫ dz′

∫
dz φ∗m(z, T ) U(z, z′;T ) φn(z′, 0)

∣∣∣∣2 . (5.21)

By noting that ψ(z, T ) =
∫
dz′ U(z, z′;T )ψ(z′, 0), the propagator can be read from the

wave function in Eq. (5.15) and can be explicitly written as [Def08]

U(z, z′; t) =
√

m

2πi~X
exp

(
im

2~X

(
Ẋz2 − 2zz′ + Y z′2

))
, (5.22)

where both X(t) and Y (t) are solutions of Eq. (5.19) satisfying the boundary conditions

X(0) = 0, Ẋ(0) = 1

Y (0) = 1, Ẏ (0) = 0. (5.23)

In general, the transition probabilities Pm,n can thus be calculated after Eqs. (5.15)

and (5.21). As already mentioned, one of the main advantages of the squeezing trans-

formation is, that it is analytically solvable under various conditions. Therefore, explicit

analytical expressions for Pm,n exist and can be found in the appendix of Ref. [Def10a].

Interestingly, these quantities merely depend on three process-dependent parameters: The

initial and final values of ωz(t), on the one hand, and a parameter Q∗ ≥ 1, which charac-

terizes the process itself, on the other hand. Q∗ was first introduced by Husimi and is a

measure for the nonadiabaticity of the process, with Q∗ = 1 for an adiabatic process. In

the case of the squeezing transformation, it can be obtained from the solutions X and Y

as

Q∗ =
1

2ω0ωT

(
ω2

0

(
ω2
TX

2(T ) + Ẋ2(T )
)

+
(
ω2
TY

2(T ) + Ẏ 2(T )
))

, (5.24)
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where ω0 := ωz(0) and ωT := ωz(T ) are the initial and final potential parameters, respec-

tively. It is remarkable that all details about the exact temporal protocol λ(t) ≡ ωz(t) can

be subsumed into this quantity. Its physical meaning becomes more obvious if the effect

of the process is considered for an initial energy eigenstate |n(0)〉, whose wave function

is “spread” over different final eigenstates |m(T )〉 by the transformation. It can be easily

shown [Def08], that the distribution of the final quantum number then has an average

value and variance of

〈m〉 =
∑
m

mPm,n =
(
n+

1
2

)
Q∗ − 1

2
and

σ2 =
∑
m

(m− 〈m〉)2Pm,n =
1
2
(
Q∗2 − 1

)
(n2 + n+ 1), (5.25)

respectively. This tells us firstly, that the final mean energy is a linear function of Q∗.

Secondly, the magnitude of Q∗ directly gives the width of the distribution, i.e. tells us how

strong the initial state’s amplitude is spread. For Q∗ = 1 follows 〈m〉 = n and σ2 = 0,

which confirms that no state transitions occur during adiabatic processes.

These properties of the transformation are of great importance when it comes to measuring

the final states. From Q∗, we can estimate how far the system is driven out of equilibrium

and which phonon states of the harmonic oscillator are populated. Starting from a state

in thermal equilibrium, Q∗ must be large enough to see non-equilibrium effects on the one

hand, but must not be so large that the resulting phonon distribution exceeds measurable

quantum numbers; too high excitations are difficult to detect. In the following section,

a concrete transformation protocol will be investigated with a special emphasis on its

realization with single ions in the micro-trap.

Verifying the Quantum Jarzynski Equality

When the initial temperature of the system and the frequencies ω0, ωT are well-known,

then measuring the transition probabilities Pm,n gives the complete work probability dis-

tribution P (W ) after Eq. (5.20). By the help of this, the free energy after the Jarzynski

equality (1.3)

∆F = − 1
β

ln 〈e−βW 〉 = − 1
β

ln
∫
dW P (W ) e−βW

= − 1
β

ln
∞∑

m,n=0

Pm,n Pn e
−β∆Em,n (5.26)

can be calculated, where the short notation ∆Em,n := Em(T ) − En(0) = ~ωT (m + 1
2) −

~ω0(n+ 1
2) for all occurring values of the work was used (β is the inverse temperature of
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the system at t = 0). As the free energy change of the system does not depend on the

protocol, but only on its endpoints ω0 and ωT , the Jarzynski equation can be verified by

performing different protocols with the same endpoints; this includes, for instance, finite-

time protocols along the same path λ, but with different durations T . In particular, a

quasi-static realization of the process, T � [mint ωz(t)]−1, must yield the same ∆F , too.

5.3.2 Proposed Realization in the Micro-Trap

We consider a squeezing transformation changing ω2
z linear from ω2

0 to ω2
T during time T ,

ω2
z(t) = ω2

0 +
t

T
(ω2
T − ω2

0). (5.27)

This special parametrization has two advantages: First, it allows for analytical solutions

of Eq. (5.19) [Def08]. Second, as the axial trap frequency is a quadratic function of the

applied voltages, the desired protocol can be implemented by linear voltage functions,

which can be realized fast and in a very controlled way.

As a concrete example, realizable with a set of at most three electrode pairs, each supplied

with voltages not exceeding 10 V in absolute values, we consider a change in trap frequency

from 2π × 1 MHz to 2π × 3 MHz in T = 50 ns. Such a process is easily achievable with

standard electronics. Since we are interested in the low-temperature, quantum features

of the system, we consider a system, which is initially prepared into a thermal state with

n = 1 (⇒ ~ω0β ≈ 1.0). This can be accomplished by means of resolved sideband cooling,

if necessary in combination with a controlled coupling to a heat reservoir (cf. chapter 4).

After the state has been prepared with fixed ωz = ω0, the time-dependent voltages perform

the transformation of the potential. Hereby, the state of the ion is driven out of thermal

equilibrium. The parameter Q∗ describing the degree of nonadiabaticity of the process

(see Eq. (5.24)) is 1.58 for T = 50 ns. This is not too far from the adiabatic value, Q∗ = 1,

but already suffices to observe the wanted fluctuation effects10. The free energy can be

given in closed form for the squeezing operation as [Def08]

∆F = − 1
β

ln
sinh(β~ω0/2)
sinh(β~ω1/2)

. (5.28)

It amounts to ∆F/~ ≈ 2π × 1.807 MHz for the parameters given above.

10 We will discuss later within this chapter, how Q∗ can be efficiently increased.
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Figure 5.13: (a) Phonon number distributions of the initial equilibrium state with n = 1 (black)
and of the final state at t = T (red). Due to the non-adiabatic process (Q∗ ≈ 1.58), the state
is driven out of equilibrium. In contrast to the initial state, the final state’s density matrix
has in general off-diagonal elements, too. The process was parametrized after Eq. (5.27) with
ω0 = 2π × 1 MHz, ωT = 2π × 3 MHz and a transformation time T = 50 ns. (b) Transition
probabilities Pm,n (n,m = 0, . . . , 30) for the same process. This matrix generates the output from
the input distribution.

Results of the Transformation

Figure 5.13(a) shows the calculated phonon number distributions of both the initial (Pn)

and the final (
∑

n Pm,nPn) state of the system. The final state’s phonon distribution is

no longer thermal. The transition probabilities Pm,n after Eq. (5.21) associated with this

transformation are illustrated in Fig. 5.13(b). Here, the non-adiabatic action of the process

can be seen by the emergence of off-diagonal values. By virtue of Pm,n, which is a result

of the quantum time evolution, the state is “spread” in Hilbert space. Note, that because

the squeezing operator is quadratic in the creation and annihilation operators, only even

transitions can occur, n→ n+ 2k with integer k.

Another important point can be learned from Figure 5.13(a): as it is not possible to

discriminate arbitrarily high phonon numbers, it is necessary that the states have only

negligible populations in higher Fock states. This is mostly given for a sufficiently cold

initial state whose population decreases exponentially with n. When the system is driven

far out of equilibrium, however, the energy spread is large and phonon numbers too high

for detection are significantly populated. This qualitative consideration is also what we

learn from Eq. (5.25). For our parameter choices, phonon states n ≥ 5 are populated with

5 % or less.
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Figure 5.14: Work probability distribution P (W ) for an adiabatically slow (black squares and
line) and finite-time (red circles) realization of the process, whose other parameters are the same
as given in the caption of Fig. 5.13. In the adiabatic case, the work probability distribution is
determined by the initial thermal (exponential) distribution of the states, because then Pm,n =
δm,n. In the finite-time case, the system is driven out of equilibrium, and negative work processes
(W < 0) can occur.

Work Probability and Negative Work

The work probability distribution P (W ) after Eq. (5.20) is shown in Fig. 5.14. One can

clearly see the deviations from the adiabatic case T →∞. Interestingly, now the work can

take on negative values, too. This can happen with non-zero probability, when a transition

n→ m < n into a lower phonon state11 takes place, and if (n+ 1
2)/(m+ 1

2) > ωT /ω0.

This can be most clearly seen in the transition probabilities for specific starting values n

(this corresponds to individual columns in Fig. 5.13(b)). Figure 5.15 shows Pm,n for the

four lowest values of n = 0 to 3, i.e. the probabilities that the population of |n(0)〉 goes

into |m(T )〉. While for n = 0 and n = 1, transitions into lower phonon number states are

impossible or forbidden, respectively, one such event can be found for n = 2 and n = 3 each:

negative work occurs for 2→ 0 (P0,2 ≈ 10 %) and 3→ 1 (P1,3 ≈ 23 %)12. The prerequisite

for the occurrence of negative work is a non-zero temperature and nonadiabaticity of the

11 We assume ωT > ω0 (“compression”) here.
12 The absolute probability of these processes must still be multiplied with the probability of the respec-

tive initial phonon number, Pn.
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Figure 5.15: Conditional transition probabilities Pm,n for initial eigenstates n = 0, 1, 2 and 3.
The process was parametrized like in Fig. 5.13. Due to the quadratic squeezing operator, only
even phonon changes |m− n| occur. In the lower two graphs, one can clearly recognize processes,
where the phonon number is decreased, n→ m < n. They are transitions of negative work.

transformation: at zero temperature, all population is in the ground state at the beginning,

and transitions into lower phonon states are not possible; for adiabatic processes, the

phonon numbers do not change at all so negative work cannot result, either.

The existence of negative work processes is most remarkable, since it describes processes,

where energy is extracted from the system, while its frequency is increased – or in clas-

sical words, it is compressed. Since in these rare processes, the system is cooled and not

heated, as one would expect, they can be said to violate the second law of thermodynam-

ics [Wan02], which postulates that the heat increases in such a non-adiabatic process. On

average, of course, the second law holds; but it’s exactly these cases, these fluctuations

around the thermodynamic average behavior, which become observable in the trapped

ion system. In order to be able to see exactly these events, it is necessary to make every

single event n → m visible by a proper measurement process and not to average over

many realizations. Otherwise, the fluctuations would get lost in the mass of events. The

measurement scheme presented in detail below fulfills this requirement.
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Measurement Protocol to Verify the Jarzynski Equation

The experimental scheme for verifying the quantum Jarzynski equation relies on the

phonon filter presented in chapter 6.5 [Hub08b]. In effect, it allows for testing the motional

state of an ion for being in a certain energy eigenstate |n = mtest〉 or not. If the test is

positive, then the state is projected into |mtest〉 and we know that the test was successful.

If the test is negative, then the state is corrupted and we know that the test was not

successful. Let’s first introduce the scheme and analyze its action afterwards:

(1) Set the electrode voltages such that ωz(0) = ω0.

(2) Prepare the ion in a thermal state ρβ with inverse temperature β.

(3) Choose an initial phonon number n and apply the phonon filter for n to ρβ. If

negative, restart from 2. If positive, the state has been projected into ρ(0) = |n〉〈n|.

(4) Transform the potential from ω0 to ωT by altering the electrode voltages according

to ωz(t). The ion’s motional state is transformed, ρ(0)→ ρ(T ).

(5) Choose a final phonon number m to test for, and apply the phonon filter to ρ(T ). If

the test is positive, the process n→ m was observed. If negative, start from 1.

Step (2) prepares the initial equilibrium state and thus the initial phonon distribution Pn.

Note that the preparation of the initial state is based on a measurement of its temperature,

that is, β is a measured quantity.

The succeeding test of this thermal state for being in the state |n〉 by the phonon filter

yields a positive result with probability Pn. The great advantage of the filter is that the

state is not destructed in the case of a positive result, but the experiment can go on

with exactly the same state and ion. In this case, a non-destructive, projective quantum

measurement was accomplished. If it was negative, what happens with probability 1−Pn,

the state must be discarded and ρβ is prepared again. As Pn decays exponentially with n,

tests for higher n will fail most of the time. In order to save time, it could be an alternative

to prepare the ion in |n〉 instead13.

After the transformation, the filter is applied again. When its result is negative, we know

that the process n→ m did not occur and restart again. When it is positive, the process

13 Note that in this case, one actually starts out with a microcanonical ensemble rather than with a

canonical one. The final probability of a detected process n→ m has to be weighted with its thermal

probability Pn, then. The methodologically unassailable procedure is the one starting out from ρβ .
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n → m occurred. This way, the transition probabilities Pm,n can be reconstructed from

positive and negative phonon filter tests. In practice, two nested loops iterating through

n = 0, 1, . . . and m = 0, 1, . . . can sample all possible transitions.

The frequencies at the beginning and at the end of the transformation can be measured

very accurately by means of sideband spectroscopy in static potentials. Hence, the expo-

nentiated work e−β∆Em,n with the performed work W = ∆Em,n/~ = ωT (m+ 1
2)−ω0(n+ 1

2),

corresponding to each transition n→ m, can be calculated and the sum in Eq. (5.26) can

be evaluated to give the free energy difference ∆F .

Additionally, the presented non-destructive measurement scheme makes it possible to ob-

serve the rare and interesting transitions implying negative work. For example, both the

processes 2→ 0 and 3→ 1 can be easily detected by virtue of the phonon filter scheme.

Different Protocol Times and Nonlinear Transformations

The verification of the Jarzynski equation is only complete, if the same value ∆F is ob-

tained for various processes with the same endpoints. To this end, it seems natural to

implement the linear parametrization Eq. (5.27) with different durations T . In Fig. 5.16,

the parameter Q∗ is plotted as a function of the process duration T , when all other pa-

rameters remain unchanged. For T � ω−1
z (t), the transformation becomes quasi-static,

indicated by Q∗ → 1. Interestingly, Q∗ shows an asymptotic behavior for T → 0 and does

not exceed ≈ 1.67. In order to reach states even more distant to equilibrium, i.e. to realize

processes with higher Q∗, it is necessary to extend Eq. (5.27) to nonlinear parametriza-

tions. Luckily enough, the Jarzynski equation is valid for any transformation path, so

the exact experimental realization is actually secondary, as long as it is reproducible, and

allows for reconstructing the transition probabilities in the way described above.

One special form of ωz(t) shall be mentioned here, which has originally been optimized

to generate highly squeezed states out of the ground state [Jan92] and which has been

investigated under non-equilibrium thermodynamical aspects [Gal09]. In this protocol,

ωz(t) consists of discrete jumps between two frequencies ω1 and ω2, whereas in between

two jumps, the frequency is kept constant for a certain time. When this time between two

consecutive jumps corresponds to a quarter oscillation period π/(2ωz(t)) of the instanta-

neous frequency, the squeezing is maximal. It can be shown, that the squeezing parameter

r of the quantum state (see chapter 9.4.3) grows exponentially with the number of fre-

quency jumps [Gal09]14. The corresponding thermodynamic nonadiabaticity parameter

14 Herein, a system initially in the motional ground state is considered.
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Figure 5.16: Measure of nonadiabaticity, Q∗, as a function of the protocol duration T (all other
parameters as in Fig. 5.13). For large T , the quasi-static character of the process is indicated by
Q∗ → 1. The faster the system is transformed, the more the system is driven out of equilibrium,
until a maximal value for the special parametrization is reached. The oscillations around T 2π

ω0
=

O(1) are most probably due to resonance effects at the instantaneous frequency ωz(t) during the
transformation.

can be related to the squeezing parameter by

Q∗ = cosh 2r, (5.29)

so the optimized squeezing protocol can also be used to increase Q∗ efficiently.

Additionally, in this squeezed vacuum system, there is a simple and instructive relationship

between Q∗ and the mean energy 〈H〉 of the system, and the mean irreversible work 〈Wirr〉
performed on the system:

〈H〉 =
~ωz(T )

2
Q∗, 〈Wirr〉 =

~ωz(T )
2

(Q∗ − 1). (5.30)

Hence, the squeezed vacuum state is a system, where both the squeezing parameter and

Q∗ can be directly obtained by measuring the mean energy of the system through its

phonon distribution.

5.4 The Driven Harmonic Oscillator

A very interesting time-dependent potential implements a driven harmonic oscillator.

Again, we consider the one-dimensional case. Following the notation of the potential
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transformations, the corresponding electric potential consists of two contributions: the

static, harmonic trapping potential on the one hand, and a purely time-dependent term

proportional to z on the other hand:

φ(z, t) =
m

2
ωz z

2 + F (t) · z. (5.31)

In the case of the harmonically driven oscillator, F (t) is a spatially uniform, classical ac

field along the z-axis, which exerts a periodic force on the ion. It can be written as

F (t) = eEz sin(ωdt+ ϕ). (5.32)

Here, ϕ is the phase offset of the field oscillating at frequency ωd, and Ez is the field

amplitude in z-direction. The force gives rise to the interaction Hamiltonian

ĤI
d = −eEzz0

(
âe−iωzt + â†eiωzt

)
sin(ωdt+ ϕ) (5.33)

with respect to the motional frame
(
z0 =

√
~

2mωz

)
[Win98, Lei03]. The interaction mod-

eled by this Hamiltonian is resonant for ωd = ωz, i.e. when the ion “pendulum” is driven at

its oscillation frequency given by the external, harmonic potential. Non-stationary terms

rotating at 2ωz are neglected in a rotating wave approximation. Then, the evolution of

the system is described by the operator

U(t) = exp
(

Ωd t â
† + Ω∗d t â

)
= D(Ωd t), (5.34)

i.e. it is equivalent to a displacement operator (see chapter 9.4.2), which displaces the state

in phase space by15

α = Ωd t, where Ωd = −eE0z0

2~
eiϕ. (5.35)

Equation 5.35 is interesting for two reasons. First, it tells us that the phase of the dis-

placement can be chosen through the phase ϕ of the classical electric field. Second, the

amplitude |α| of the excitation is proportional to both the duration and the amplitude

of the electric field, i.e. the ac voltage amplitude applied to the electrode. Mostly, the

duration of the pulse is kept constant and the amplitude is varied to realize a certain |α|.

Two independent electronic synthesizers16 are used to generate the displacement pulses.

Each of them allows for applying highly accurately timed pulses at arbitrary frequencies,

15 Here, we neglect the influence of the radial pseudo potential, which modifies the expression for Ωd

by a constant factor close to unity. It is not of interest in the present context because we are not

interested in quantitative a priori predictions of Ωd. Details can be found in [Lei03].
16 WW1074, 100MS/s Four-Channel Arbitrary Waveform Generator by Tabor Electronics and 33250A

Function/Arbitrary Waveform Generator, 80 MHz by Agilent.
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amplitudes and phases17. Both devices are phase locked and their output can be syn-

chronized with a jitter of less than 1 ns. All parameters can be dynamically programmed

via the experimental control software, so that it is possible to perform parameter sweeps

during a measurement. The generated pulses are applied to a pair of electrodes far away

from the ion (electrodes EC1 in Fig. 9.1) to obtain an electric field only exerting forces in

the axial direction.

The ability to implement coherent displacements will be very important in the following

measurements. It should be noted that there are other possibilities to generate such

displacements (see Ref. [Lei03] and references therein), even by virtue of light forces. These

offer, for example, the advantage that they can be implemented internal state-dependent.

17 Amplitudes can be chosen up to ±10 V with a resolution of 16 bit; the phase has a resolution of 0.1◦.



Chapter 6

Detection of the Motional State

In this chapter, different methods to detect and characterize the ion’s motional state will

be presented. The methods cover a wide spectrum of input states and different regimes

of excitation. Some of the methods are tailored to work with special types of motional

states, others are more general. For instance, temperature measurements assume a thermal

energy distribution, which can then be easily characterized by a single quantity. In the

most general case of an arbitrary mixed state, however, the full quantum state has to be

measured, which entails a much more elaborate experimental effort.

6.1 Temperature Analysis by Sideband Excitation

The measurement technique presented in the following is used to obtain the temperature

– or the mean phonon number – of an ion that can be assumed to be in a thermal state

of motion1. It relies on the fact that the coupling strengths on the sideband transitions

differ for the red and blue sidebands, respectively. This implies, that the strengths of the

respective absorption lines depend on the phonon distribution of the state, so that the

temperature of the distribution can be inferred from the ratio of these line strengths. In

general, the mean phonon number of a thermally distributed state is given by

n =
R

1
m

1−R
1
m

, (6.1)

where R = P↑(−mωz)/P↑(+mωz) is the ratio of the excitation probabilities into the upper

qubit state, when the ion is driven on the m-th red or blue sideband, respectively [Tur00].

Equation (6.1) is independent of the driving time and can still be applied if the coherence
1 See section 9.4 for an overview of the most important states and their phonon distributions.
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Figure 6.1: Spectrum of the ion excitation around the first motional sidebands δ = ±ωz. One
can clearly see the asymmetry in excitation between the first red and the first blue sideband for a
sideband-cooled ion (black, fitted data). In particular, the red sideband line vanishes for n → 0.
From the excitation ratio, a temperature of n = 0.26(2) can be deduced after Eq. (6.1). For
comparison, the same data for a hot (n > 10) ion is shown (red), where no significant excita-
tion asymmetry can be observed. The spectra were generated using the R1/R2 Raman beam
configuration (see chapter 3.2.2).

times are very short. Another advantage over other techniques is, that it does not require

knowledge of the Lamb-Dicke parameter.

Figure 6.1 shows the excitation spectrum of the spin qubit on the Raman transition (driven

by R1/R2) around the first red and blue sideband resonance frequency (i.e.m = ±1). From

the first red and blue sideband strengths, a mean phonon number of n = 0.26(2) can be

deduced. This procedure works very well with very low temperatures, n ≤ 2. For higher

n, it can be advantageous to excite higher sidebands to increase the method’s sensitivity

(see Eq. (6.1)).

6.2 The Doppler Recooling Method

The method described in the preceding chapter enables us to determine the ion’s tem-

perature in a range of low excitations, i.e. for mean energies of some ~ωz. Virtually all

measurement schemes throughout this chapter work in this regime, which is, of course,

for a good reason: after all, the low energy regime is where interesting quantum effects

come into play. However, sometimes it is necessary to be able to measure higher ener-
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gies, too. This section presents such a kind of measurement, which points out to be very

versatile and applicable to different kinds of states. Originally developed for temperature

measurements of single ions [Wes07], we were able to extend it in order to obtain energy in-

formation about coherent excitations [Hub08a]. Energies of up to ∼ 5 meV, corresponding

to ∼ 6× 106 ~ωz could be reliably determined.

6.2.1 Theoretical Model of the Scattering Process

The measurement takes place during the well-known Doppler cooling of a motionally

excited ion on a fast dipole transition (in our case, this is the S1/2 ↔ P1/2 transition), and is

therefore called recooling method. It has been first proposed and applied in [Wes07, Eps07]

to thermal states of the ion. As for the electronic structure, we assume a simple two-level

system, where the spontaneous decay rate of the upper level be Γ. The ion itself is

trapped in a harmonic well of frequency ωz � Γ, i.e. we consider the one-dimensional,

weakly bound case, with the ion moving along the z-axis. As stated above, the method

is to be applied in a regime, where the ion’s mean motional energy is much greater than

~ωz, so it is justified to treat the ion motion in a classical way. Then, we can attribute

the ion a certain energy E and velocity vz, respectively.

A single laser with wavevector kz, red detuned by ∆ < 0 from the atomic resonance,

continuously drives the electronic transition to cool the ion. The Doppler shift ∆D = −kzvz
leads to an effective detuning ∆ + ∆D. The upper state population is then given by

ρPP(∆D) =
s/2

1 + s+ (2(∆ + ∆D)/Γ)2
. (6.2)

Here, we define the saturation parameter s := 2|Ω|2/Γ2 following [Wes07]2. It is pro-

portional to the beam intensity and is – next to the detuning – the second parameter,

which can be adapted in the experiment. The spontaneous scattering rate is given by the

product of the upper state population and the decay rate,

dN

dt
= ΓρPP. (6.3)

If we neglect heating caused by spontaneous photon emission, which only plays a role at

the Doppler cooling limit, i.e. for low energies, then we can write the energy change per

scattering event due to absorption of a Doppler shifted photon as

dE

dN
= ~kzvz = −~∆D. (6.4)

2 The definition s := |Ω|2/Γ2 is common in literature, too. Then, a factor of two simply enters the

formulas.
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Before we proceed, we change into a dimensionless system of units by writing energies and

detunings in terms of the half, saturation broadened line width E0,

ε := E /E0, δ := ~∆ /E0, r :=
~k2

z

2m

/
E0, with E0 :=

~Γ
2
√

1 + s, (6.5)

while all times are rescaled according to

τ := t / t0, with t0 :=
1 + s

Γs/2
. (6.6)

In particular, δD := ~∆D/E0 is the rescaled instantaneous Doppler shift. Now, we first

rewrite Eqs. (6.3) and (6.4) in scaled units,

dN

dτ
= t0

dN

dt
=

1
1 + (δ + δD)2

(6.7)

and
dε

dN
=

1
E0

dE

dN
=
−~δD

E0
= −δD, (6.8)

respectively. Combining Eqs (6.7) and (6.8) gives the energy change per time for an

ion with instantaneous Doppler shift δD, which is determined by the ion’s instantaneous

velocity vz,
dε

dτ
=

dε

dN

dN

dτ
=

−δD

1 + (δ + δD)2
. (6.9)

As the ion undertakes harmonic oscillations due to the external potential, its velocity is

sinusoidally modulated and its instantaneous Doppler shift is distributed according to the

probability density [Wes07]

PD(δD, δM) =
1

2π

∫ 2π

0
δDirac(δD − δM sin(φ)) dφ =


1

π
√
δ2
M−δ

2
D

, if |δD| < δD

0, else
(6.10)

with δM := 2
√
εr being the maximal Doppler shift occurring for a particle with energy

ε, and δDirac is the Dirac delta function. Now we can use this distribution to obtain the

energy change averaged over all Doppler shifts occurring during one oscillation period,

dε

dτ
=
∫ δM

−δM
PD(δD, δM)

−δD

1 + (δ + δD)2
dδD. (6.11)

This integral can be analytically evaluated and yields a differential equation for ε(τ),

dε

dτ
=

1
2
√
εr

(ReZ(ε) + δ ImZ(ε)) , (6.12)

with Z(ε) := i · [1− (δ+ i)2/(4εr)]−1/2. Equation (6.12) can be numerically solved to give

the motional energy of the ion at any point in time during the cooling process. As long as
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the parameters δ and s are fixed, the energy trajectory ε(τ) is completely determined by

the ion’s initial energy ε(0). Similarly, the scattering rate, averaged over the oscillatory

motion is

R(τ) :=
dN

dτ
=
∫ δM

−δM
PD(δD, δM)

1
1 + (δ + δD)2

dδD. (6.13)

Solving this integral gives R as a function of the time-dependent energy ε(τ) [Wes07],

R(τ) = R(ε(τ)) =
1

2
√
εr

ImZ(ε) (6.14)

i.e. R(τ) can be directly derived from the numerical result for ε(τ) (r and δ are time-

independent parameters).

Equations (6.12) and (6.14) have approximate analytical solutions in the limit of high

energies (ε� (1 + δ2)/r). These are

ε(τ) ≈
(
ε

3/2
0 +

3 δ τ
4
√
r

)2/3

(6.15)

and

R(ε) ≈ 1
2
√
εr
, (6.16)

respectively. They are instructive to get an idea of the qualitative behavior of these

functions. For quantitative analysis, the exact, numerical solutions were applied.

R(τ) is a quantity, which is directly accessible in the experiment. It is proportional to

the fluorescence rate detected during the recooling process. Just like ε(τ), its temporal

behavior is determined solely by the initial energy once the laser parameters are fixed.

Figure 6.2 shows numerical results for ε(τ) and R(τ). The quantities are plotted for three

different detunings δ = −
√

3 ≈ −1.73, δ = −1 and δ = −1/
√

3 ≈ −0.58. In Fig. 6.2(a),

the monotonic decrease of the ion’s motional energy in the course of the cooling process

can be seen. Figure 6.2(b) depicts the fluorescence rate of the ion during cooling.

Interestingly, the scattering rate is not necessarily a monotonic function of time but has

a maximum when δ < −1/
√

3. This maximum occurs at an energy, where the maximum

of the Doppler shifted absorption line (Eq. (6.7)) coincides with one of the two peaks of

the Doppler distribution (Eq. (6.10)). Then, the two terms in the integral of Eq. (6.13)

contribute maximally. For τ →∞, a constant scattering rate ensues, when the energy has

reached its steady state.

Extensions and Numerics

So far, we assumed ions with definite initial energy. Now, we want to generalize this

picture to such cases where the energy follows a certain probability distribution Pε̄(ε′).
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Figure 6.2: (a) Motional energy of the ion as a function of time during the cooling process for dif-

ferent laser detunings after Eq. (6.12). Starting from ε = 10/r, the energy decreases monotonically

and reaches a steady state-value, which is small compared to the starting value.
(b) Photon scattering rates R during cooling after Eq. (6.14), corresponding to the three situations
in (a). For δ < −3−1/2, R(τ) has a maximum before the steady state is reached (see text). As
expected, the smaller δ is chosen, the higher is the final scattering rate.

For example, in order to measure thermally distributed initial states, a thermal distribution

of the initial energies can be assumed. In these cases, the scattering traces R(τ) must be

averaged over all initial energies ε′, weighted according to the probability density Pε̄(ε′),

Rε̄(τ) =
∫ ∞

0
Pε̄(ε′) R[ε = Ξ(ε′, τ)] dε′, (6.17)

where the index ε̄ indicates that a distribution with mean value ε̄ is considered. R[ε] is

the scattering rate of an ion with energy ε. An ion with initial energy ε′, which was cooled

for a time span τ , has the energy Ξ(ε′, τ) afterwards. Note, that the trajectory of ε(τ)

(Fig. 6.2(a)) is fixed for given laser parameters, i.e. ions with different initial energies simply

start from different points on the curve. Having this in mind, the action of the propagator
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Ξ(ε′, τ) becomes obvious, since it simply makes the ion proceed on the trajectory: starting

from ε = ε′ it moves on for time τ , and thus reaches the energy Ξ(ε′, τ).

In a first step, we will subdivide the evolution into discrete time steps of size ∆τ ; the

corresponding energies start at ε0 := ε(τ = 0) and all succeeding energies can be written

in terms of the propagator, εn := Ξ(ε0, n∆τ) for n = 0, 1, . . . ,∞. That means, that the

propagator simply proceeds n “steps” on a discretized version of ε(τ). Thus, it becomes

obvious that Ξ(εm, n∆τ) = Ξ(ε0, (m+ n)∆τ) = εm+n.

The integral in Eq. (6.17) covers values from 0 to ∞. In good approximation, we can

replace the lower limit by the ion’s (“cold”) steady-state energy ε∞ � ε̄ and the upper

limit by some finite, large value ε0 � ε̄. Then, the integral can be split into parts according

to ∫ ∞
0
≈
∫ ε0

ε∞

=
∞∑
m=0

∫ εm

εm+1

. (6.18)

and we get

Rε̄(τ) ≈
∞∑
m=0

∫ εm

εm+1

Pε̄(ε′) R[ε = Ξ(ε′, τ)] dε′. (6.19)

Secondly, the scattering rate R(τ) is assumed to be constant within each time interval of

size ∆τ . The average rate Rn ≈ R[Ξ(ε0, τ)] for τ ∈ [n∆τ, (n + 1)∆τ [ corresponds to the

energy occurring after the n-th propagation step. It can be calculated independently from

the specific distribution Pε̄(ε) after Eq. (6.14). Then, with τ ≈ n∆τ we can approximate

the propagator Ξ(ε′, τ) within each interval ε′ ∈ [εm, εm+1[ by

Ξ(ε′, n∆τ) ≈ Ξ(εm, n∆τ) = Ξ(ε0, (m+ n)∆τ) = εm+n, (6.20)

so that the scattering rate occurring in the integral can be replaced by R[ε = Ξ(ε′, τ)] ≈
Rm+n, giving the scattering rate in the n-th time step as

Rε̄(n∆τ) ≈
∞∑
m=0

Rm+n

∫ εm

εm+1

Pε̄(ε′) dε′. (6.21)

This equation enables us to determine the time-dependent scattering rate for arbitrary

initial state distributions. For a given distribution, the integral in Eq. (6.21) can be

evaluated analytically or numerically. In the case of a (classical, ~ωz � kBT ) thermal

distribution

Pε̄(ε) =
1
ε̄
e−ε/ε̄, (6.22)

there is an analytical solution given in [Wes07].
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Large Ion Excursions

So far, we assumed the ion to be uniformly illuminated by the cooling laser. This is a

fairly good assumption if the motional wave function of the state is small compared to the

beam diameter, as it is the case for “trapped” thermal states. When, however, we consider

states implying classical oscillations of the particle within the harmonic potential, then

the finite beam waist has to be taken into account. For example, the oscillation amplitude

of a 40Ca+-ion with energy 1 meV is as big as 55µm in a trap with ωz = 2π × 200 kHz.

Even worse, as the laser beam points to the potential minimum, the velocity of the ion is

maximal in the beam center, i.e. its dwell time is minimal here, while it is found most of

the time in the lower intensity periphery of the beam (the cooling beam has a Gaussian

intensity profile with 1/e2 waist wz). Accordingly, the scattering and cooling processes

can be strongly reduced, so that the model above has to be modified.

The inhomogeneity of the cooling laser intensity is accounted for by a modification of the

saturation parameter [Deu07] according to

s = s(δD, δM) =
I0

Isat
exp

[
−2λ
r

(z0

w

)2 (
δ2

M − δ2
D

)]
, (6.23)

where λ is the laser wavelength, z0 =
√

~/(mωz) and Isat = 2π2~cΓ/(3λ3). I0 is the

peak intensity at the beam center. As the saturation parameter is now no longer static,

it is removed from the system of units and all quantities are rescaled by replacing E0 in

Eq. (6.5) by

E0 → E′0 := ~Γ/2, (6.24)

and times are expressed in units of t0 → t′0 := 1/Γ. Then, s appears explicitly in Eq. (6.11),

which becomes
dε

dτ
=
∫ δM

−δM
PD(δD, δM)

−δD · s/2
1 + s+ (δ + δD)2

dδD. (6.25)

Accordingly, the modified version of Eq. (6.13) reads

R(τ) :=
dN

dτ
=
∫ δM

−δM
PD(δD, δM)

s/2
1 + s+ (δ + δD)2

dδD. (6.26)

The solution of these equations can be found in the same way as has been described above,

i.e. by stepwise integration along an energy trajectory. The following section will show

results from measurements on coherently excited ions. When the coherent excitation is

large enough, the energy uncertainty of the ion becomes negligible and the distribution

simplifies again to Pε̄(ε′) = δDirac(ε′− ε̄). This is the case in the following, where the mean

energies are on the order of 1 meV.
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6.2.2 Recooling Measurement of Shuttled Ions

In the previous chapter, a procedure was introduced that allows for measuring the (mean)

energy of ions, which overcharges those techniques sensitive for single quanta. It is now

applied to characterize the quality of ion transports in the segmented trap. The transport

scheme has already been extensively discussed in chapter 5.2, so that only a short summary

will be given here. We already discussed the need of fast transports, i.e. transports which

are not so slow to be regarded quasi-static any more, but rather happen on timescales

given by the inverse trap frequency 2π/ωz. In chapter 5.2.2, we saw that the probability

for a successful ion transport depends on the transport duration. This could be explained

by the aid of the maximum energy imparted to the ion during the transport. If this energy

gain becomes too high, the ion gets lost, i.e. falls out of the trap. Next, a more quantitative

study is presented to understand the dynamics in the system. For this purpose, transports

like the ones in chapter 5.2.2 are performed and the final energy of the shuttled ions is

measured by the recooling scheme. This, carried out for different types of transports, yields

very helpful insight into the transport mechanism and helps to improve its realization.

The experiments were conducted in the pcb-trap (see 9.1.2). The transports were, again,

performed as closed round trips with a one-way distance of 2 mm; they were realized by

moving an electric, harmonic potential along the z-axis according to a transport function

z0(t), where z0(t) is the momentary position of the potential minimum at time t (illustrated

in Fig. 5.3). We decided for a sigmoid, smooth transport function after Eq. (5.11); by a

proper choice of its “steepness”-parameter σ, the transport character can be implemented

almost linear (z0 ∝ t), sigmoid, or – as an extreme – in a single step. Apart from σ, the

transport duration T is the second parameter whose influence on the shuttle quality is to

be tested for now. Again, we denote by T the time needed for a complete round trip, i.e.

z0(0) = z0(T ), and τ = Tωz/(2π) gives the total duration measured in oscillation periods.

The trap frequency was chosen fairly low, ωz = 2π× 200 kHz, in order to be able to reach

a non-adiabatic regime with the electronics available; the update time of the trap voltages

was 1µs.

The experimental protocol is close to that of the transport success probability measure-

ments, cf. chapter 5.2.2. Here, however, the fluorescence of the ion during the laser cooling

process after each ion shuttle was recorded time-resolved, see Fig. 6.3. This means, that

the ion is prepared by Doppler cooling on the 397 nm S1/2 → P1/2 -transition at the

starting position z0(0), is then shuttled to z0(T/2) and back to z0(0) again by applying

the corresponding transport voltages [Hub08a]. Finally, the same cooling laser typically
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Figure 6.3: Illustration of the temporal sequence of a recooling experiment. After morphing the
potential from laser-interaction potential into the initial transport potential, the ion is shuttled
back and forth. Then, the potential is morphed back and the fluorescence emitted by the ion
during the recooling is recorded in a time-resolved manner. The recooling finally prepares the ion
into a cold state for the next experiment round.

illuminates the ion for several milliseconds, red detuned by approximately half the natu-

ral linewidth of the transition. This was ensured by setting the detuning such that half

the level of the peak fluorescence at resonance was observed. This recooling beam was

attenuated to end up with a low saturation parameter s, but enough intensity to let the

scattering rate drop not too low.

The fluorescence photons emitted by the ion from the point of time on when the recooling

laser is switched on are detected by a photomultiplier, whereas each photon’s arrival time

is recorded with 1µs resolution. The applied trick to accomplish this with the standard

counter hardware is detailed in chapter 9.3. The recooling time must be chosen long

enough to ensure that the ion is in a well-defined, reproducible state before the next

transport starts. Thus, the transports can be regarded independent from each other,

and the recooling process of the current transport can be used to prepare the ion for the

succeeding cycle. Typically, these transports are repeated some hundred to some thousand

times for one specific transport type. From the measured fluorescence traces, the energy

of the transported ions can be deduced as it was described above.

Figure 6.4 shows raw recooling data after a transport with T = 2× 14µs. It was realized

with a fairly smooth transport function (σ = 2) to avoid momentum kicks at the corner

points. In Fig. 6.4(a), the arrival time of the first 150 photons during the recooling process

is plotted against the photon number. The first photon arrived 7µs after the laser was

switched on, and the last photon plotted arrived ≈ 13 ms later. The graph in Fig. 6.4(b)

shows the same data, whereas here, the total number of detected photons is plotted as a
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Figure 6.4: Data obtained by the recooling method. Each data point corresponds to one photon
detected during laser cooling of a single ion. Time starts when the cooling laser is switched on. (a)
shows raw data, i.e. the time of arrival of each photon event plotted against the event number. The
“kink” at ≈ 8 ms indicates a rapid increase in fluorescence scattering rate due to efficient cooling
setting in. (b) The same data in a more intuitive representation. Here, the accumulated number
of photons is plotted as a function of time. The red lines are guides to the eye corresponding to
fluorescence rates of 4 kHz and 21 kHz, respectively.

function of time. From both graphs, two different scattering behaviors can be discerned:

a very low fluorescence rate until t ≈ 8 ms, when the rate abruptly increases and quickly

saturates at a high level.

This behavior becomes even more evident in a histogram of the photon detection events

(see Fig. 6.5(a)). Such a histogram contains the number of photons detected during time

intervals of equal duration (here, one time bin covers 1 ms), which is equivalent to the

photon count rate. In this depiction, the rapid increase in scattering rate can be clearly

seen.

For the evaluation of these traces, the ion was assumed to be in a coherent state with

such an amplitude that its movement can be treated classically, i.e. the ion effectively

oscillates back and forth within the final harmonic potential, and doing so, it traverses

the cooling beam; this beam has a waist of only 60µm, so at the beginning, when the

oscillation amplitude of the ion still exceeds the beam diameter, the ion spends most of

the time outside the beam and is decelerated only inefficiently. The smaller the amplitude

of the oscillation becomes, the more efficient is the cooling process, however; when it has

become so small, that the ion stays within the beam diameter, the energy decrease takes

place abruptly and the fluorescence rate quickly saturates. Thus, the main contribution
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Figure 6.5: (a) A histogram of the arrival times taken from a single recooling trace gives the
fluorescence rate as a function of time (the error bars indicate the statistical uncertainty (standard
deviation) of the fluorescence rate). Again, a rapid increase in the scattering rate at t ≈ 8 ms
indicates efficient cooling setting in. From this time, the initial energy ε0 of the ion can be
deduced (see text). (b) shows a histogram of the initial ion energies obtained from 1412 identical
transports. The red line is a Gaussian fit giving a mean energy of 1.262 meV with a standard
deviation of 0.040 meV.

of cooling happens within 1 to 4 ms, which is in accordance with common cooling times

of trapped ions. The time it takes the ion to reach 50 % of the final fluorescence level

is indeed characteristic for the ion’s initial energy and thus can be used as a qualitative

measure for this quantity.

As explained in chapter 6.2.1, a trace of the scattering rate like the one depicted in

Fig. 6.5(a) is determined by its energy at the beginning of the recooling process, i.e.

immediately after all potential transformations. We evaluated several thousand of such

traces, each performed with a certain transport duration T . It is worth mentioning that

each of these traces is the result of a single recooling process after a single ion transport.

This means that the energy of each ion could be measured, in contrast to an averaging

measurement summing up the signals generated by many transport executions. This

makes it possible to investigate the single ion energy distribution. Such a distribution for

the same shuttles like in Fig. 6.5(a) is shown in Fig. 6.5(b). Here, an energy histogram of

1412 identical, independent transports proves that the energy distribution of the ions after

the transport has a width of only 3%. This speaks for a high degree of reproducibility in

terms of preparation, voltage generation and detection.
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Variation of the Transport Duration

Now, the effect of the transport duration on the final ion energy is to be investigated

by performing measurements with different durations τ . Shuttles close to the adiabatic

case resulted from τ = 50; the voltage generation electronics allowed for lowering this

value down to τ = 4.4 without significant increase of ion loss (this behavior was already

discussed, cf. Fig. 5.11). This value is still remarkable, since it means that – due to the

limiting update rate of 1 MHz – the one-way transport over 2 mm was indeed carried out

in only 11 discrete steps; each discrete step involves a small momentum kick for the ion.

Simulations confirm that the discrete character of the trap voltages plays a role for τ

approaching unity, but its influence remains acceptable for τ & 5. All transports were

conducted with a sigmoid transport function after Eq. (5.11) with σ = 2.0.

Figure. 6.6(a) shows averaged recooling traces for a range of values of τ . In general, one

can recognize that the recooling effect, indicated by a strong increase in fluorescence, sets

in later, the faster the transport is realized. This, again, indicates a higher motional

excitation as explained above.

The derived ion energies after the transport as a function of τ are depicted in Fig. 6.6(b).

As can be seen, the theoretically predicted final ion energy (red dotted line) based on

classical trajectory simulations is not confirmed by the experimental data. Indeed, the

measured energies are systematically larger than the expected ones. The simple, idealized

model of the transport does not, however, include the morphing steps immediately before

and after each transport round.

From measurements replacing the ion shuttling by simple waiting times of duration T , but

with constant electrode voltages in between the two morphs, the motional excitation energy

due to the morphing could be deduced; it amounts to 427(73)µeV. Adding this offset

energy to the theoretical contribution of the shuttle process (solid red line in Fig. 6.6(b))

yields a model fitting well to the data.

The results retrieved here match the expectations arising from the success probability

measurements in chapter 5.2.2. For slow transports, the excitation caused by the shuttle

process is small and the ion mainly resides in the potential minimum throughout the

transport. The faster the process is carried out, the higher the excitation becomes. The

sharp resonances (see chapter 5.2.2) at τ = 4, 6, 8, ... could unfortunately not be resolved

with the control electronics at hand; nevertheless, these results pave the way for the

realization of accurate, reliable and non-adiabatically fast ion shuttles.
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Figure 6.6: a) Fluorescence rate after the transport and during Doppler recooling, averaged over
many realizations. The faster the transport, the later the ion can be recooled into its steady state,
indicating a higher vibrational excitation. b) Energy after the transport with τ = 4.4−20, deduced
from the recooling scattering traces. Error bars indicate uncertainties in terms of laser beam waist
(30(5)µm), laser saturation and detuning (2π × 30 MHz). The overall uncertainty results in 15 %
errors. The red dashed line is a theoretical prediction of a simple model of the transport process
alone, which must be extended by taking the morphing steps into account (see text); the black
solid line shows the modified prediction together with its standard deviation (black dashed line).

Influence of the Heating Rate

The recooling method has also been applied to obtain the trap’s heating rate. This heating

occurs due to time-varying, unavoidable electric fields in the trap and affects the motional

state of the ion such that it slowly thermalizes with its environment. This effect will be

investigated in detail in chapter 7.2.

To find out, how fast the thermalization takes place in the pcb-trap, the ion was repeatedly

prepared by Doppler cooling. In a static potential, i.e. without potential transformation,

and after a waiting time Th, during which all lasers are switched off, the motional state

of the ion was measured; this happened by means of the recooling method assuming a
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thermal phonon distribution. The obtained mean energies for Th = 0.5 s and Th = 2 s,

respectively, are in good approximation proportional to the heating time Th and amounted

to 3(1) meV/s. This means, that the energy increase during the transport due to this

heating effect is about 1.5µeV and thus negligible.

The obtained heating rate corresponds to ≈ 3.6× 103 phonons per millisecond and there-

with exceeds comparable heating rates by three to four orders of magnitude. This cannot

be solely attributed to the low phonon energy of h×200 kHz. Rather, it is probably caused

by patch charges on the relatively large insulating surfaces of this trap design. This finding

was an important input for the design and development of a new generation of segmented

traps: the segmented micro-trap (see chapter 9.1.1), in which most of the experiments

presented in this thesis were performed in, could be made to perform much better in this

respect.

Another reason is a noisy voltage supply for the trap electrodes, giving rise to random,

fluctuating forces on the ion. Frequency components around ωz can change the ion’s

motional state3 in an unwanted and damaging way. One way to overcome this problem

of most commercial supplies, could be low-pass filtering the electrode voltages. While

this is an easy and effective means to get rid of the noise, it is not always applicable if

time-dependent potentials are to be used. Especially fast transformations imply frequency

components on the order of the trap frequency that must not be filtered away. So either,

the wanted voltage changes can be amplified frequency-dependent in order to compensate

for the filter transmission, or instead of filtering the voltages, one tries to get rid of the

noise. This is even more demanding considering the long-term aim to scale up the electrode

number, and – consequently – the number of voltages needed (the applied solution for fast,

parallelized voltage generation for the micro-trap is described in chapter 9.2).

The Optimal Transport Function

The exact shape of the transport function z0(t) plays a crucial role in terms of energy

excitation and different types (sinusoidal, sigmoid, ...) have been investigated theoreti-

cally [Rei06, Mur09]. Their differences become especially important if it comes to short

times and very low excitations, i.e. single motional quanta. We investigated the influ-

ence of the transport function on the transport quality by performing the same transports

(T = 50µs) with different parameters σ in Eq. (5.11). The action of this parameter can

best be seen in Fig. 5.8.

3 Of course, the radial and micromotion-caused resonances have to be taken into account here, too.
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The measurements show indeed that the optimal parameter (for a given T ) is a compromise

between a smooth behavior at the corner points, and not too high velocities on the way.

The slower the ion starts and stops (i.e. the larger σ), the faster the ion has to go in the

middle of the shuttle. This fast acceleration strongly excites the ion in the harmonic well.

On the other hand, the more linear the transport becomes, the stronger the ion is excited

by kicks4 at t = 0, T/2, T .

Consequently, we found an optimal value of σ ≈ 2.3(2), indicated by a minimal motional

excitation of the ion after the transport (see Ref. [Hub08a]). This value realizes a sigmoid

transport function as it has been used for the non-adiabatic transports presented. Lower

values 1 ≤ σ < 2, implying a more and more linear shuttle, result in a higher energy gain.

When z0(t) becomes too steep (σ & 3.0), the energy gain is so strong that it often led to

ion loss. This must be attributed to the sudden “step” in z0(t), which is too fast for the

ion to follow.

6.3 Motional State Analysis by Coherent Excitation

In contrast to the recooling method, the following measurement procedure works in a

regime of single motional quanta and is a very versatile tool [Mee96]. It allows for mea-

suring the phonon number distribution P (n) of an arbitrary input state. P (n) gives the

probability of finding the ion in the n-th eigenstate of the harmonic oscillator, |n〉. In

the most general case, these probabilities are given by the diagonal elements of the den-

sity matrix, ρnn = 〈n| ρ |n〉. As non-diagonal elements do not influence the measurement

signal, these cannot be measured by this procedure. Nevertheless, it is an excellent and

fast tool to characterize a wide variety of states, especially if a certain class of states can

be presupposed. These classes, for example, comprise thermal states (which do not have

off-diagonal elements), Fock states, coherent and squeezed states.

The technique is based on the dependence of the Rabi frequency Ωn,n+m of the m-th

sideband transition on the quantum number n. In the regime we are interested in (n ≤ 15),

this dependence is much stronger on the first sidebands than on the carrier transition

(cf. Fig. 3.1). As the coupling on the first red sideband vanishes for n = 0, the first

blue sideband transition is the best choice, m = +1. We exploit the dependence by

measuring the evolution of the qubit state when the first bsb transition is resonantly

4 The error function is, of course, always truncated at finite times, so that its derivatives do not vanish

exactly. However, this truncation effect becomes smaller the larger σ is and can be neglected if it is

of the same magnitude as the steps caused by the digital-to-analog converters.
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driven. According to Eq. (3.25), the resulting function P↑(t) can be written as a sum of

cosine functions with amplitudes proportional to P (n) at frequencies Ωn,n+1. As these

frequencies are known, a Fourier transform of the measured trace yields the probabilities

P (n).

It is also possible to fit Eq. (3.25) with m = +1,

P↑(t) =
1
2

∞∑
n=0

P (n)
(

cos(Ωn,n+1t) e−t/τc + 1
)

(6.27)

directly to the signal, whereby τc and all P (n) are fit parameters. This mostly yields

satisfactory results. The lowest Rabi frequency Ω0,1, and from that all others, can be

obtained beforehand by a frequency analysis. A variation of the fit parameters and an

analysis of their influence on the overall fit result makes it possible to estimate their

error bars. While the phonon distribution is defined for an infinite number of n ≥ 0, the

sum in Eq. (3.25) has to be truncated in practice at some point nmax, and only values

0 ≤ n ≤ nmax are taken into account. As the choice of nmax is arbitrary to some extent,

it is convenient to average the obtained results over different choices of nmax. Typically,

nmax = 4− 12 in our applications.
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Figure 6.7: Schematic timing for state analysis by Rabi flopping. We assume that the ion has
been prepared in the internal state |↑〉 and in an unknown motional state. A Raman pulse of
duration t excites the ion on the bsb transition and generates a superposition between |↑〉 and |↓〉.
The amplitude of this superposition is detected by the common detection scheme of the spin qubit
(see chapter 3.2.2). Repetitive application of this scheme yields P↑(t).

A schematic timing table for measuring the evolution of P↑(t) is depicted in Fig. 6.7. First,

the ion is cooled, its internal state is prepared by optical pumping into |↑〉, and then the

motional state of the ion is generated, which could have happened, for example, by one of

the techniques described in chapters 4 and 5. Then, the ion is illuminated by the Raman
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Figure 6.8: Illustration of the state analysis method by Rabi flopping. The ion was prepared in
|↑〉 and an unknown motional state. (a) Population in |↑〉 after excitation of the first bsb transition
for a time t. Solid line: Theoretical evolution of a state with the phonon distribution obtained
in (c). (b) shows the result of a cosine Fourier transform of P↑(t). One can clearly see that the
signal exhibits discrete frequency components. The lowest frequency peak can be associated with
Ω0,1 = 2π × 29.4 kHz. (c) Phonon number distribution deduced from the Fourier components
shown in (a). The solid line is a fit of a thermal distribution with n = 1.39(17).

laser beams R1/R2 on the first bsb transition for a certain time t. This excites the ion

into a superposition state between the spin qubit states, which is read out in the following

detection procedure. Repeating this often (typically 100 to 200 times), yields the mean

excitation P↑(t) for time t.

Figure 6.8(a) shows a typical trace of an ion in a low thermal state. Here, t was varied be-

tween 0 and 300µs. Due to the low decoherence rate, one can clearly see many oscillations

and the non-harmonic evolution caused by the different frequency components.

To obtain the distribution P (n), we performed a cosine Fourier transform of P↑(t) yielding
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frequency components Ωn,n+1, which are directly proportional to P (n). Figure 6.8(b)

shows the frequency spectrum of the signal in (a) obtained by such a signal transformation.

One can clearly see that the signal has a discrete frequency spectrum. Each peak can be

associated with a phonon state and its bsb Rabi frequency, respectively. The corresponding

phonon number distribution can be seen in Fig. 6.8(c). It fits to a thermal state with

n ≈ 1.4. The corresponding temperature in a trap with ωz = 2π × 1.4 MHz is 125µK.

Therewith, we have demonstrated a method for the quick and reliable measurement of

general phonon distributions. This method also forms the basis of measuring the complete

density matrix ρ of the motional state. This will be described in section 6.4.

It is worth mentioning, that this method is predestined for a fast determination of mean

values. For instance, the mean energy, i.e. the expectation value of the Hamiltonian H of

an arbitrary mixed state ρ, can be written as

〈H〉 = Tr {Hρ} =
∞∑
n=0

En · ρnn, (6.28)

where En = ~ωz(n+ 1
2) is the eigenvalue of H corresponding to the eigenstate |n〉. These

eigenvalues, of course, are well-known in the case of the harmonic oscillator, where the

trap frequency can be measured very accurately by spectroscopic means.

6.3.1 Analysis of Displacement Amplitudes

In the following, a couple of applications are described proving the presented detection

scheme’s power and versatility. It is used as an “all-round” tool in diverse situations. Here,

a special focus of interest lies on testing our abilities to generate coherent displacements

D(α) of an unknown state, a prerequisite for many future applications. In chapter 5.4, an

experimental possibility was presented to generate coherent displacements of an arbitrary

motional state. Now that we also have a method at hand to detect the motional state of

the ion, we can apply and test the method. As described above, the displacement is caused

by an oscillating force acting on the ion. This force is due to an electric ac potential. The

according ac voltage has frequency ωz and amplitude U . For quantitative measurements,

it is necessary to know which amplitude U has to be applied in order to generate a certain

displacement5 |α|. Figure 6.9 shows the results of such a gauge measurement. Here,

a near-ground state cooled ion has been displaced by fields with U = 10 mV, 20 mV

and 30 mV amplitude, before |α| has been determined by the Rabi oscillation method.

Figure 6.9(a) depicts the corresponding coherent blue sideband dynamics excited by the
5 The phase of the coherent state is not detected in this measurement.
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Figure 6.9: State analysis of coherent states generated by application of displacement pulses to
the motional ground state. The voltage amplitude U of the displacement pulse increases from left
to right in (a) and (b). (a) shows coherent sideband dynamics generated by excitation with the
R1/R2 beams. Solid lines show fits to the data. These fits yield the phonon number distributions
P (n) for each U , which are shown in (b). Herein, the solid lines are fits assuming coherent state
phonon distributions while the only fit parameter is the coherent state amplitude |α|. (c) As
expected, |α| scales linear with U and we find |α|/U = 92(2) V−1.

Raman beams after application of the displacement force. From these traces, the phonon

number distributions for the three different amplitudes can be deduced, which are shown

in Fig. 6.9(b). To each of these measured distributions, the distribution Pcoh(n) of a

coherent state (see Eq. (9.11)) was fitted, whose only free parameter is |α|. Thus, we

obtained the coherent excitation amplitudes |α| arising from different amplitudes U . Here,

the displacement pulses had a duration, which corresponds to 30 ion oscillation periods
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at ωz = 2π × 1.43 MHz. One can clearly see from Fig. 6.9(c), how the resulting coherent

state’s amplitude |α| increases linearly with U . Here, it becomes obvious, too, that the

generation of higher excited states is possible, but their detection becomes more and more

involved, because the bsb frequencies Ωn,n+1 become more and more indistinguishable for

higher n.

The presented gauge measurement ensures that arbitrary, small displacement amplitudes

|α| can be generated and reproduced reliably. For the generation of arbitrary displacements

D(α), also the phase of the displacement force has to be controlled.

6.3.2 Phase Coherence: A “Motional Ramsey” Experiment
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Figure 6.10: Phonon number distributions P (n) for n ≤ 9 obtained by the Rabi flopping method.
Each column/color corresponds to a certain phase of the second displacement pulse ϕ2, while the
first one’s ϕ1 is fixed. For ϕ2 ≈ 315◦, there is an almost perfect revival of the input state, i.e the
first displacement has been coherently undone. For ϕ2 ≈ 135◦, a coherent state with amplitude
2|α| is generated by the two pulses.

The gauge measurement of the preceding section had its focus on the generation of well-

defined displacement amplitudes |α|. The displacement is, however, fully characterized by

amplitude and phase, α = |α| eiϕ. Hence, this section concentrates on the investigation of

generating displacements with different phases ϕ. These phases become detectable when

two or more displacements are concatenated. For that reason, the following experiment
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was carried out: A first displacement with fixed α1 (i.e. fixed pulse parameters) acting on

a near-ground state cooled ion generates the coherent state |α1〉. A second displacement

pulse with the same amplitude and duration results in a total displacement D(α2)D(α1) =

eiθ D(α1 + α2) with |α1| = |α2| =: |α| and θ = Im(α2α
∗
1). For technical reasons, there is

always a short, constant time gap ∆t in between the two pulses. According to Eq. (9.12),

this merely adds a constant phase factor eiωz∆t, which can be absorbed into the phase of

the first pulse. The final state |αf〉 is then given by

|αf〉 = eiθ |α1 + α2〉 = eiθ |eiϕ1 |α1|+ eiϕ2 |α2|〉 , (6.29)

where ϕ1 and ϕ2 are the phases of the first and second displacement, respectively. After

Eq. (6.29), the squared amplitude of |αf〉 reads

|αf |2 = |α|2 · |1 + ei (ϕ2−ϕ1)|2 = 4 |α|2 cos2

(
1
2

(ϕ2 − ϕ1)
)
. (6.30)

This means, that the final state’s amplitude shows fringes when the relative phase between

the two displacements, ϕ2 − ϕ1, is scanned. This is because the overall action of the

concatenated displacements critically depends on this phase difference. Figure 6.11(a)

illustrates the measurement principle in phase space. While the first displacement is

constant, the action of the second one can undo the first one, or both can work in phase,

i.e. their action is equivalent to a single displacement with double amplitude.

In the experiment, both displacements were created by a voltage amplitude of U = 10 mV.

The pulses had a duration of 30 periods at ωz = 2π× 1.43 MHz. The time gap in between

the pulses was ≈ 1.02µs. The phase of the second pulse with respect to the first one ϕ2

was scanned, and for each value of ϕ2, a motional state analysis yielded the corresponding

phonon distribution, see Fig. 6.10.

The results for |αf |2 obtained from these distributions can be seen in Fig. 6.11(b); the

theoretically predicted behavior is obviously reproduced. The input state was not exactly

ground state, but a thermal state with n ≈ 0.55. Therefore, the contrast of the oscillations

is not maximal, but has an offset to the zero bottom line. A fit to the oscillation yields an

offset of n = |αf |2 = 0.58, which is in very good agreement with the analysis of the input

state.

The minimum of the oscillation corresponds to the situation, where the second displace-

ment completely undoes the first displacement, leaving the ion in its starting state again.

The “pendulum” that had been displaced from its resting position and oscillated for some

periods has been decelerated by a force of the same amplitude, but shifted in phase by π.
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Figure 6.11: (a) Illustration of the double excitation by two displacement pulses. The initial
state experiences a fixed displacement (blue arrow) and a second one with varying phase ϕ2 (red
arrows). The final coherent amplitude |αf | depends on ϕ2, as is depicted in phase space. (b)
Results obtained by motional state analysis. For a certain phase, the energy imparted by the
first displacement is completely extracted again by the second one, resulting in a minimum |αf |2;
whereas for in-phase excitation, a displacement of 2|α| results in a maximum |αf |2. The solid line
is a fit to the data. It is in accordance with the input state and the experimental parameters (see
text).

The maximal displacement occurs when both displacements act in phase, i.e. into the same

“direction” in phase space (see Fig. 6.11(a)). The total displacement amplitude then is

2|α|. For the parameters chosen, we expect a maximal squared displacement amplitude of

(2|α|)2 ≈ 1.82 = 3.2. Again, this is – together with the observed thermal state offset – in

good agreement with the measured value.

Altogether, it can be concluded that we achieved to realize the displacement operator

D(α), where both amplitude and phase are under control. In particular, phase coherent

series of excitations can be performed. Another important result is the very good revival of

the initial state for ϕ2 = ϕ1; if this would not be the case, it would mean that the motional

state was subject to rapid decoherence processes on the timescales of the displacement

pulses, which could be caused by the electronics utilized to realize the displacement, for

example. This is obviously not the case.
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6.4 Complete Quantum State Analysis

When no a priori assumptions about the motional state can be made, then it is inevitable

to measure a complete representation of the quantum state ρ. This can be, for example,

the density matrix in a certain basis, or the Wigner function representation Wρ(α) of the

state6. A method based on the coherent Rabi flopping described in section 6.3 allows for

both. Indeed, the Wigner function case is more descriptive and will be used to explain

the procedure first.

Wρ(α) is a quasi-probability distribution, describing the state ρ. It takes on real values,

whereas negative values indicate non-classical states. A full review of the Wigner function

shall not be given here, the reader may refer to the literature (see Ref. [Sch01a], for

example). α is a complex number representing a point in phase space, cf. section 9.4.2

(again, we restrict ourselves to a one-dimensional movement of the ion in the trap). Both

Wρ(α) and ρ contain all information about the quantum state, so they are equivalent in

that respect.

6.4.1 Wigner Function Measurement Scheme

The most convenient definition of the Wigner function for our purposes is

Wρ(α) :=
2
π

Tr
{
D†(α) ρD(α) eiπa

†a
}
. (6.31)

Herein, D(α) is an operator describing the displacement of a quantum state in phase

space by α. a†, a are the creation and annihilation operators of the harmonic oscillator,

respectively. When a state ρ is displaced by −α, the density operator ρ′ of the resulting

state is

ρ′ := D(−α) ρD†(−α). (6.32)

Then, we can use the identity D†(α) = D(−α) and rewrite Eq. (6.31) as

Wρ(α) =
2
π

Tr
{
ρ′ eiπa

†a
}
, (6.33)

which means, that the value of the Wigner function at position α is – up to a constant

normalization factor – equal to the expectation value of the phonon number parity operator

eiπa
†a applied to ρ′. The property of this operator can be most easily understood by looking

at its action on the energy eigenstates, eiπa
†a |n〉 = (−1)n |n〉: it adds a phase shift of π to

the odd number state amplitudes.
6 The index indicating the state represented by Wρ is omitted, when ambiguities are impossible.
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In order to measure Wρ(α), some interaction could be constructed to produce exactly this

phase shift between neighboring phonon states, which can be achieved by harnessing the

n-dependence of the Rabi frequencies of the atomic transitions in the harmonic potential.

Such a scheme to directly measure Wρ(α) was proposed, for example, in [Lut97].

We follow a slightly different approach first applied in [Lei96], based on the earlier men-

tioned possibility to obtain the phonon number distribution P (n) for the motional state

of the ion (chapter 6.3). In the energy eigenbasis, we can rewrite Eq. (6.33) as

Wρ(α) =
2
π

∞∑
n=0

(�1)n P ′(n), (6.34)

where P ′(n) := 〈n| ρ′ |n〉 is the phonon number distribution of the displaced state. This

sum can be numerically performed for each α, once the probabilities P ′(n) are known7.

State
displacement

by           

Figure 6.12: The applied scheme to measure the Wigner function Wρ(α) of a state ρ (left) can
be imagined like repeatedly measuring the quantity Wρ′(0) of a shifted state ρ′ = D(�α)ρD†(�α).
The shaded areas represent the Wigner functions of the respective states in phase space.

A very intuitive picture (see Fig. 6.12) of the measurement principle derived from Eq. (6.34)

can be obtained by looking at what actually happens to the state during the measure-

ment. Instead of measuring the value of Wρ at different positions α in phase space, we

permanently measure the Wigner function of a by �α shifted state ρ′ at the origin (α = 0).

This directly follows from D(0) = D†(0) = 1 and Eq. (6.34), as

Wρ′(0) :=
2
π

Tr
{
D†(0) ρ′D(0) eiπa

†a
}

=
2
π

Tr
{
ρ′ eiπa

†a
}

=
2
π

∞∑
n=0

(�1)n P ′(n) = Wρ(α). (6.35)

7 In all practical cases, only states up to some phonon number nmax can be taken into account, which

is justified since the distributions under consideration quickly go to zero for higher n. The sum in

Eq. (6.34) is then finite.
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In loose terms, instead of moving the “measuring apparatus” by α (and thus scanning

phase space), it remains at the origin and it is the state that is moved to the apparatus

by −α.

6.4.2 Implementation and Results

The phonon distributions P ′(n) occuring in Eq. (6.34) can be obtained from coherent

sideband dynamics exactly the way it has been described in the previous chapter. The

crucial difference is, however, the application of a well-defined displacement field after the

generation of the state and before the excitation pulse giving rise to the coherent sideband

dynamics. This displacement field is generated by an ac voltage with frequency ωz, applied

to distant electrodes (see chapter 5.4).
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729 quadrupole

Raman beams

Photon counting
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1. Mot. state preparation 2. D(-a) 3./4. r’ state detection
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Figure 6.13: Schematic timing for measuring the Wigner function of a motional state ρ. After
Doppler (i) and sideband cooling (ii), the internal state is prepared in |↑〉〈↑| by optical pumping (iii).
A subsequent displacement pulse completes the preparation of ρ. Then, the analysis displacement
pulse D(−α) results in ρ′ (v), which is analyzed in the following steps by the Rabi flopping analysis
method: coherent excitation on the bsb spin qubit transition with variable duration t (vi), shelving
(vii) and qubit state discrimination (viii), cf. Fig. 6.7.

The recipe for measuring the Wigner function can be structured as follows:

0. Choose a set of points αi, i = 1, . . . ,M in phase space sufficient to characterize the

state ρ. For each of these αi, do the following:

1. Prepare |↑〉〈↑| ⊗ ρ, where ρ is the unknown motional state of the ion.
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2. Displace the state by −αi. This results in ρ′.

3. Apply an excitation pulse of duration t on the first bsb transition.

4. Detect the qubit state (|↑〉 or |↓〉).

Steps 1-4 are repeated many times for different pulse durations t to obtain the excitation

probabilities P↓(t). From these, the phonon number distribution P ′(n), corresponding

to αi, can be obtained in the well-known manner. Equation (6.34) then directly yields

Wρ(αi).

As only a finite number M of points can be investigated in a real measurement, the Wigner

function will be known only on a very limited subset of phase space. Nevertheless, already

a relatively small number of points can be sufficient when the phonon number distributions

concentrate around low excitations [Lei96].

Figure 6.14: (a) Red dots indicate those points αi, i = 1, . . . 32 in phase space, where the Wigner
function W (αi) was measured experimentally. The circles correspond to voltage amplitudes of
20, 50, 70 and 100 mV, respectively. (b) Exemplary phonon distributions of the displaced state ρ′.
They correspond to a fixed displacement amplitude (20 mV) with varying phase.

The scheme was tested by application to a coherent state |β〉. This state can be reproduced

with high accuracy and its generation is not strongly influenced by common drift errors

(laser frequency and magnetic field). The preparation of the state ρ = |β〉〈β| (step 1 in

the list above) therefore consists of sideband cooling of the ion close to the ground state,

optical pumping into the internal state |↑〉 and the application of an ac displacement pulse.

Both phase and amplitude of this displacement pulse were fixed all the time. The following

second displacement pulse, which implements step 2, shifts the state in phase space by

−αi. Its phase ϕ = −αi/|αi| is defined relative to the phase of the first displacement pulse.
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After that, coherent sideband dynamics giving P ′(n) are generated by excitation with

the R1/R2 Raman beams. The whole sequence is illustrated in Fig. 6.13. The state was

sampled at 32 different positions αi, whereas the density of the points in phase space was

adjusted during the measurement such that the interesting, non-zero regions were sampled

more accurately, see Fig. 6.14(a).

Figure 6.15: Wigner function representation W (α) of a coherent state |β〉 = |β| eiξ. (a) shows

measured data, obtained from 32 phonon distributions like those depicted in Fig. 6.14(b). The

surface was linearly interpolated between the data points. For comparison, (b) shows W (α) derived

from theory for a state with |β| = 0.7 and ξ = 2.65.
(c) and (d) are contour plots of the experimentally and theoretically obtained graphs, respectively.

In Fig. 6.14(b), typical distributions P ′(n), occurring during the measurement of the

Wigner function, can be seen. Again, one recognizes a periodic variation in coherent state

amplitude, similar to that discussed in chapter 6.3.2. The reason for this is the particular

choice of ρ as a coherent state. For an arbitrary input state, the measurement displacement

D(−α) does, of course, not result in a coherent state again.

From all 32 phonon distributions, the Wigner function is calculated after Eq. (6.35).

Figure. 6.15 shows both measured data W (α), and the Gaussian expected from theory.

The theoretically expected shape is reproduced well, even though the finite number of

data points entails a fairly rough surface graph. The contour plots, however, prove a fairly
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good accordance between measurement and theory.

6.4.3 The Density Matrix

Both the Wigner function representation W (α) and the density matrix ρ are a complete

description of the quantum state. The former chapter demonstrated the reconstruction

of W (α) from phonon number distributions P ′(n) of the unknown state, displaced by

−α. In the following, we shortly describe how the density matrix of the state in the

energy eigenbasis can be obtained from the same data. To this end, we follow an ansatz

described in Ref. [Lei96] and note that P ′(n) = 〈n|ρ′|n〉; together with Eq. (6.32) and

|n〉 = (a†)n |0〉 /
√
n! follows

P ′(n) =
1
n!
〈0| anD†(α)ρD(α)(a†)n |0〉 =

1
n!
〈α| (a− α)nρ(a† − α∗)n |α〉

=
e−|α|

2

n!

∞∑
l,m=0

n∑
s,t=0

√
l!m!

(l − n+ s)!(m− n+ t)!

(
n

s

) (
n

t

)
×

× (−1)s+t (α∗)l−n+s+t αm−n+s+t ρlm. (6.36)

Taken for different values αi, i = 1, . . . ,M , this is a matrix equation for the density

matrix elements, which is in general overcomplete, but can be solved by standard fitting

techniques.

Figure 6.16: Density matrix of the measured coherent state in the energy eigenbasis. (a) Real
part and (b) imaginary part of ρnm.

Figure 6.16 depicts real and imaginary parts of the derived density matrix ρnm = 〈n|ρ|m〉,
calculated from the phonon distributions shown in Fig. 6.14(b). Here, the absolute value of

the state’s (arbitrary) phase was chosen to be minimal, resulting in imaginary parts close to

zero. As expected from the Wigner function results, the matrix matches a coherent state
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density matrix; the fidelity (see Eq. (1.7)) between the measured state and a coherent

state with |α| = 0.94 is F = 0.82. This is in very good accordance with the expected

value, as |β〉 was created by a displacement by a voltage amplitude of 100 mV, which

should result in |β| = 0.9. Small discrepancies could be caused by axial frequency drifts

during the long measurement time of several hours in total. Such effects can be excluded

by regular monitoring measurements of the axial frequency, and by displacement gauge

measurements like the one presented in chapter 6.3.1.

Altogether, we managed to demonstrate the feasibility to retrieve the complete quantum

state information by means of coherent ion-light interaction, which has been first demon-

strated in Ref. [Lei96]. Both the Wigner function and the density matrix representation

could be retrieved. Apart from very high phonon populations, this method is not limited

to any subset of input states but is applicable to arbitrary mixed states and hence seems

predestined for quantum thermodynamic applications necessitating the full quantum state

information. Another method has been proposed [Lut97], promising shorter measurement

times on the one hand, but posing high demands on the coherence and stability properties

of the system, on the other hand, so that the demonstrated technique seems more robust

and suitable for our needs.

6.5 The Phonon Filter

This chapter introduces a procedure to measure the motional state of the ion, that differs

from all other techniques in one crucial point: it does not average over an ensemble of many

sequently prepared states, but non-destructively projects the quantum state of a single

ion onto the energy basis. That is, the ion can be found in a known energy eigenstate

after the measurement, so subsequent operations with the same system can be performed.

Secondly, the non-destructiveness of the measurement can be exploited to increase the

fidelity of the measurement, since the measurement can be repeated several times.

6.5.1 Nondestructive Detection Principle

The scheme relies on coupling the external motion of the ion to the internal qubit system,

which can be discriminated with excellent efficiency (see chapter 3.2.1). This advantage of

high detection efficiency must be bought dearly by the fact that the qubit can always only

give a binary yes/no answer to the measurement question. The question we ask the system

will be “is the ion in state |mtest〉 or not?”, for an arbitrary phonon number mtest ≥ 0.
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The answer of the measurement scheme will be “yes” with probability |cmtest |2, when the

unknown, motional state of the ion8 is written as |ϕ〉 =
∑

n cn |n〉.

To understand the working principle of the measurement, we consider the level scheme of

the optical qubit. At the beginning, the ion is assumed to be prepared in the electronic

ground state S1/2, and it is in a Fock state of motion,

|Ψ(0)〉 = |S1/2, n〉 . (6.37)

After making a choice for mtest (where, at the moment, we assume mtest ≥ 2), a red

sideband pulse on the S1/2 → D5/2 transition is applied (step (i) in Fig. 6.17). Remember

that the rsb Rabi frequencies Ωn,n�1 generated by this pulse are different for different n.

Fluorescence Photons

Detection Laser

Fluorescence Photons

Figure 6.17: Levels and transitions involved in the filtering scheme. The optical qubit is excited
on the S1/2 ↔ D5/2 qubit transition and read out on the S1/2 ↔ P1/2 transition after each exci-
tation pulse. The durations of the exciting laser pulses are designed such that they leave an ion,
that has initially been in |S1/2,mtest〉, in the “dark” |D5/2〉-state (full π and 2π-rotations, respec-
tively; situation on the left). For an ion starting out from another motional state |S1/2, n 6= mtest〉
(situation on the right), however, the population transfer of each pulse is imperfect, so that the
successive detection step yields detectable fluorescence with nonzero probability. Shown are the
first rsb π-pulse (i), and the successive rsb (ii) and bsb (iii) 2π-pulses. Thereafter, the scheme can
be repeated with pulses (ii) and (iii) many times to increase the discrimination efficiency.

The first important step of the scheme is choosing the length t of the exciting laser pulse

exactly such, that only |mtest〉 experiences an exact π-pulse, t = π/Ωmtest,mtest�1. If the
8 The assumption of a pure state of motion is justified, since only a single particle is considered here.
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ion was in the state |mtest〉, then all population will be transferred from S1/2 into D5/2.

For any other state |n 6= mtest〉, however, the pulse area is not exactly π, and the resulting

state |Ψ(0)〉′ is a superposition between S1/2 and D5/2,

|Ψ(0)〉′ =

 |D5/2, n− 1〉 for n = mtest

aS |S1/2, n〉+ aD |D5/2, n− 1〉 for n 6= mtest

(6.38)

where, due to normalization, |aD|2 + |aS |2 = 1 and aS 6= 0. In other words, the population

transfer into D5/2 is only complete for n = mtest.

This implies, that a subsequent qubit detection step, i.e. illumination on the S1/2 ↔ P1/2

transition, will never yield resonance fluorescence for n = mtest (“dark” ion, since the ion

resides in the dark D5/2 state), but does result in fluorescence detection with probability

|aS |2 (“bright” ion) for n 6= mtest. Therefore, an initial state |n 6= mtest〉 can be detected

to be the wrong phonon state with a probability of |aS |2 > 0 (Unfortunately, this “wrong”

state |n〉 remains dark, too, with probability 1− |aS |2).

Let’s recapitulate the two possible situations that may occur after the fluorescence detec-

tion:

1. The ion is bright. In this case, the initial state of the ion cannot have been |mtest〉
since this one is dark with unit probability. The answer to our question can therefore

be answered with “no”. The motional state of the ion is destroyed due to Doppler

heating of the detection laser on the S1/2 ↔ P1/2 transition, which is of minor interest

since the question is already answered.

2. The ion remains dark. In this case, it is not possible to tell with certainty, whether

the initial state was |mtest〉 or not, since also |n〉 is projected onto |D5/2〉 with prob-

ability |aD|2. In contrast to the first case, however, the motional state has not been

corrupted now, and the measurement scheme can be continued.

After the first “dark” detection, the state of the ion is

|Ψ(1)〉 = |D5/2, n− 1〉 , (6.39)

which is valid for all n including mtest. As the dark ion’s motional state was not destroyed

by the unsuccessful fluorescence detection, we can now go on and repeatedly apply 2π-

rotations, interleaved by detection trials. The pulse durations are, again, timed such

that only |D5/2,mtest − 1〉 experiences an exact pulse area of 2π and all of its population

returns back into the dark D5/2 manifold, see steps (ii) and (iii) in Fig. 6.17. These states
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being reproduced by 2π-rotations resemble the so-called “trapping states”, which have

been investigated in cavity-QED [Wei99].

6.5.2 Determination of the Filter Transmission

As illustrated in Fig. 6.17, qubit rotations on both the red and the blue sideband are

considered for the filter scheme. The reasons for this are explained in the following.

Additionally, it will become clear, why carrier excitations are not utilized.

The task of each rotation is to accomplish a complete population transfer for mtest and

simultaneously make it as incomplete as possible for all other states. Take, for example,

the first π-rotation on the red sideband (pulse (i)). The population in the state D5/2 after

this pulse of duration t = π/Ωmtest,mtest−1 equals

P
(i)
D = sin2

(
Ωn,n−1

Ωmtest,mtest−1

π

2

)
(6.40)

for an initial phonon number of n. The smaller the right hand side of Eq. (6.40), the

better is the state |n〉 distinguished from mtest. Similar expressions hold for the red and

blue 2π-sideband pulses,

P
(ii)
D = cos2

(
Ωn,n−1

Ωmtest,mtest−1
π

)
and

P
(iii)
D = cos2

(
Ωn−2,n−1

Ωmtest−2,mtest−1
π

)
,

(6.41)

respectively.

Multiple Transmissions

These expressions show that the scheme works best, if the coupling constants of the used

transitions vary strongly with n. Hence it is crucial to choose the respective type of

transition, for which this effect is maximal. As we already derived in chapter 3.1, the

dependence of Ωn,n+m on n is maximal for the red sideband and minimal for the carrier

transition. That’s the reason for the preferred usage of the first red sideband.

There is, however, a good reason not to use the rsb exclusively, and this is due to the

periodicity of the expressions (6.40) and (6.41). While the scheme including rsb pulses

only would work in the closest vicinity of mtest, it fails, for instance, for a state |n〉, whose

rsb coupling constant Ωn,n−1 is equal to twice the one for |mtest〉. Then, of course, the

state would be subject to a 4π rotation, when |mtest〉 is rotated by 2π. Both cases result

in a complete state transfer.
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From the expressions in Eq. (3.20), we can see that Ωn,n−1 ∝
√
n for small n, so that the

described unwanted scenario already takes place for mtest = 1 and n = 4, for example.

These phonon numbers are certainly among those of greatest interest. As, however, these

“bad” pairs of phonon number states differ for the red and the blue sideband, the alter-

nating use of both efficiently avoids the problem: those states n passing through the “rsb

filter” are suppressed by the “bsb filter” and vice versa. By this trick, the scheme becomes

applicable for all values of n we are interested in (n . 10).

Special Cases

The above filter scheme is subject to the constraint mtest ≥ 2, because the ladder states

|S1/2,mtest〉, |D5/2,mtest − 1〉 and |S1/2,mtest − 2〉 are involved. For mtest < 2, the working

principle of the filter is the same, but the pulses have to be slightly adapted. For mtest = 0,

a pulse sequence similar to that proposed for stochastic cooling [Esc95, App98] is applied.

A carrier π-pulse brings the ion from |S1/2, 0〉 into |D5/2, 0〉. Successive blue sideband π-

pulses do not affect this state, but very effectively de-excite other phonon states back into

S1/2, where they are subject to resonance fluorescence detection on the dipole transition.

This pulse sequence is very efficient since the bsb pulses have zero coupling for n = mtest =

0, but a near optimal duration for all adjacent states.

For mtest = 1, an almost equal sequence can be applied like for mtest = 0, only the

initial carrier pulse has to be replaced by a red sideband π-pulse. This pulse transfers

populations from |S1/2, 1〉 into→ |D5/2, 0〉, then the procedure continues with bsb π-pulses

as for mtest = 0.

Filter Transmission of the Alternating Scheme

The overall probability PD to wrongly identify an initial state |n 6= mtest〉 as |mtest〉, i.e.

the probability for this state to remain dark after N cycles, is the product of the D5/2-

populations resulting from the single rotations (remember that after each dark detection

step, the ion is completely projected into D5/2). In the proposed scheme consisting of an

initial pulse+detection, followed by Nr red and Nb blue sideband pulse+detection cycles,

this probability is given by

PD = P
(i)
D · (P

(ii)
D )Nr · (P (iii)

D )Nb , (6.42)

where Nr = Nb = (N − 1)/2 for odd N and Nr = Nb + 1 = (N − 2)/2 + 1 for even

N , respectively. Therefore, PD, which can in some respect be interpreted as the filter
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transmission, decreases exponentially with the number N = 1 + Nr + Nb of detection

trials.
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Figure 6.18: Probability for detection of zero fluorescence, called filter transmission, after N =
0, 1, . . . 10 pulse and detection cycles. With increasing number of trials (back to front) the Fock
state to be tested for, here mtest = 3, survives the detection step and remains dark, whereas all
other Fock states have an exponentially decreasing probability for zero fluorescence detection.

Figure 6.18 shows the probability for an input state |n〉 to remain dark after N iterations,

i.e. after N excitation pulses and detection trials. The filter pulses were testing for mtest =

3 in this case. The effect of the scheme as a Fock state filter becomes vivid in this figure.

While only |mtest〉 remains dark all the time and survives the procedure, all other states

are suppressed. After N = 10 trials, there is no unwanted transmission higher than 5%

for the wide range of input states shown in the figure.

6.5.3 Coherence and Time Consumption

The detection intervals destroy the qubit coherence. Therefore, the phase stability re-

quirements put on the laser are moderate: it has to be maintained over a time period of

a typical 2π-rotation, only, which is on the order of microseconds. In particular, succes-

sive pulses don’t need to have a fixed phase relation. This makes the scheme much less

demanding than typical gate operations relying on atom-light interaction.

The duration of the whole scheme is dominated by the detection time, which is of the order

of a millisecond. This is enough time to separate bright from dark states (see chapter 3.2.1
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and Fig. 3.4 therein). Compared with this, the sideband pulses can be neglected. Thus,

one can assess about N milliseconds for a whole filter process. Regarding N = 10 and

the D5/2-lifetime of over one second, the error probability due to decay of the metastable

qubit level is less than 1%.

Recently, a novel detection technique was demonstrated that achieves a significant reduc-

tion of the fluorescence detection time, while the discrimination error can be kept very

low [Mye08]. The technique uses time-resolved photon counting and achieves discrimina-

tion errors far below 1%, with detection times being shorter than 100µs. Therewith, the

whole scheme could be sped up by almost one order of magnitude.



Chapter 7

Interaction with the Environment

A cold ion confined in a Paul trap is well isolated from its environment. Nevertheless, since

we are dealing with highly sensitive quantum systems, the residual interaction is still the

main source of disturbance [Zur03]. In accordance with the considerations leading to the

qtd requirements (V) and (VI) in chapter 1.2, it is helpful to distinguish between the ion’s

internal and external degrees of freedom here, too. As could be seen in previous chapters,

the coherent character of the utilized ion-light interactions is a crucial prerequisite for

most of the techniques presented. Uncontrollable, noisy interaction with the environment

leads to decoherence of the internal states and can completely spoil the observation of

quantum effects.

The ion motion is directly affected by fluctuating electric fields coupling to the ion’s charge.

These interactions mostly imply an uncontrolled heating of the system. After all, the ion

– effectively at the zero point of temperature – finds itself surrounded by trapping and

housing material at room temperature (luckily enough, the ion is an oscillator which only

accepts energy at sharply defined frequencies). It is obvious, that such unwanted heating

constitutes a direct disturbance of the qtd system in the sense of requirement (I). On the

other hand, this type of energy exchange can be utilized for preparation or equilibration

of the system, for example. In the following, both internal decoherence processes and

the motional state evolution during heating are investigated experimentally, and ways to

overcome the related problems are presented.
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7.1 Internal State Coherence

In order to observe pure internal decoherence effects, it was tried to exclude all other

disturbances as far as possible. This mainly refers to dephasing effects due to motional

excitation. Hence, the internal coherence time of the spin qubit was measured by the

R1/CC Raman beam combination, which produces a light field not coupling to the external

degrees of freedom.

In this context, sources of decoherence are mainly fluctuations in laser intensity and phase,

respectively, and magnetic field fluctuations giving rise to a fluctuating level separation.

Accordingly, the laser intensity was actively stabilized by direct observation with a fast

photodiode with sub-percent accuracy. The Raman field phase, which is determined by

the phase difference of the two Raman beams (see Table 3.1), is subject to fluctuations,

if the optical path length of the two Raman beams differs; the two beams, derived from

one laser source, effectively form an interferometer, where the ion sees the interference

pattern of the intersecting beams. Consequently, the approaches to making the system

more stable are the same as for interferometric setups: both the path length difference and

the enclosed area was kept at a minimum. Additionally, mechanical shielding prevents air

convection.

Magnetic field fluctuations occur on different time scales. Slow variations are predomi-

nantly caused by the laboratory’s power supply at 50 Hz. This can be effectively suppressed

by triggering each experiment at a certain phase of the sinusoidal power supply line. Faster

fluctuations are hard to compensate for, and mostly shielding is the only remedy one can

rely on. Spin-echo techniques are, however, a means to tackle the problem actively. A

descriptive picture of this technique is that unwanted, magnetic interactions occurring

during a certain time τ can be exactly undone by effectively time-reverting the interaction

after τ/2. Thus, all unwanted dynamics having happened in the first half are exactly

reverted in the second half, and at the end, the system returns into its initial state again.

The time reversal is accomplished by a so-called “spin-echo” pulse. Its action can be

most easily seen in the performed experiment, see Fig. 7.1(a). Starting from state |↑〉,
the qubit is driven into the superposition (|↑〉 + |↓〉)/

√
2 by a π

2 -pulse (Ramsey pulse)

of the Raman beams. In the following waiting time of duration τ/2, this superposition

evolves into (|↑〉 + eiϕ |↓〉)/
√

2, where the acquired phase ϕ depends on the momentary

value of the magnetic field. Now, the spin-echo pulse swaps the qubit amplitudes, which is

equivalent to producing (|↑〉+e−iϕ |↓〉)/
√

2. Thus, if the magnetic field has not significantly

changed since the beginning, the time evolution again produces a phase of ϕ, and the initial
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superposition (|↑〉+ |↓〉)/
√

2 is restored at time τ . The final π2 -Ramsey pulse then transfers

the state into |↓〉, as if nothing had happened in between the two Ramsey pulses. Indeed,

this is only true, if the second π
2 -pulse is in-phase with the first one. If they are phase

shifted by π, the second pulse brings the system back into |↑〉, again. After the second

Ramsey pulse, the qubit state is read out.
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Figure 7.1: (a) Schematic of the Raman pulse sequence. The two Ramsey π
2 -pulses are separated

by a waiting time τ . After half of this time, a spin-echo pulse with pulse area π effectively time-
reverses the state evolution. (b) Sinusoidal Ramsey fringes show the population transfer efficiency
of the second π

2 -pulse as a function of the relative phase of the π
2 -pulses. The contrast of this

signal is a measure for the coherence of the system maintained during waiting time τ . (c) Fringe
contrast as a function of waiting time. The longer the time in between the pulses becomes, the
more irreversible effects add up and destroy the internal system coherence.

As for state populations, one observes a sinusoidal dependence of the |↑〉-population on

the relative Ramsey pulse phase. Complete transfer into |↓〉 is only accomplished for

zero phase difference, and if the state was not corrupted during waiting time τ (including

the spin-echo pulse1). Hence, the contrast of the population oscillations are a very good

measure for the coherence properties of the system on timescale τ . Figure 7.1(b) shows the

well-known Ramsey fringes in state population as a function of the Ramsey pulse phase.

The visibility of the oscillation, obtained with τ = 1 ms waiting time, amounts to 95(2) %.

With increasing τ , the various decoherence effects add up and result in a lower contrast.

1 The duration of the spin-echo pulse is of the order of some microseconds and can be neglected compared

to τ .
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This can be seen in Fig. 7.2(c), where the contrast is shown for different waiting times up

to 14 ms. Even after 8 ms, the contrast of the operation is still as high as 76(4) %. This is

sufficiently long compared to those times, during which the coherence of the interaction

has to be maintained (typically < 1 ms).

Coming from the field of quantum information, a couple of approaches were proposed and

realized to get around decoherence issues. The utilization of robust clock states [Aol07b]

and decoherence-free subspaces [Lid98, Kie01, Häf05b, Aol07a, Mon09] are certainly among

the most promising ones. Nevertheless, already such a seemingly simple technique like the

presented one can increase the coherence time by almost an order of magnitude. Addition-

ally, the spin-echo pulse sequence offers the advantage, that it can be easily incorporated

into a given experimental schedule.

7.2 Heating Rates

As aforementioned, coupling to the environment causes motional heating. The reason for

this are fluctuating electric fields that mainly originate from the trap surfaces. While the

exact mechanisms are not clarified and still subject to current investigations, it is supposed

that the main contribution to the heating stems from either fluctuating patch potentials

or electric noise on the electrodes. The common observation of heating rates larger than

those expected from Johnson noise is referred to as “anomalous heating” [Des06]; it is

thermally driven and can be suppressed by cooling the trap apparatus. The effects and

contributions have been studied theoretically [Lam97, Dub09] and experimentally [Tur00,

Des06] and seem to differ in their respective scaling with the electrode-ion distance. It

has been demonstrated in Ref. [Lab08], that cooling the trap material down to cryogenic

temperatures (6 K) reduces the heating rate by seven orders of magnitude. Thus, this is

the most effective way to overcome heating problems in ion traps at the moment.

Motional heating rates can be obtained by temperature measurements after different wait-

ing times, during which the ion is neither cooled nor moved, but exclusively affected by

the heating interaction. We applied the following scheme:

(i) Preparation of the ion close to the ground state by resolved sideband cooling.

(ii) Waiting for time Th; no laser interaction during this period.

(iii) Application of motional state analysis (see section 6.3); this yields the phonon distri-

bution P (n) for each Th. This way, not only the mean phonon number (temperature)
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of the ion is obtained, but also the motional state evolution caused by the heating

is revealed.

Figure. 7.2(a) depicts the time evolution of the three lowest phonon states during the

heating process. The solid lines illustrate the expected evolution of a thermal state, whose

mean phonon number grows linearly in time, ṅ := dn̄/dt = 0.3 phonons per millisecond.

The mean phonon numbers n(Th) deduced from the distributions are shown in Fig. 7.2(b),

confirming the assumption of a constant heating rate.
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Figure 7.2: Heating rate measurement. An initially cold ion (n ≈ 0.3) is allowed to heat up for
a time Th. Then, its phonon distribution is detected. (a) shows the time development of P (n) for
n = 0, . . . , 3 during 5 ms. The solid lines indicate the expected evolution of a thermal state with
constant ṅ. (b) Mean phonon numbers deduced from the measured distributions as a function of
Th. The red line is a linear fit with ṅ = 0.3(1) ms−1.

The obtained heating rate is in accordance with values expected for a trap with the given

ion-electrode distance of ≈ 250µm. It does not pose a problem for most applications dis-

cussed above: Potential transformations lasting on the order of the inverse trap frequency

and a subsequent motional state analysis (e.g. determining the Wigner function) can be

performed in ≈ 300µs or faster, so that the motional state is altered by heating by less

than 0.1 phonon on average. However, for more advanced schemes like the phonon filter,

where several detection intervals (∼ ms) are necessary to end up with the desired accuracy,

the gain of a couple of phonons by heating alone can completely corrupt the state under

investigation. Therefore, it would be desirable to have a lower heating rate to be on the

safe side when performing more complex experiments. A cryogenic setup seems to be the

most promising approach, since the advantages of the microstructured trap should not be

sacrificed to these circumstances.
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7.3 Reservoir Engineering

We have become acquainted with two basic techniques rendering the ion in a thermal

state of motion: Laser cooling on the one hand, and coupling to a reservoir (the ion’s

surroundings), on the other hand. The authors of Ref. [Poy96] introduced a theoreti-

cal interpretation of a special class of light-atom interactions, that in some sense bridges

the two approaches. They showed, that the light fields can be interpreted as a special

kind of reservoirs for the ion. The light applied for resolved-sideband cooling, for ex-

ample, can be interpreted as a zero-temperature reservoir, which couples to the ion and

makes it equilibrate to (almost) ground state. Both the type of interaction, its strength,

and its temporal properties completely lie in the hands of the experimenter. Engineered

reservoirs have been exploited experimentally to investigate the decoherence of quantum

superpositions [Mya00].

The master equation describing the time evolution of the reduced density operator (with

respect to the reservoir) ρ for the system in the interaction picture is given by [Poy96]

ρ̇ = γ (2fρf † − f †fρ − ρf †f), (7.1)

where the operator f models the system-environment interaction and γ is a parameter

depending on the Rabi frequency, the Lamb-Dicke parameter and the upper state lifetime.

While the described ground-state cooling relies on first red sideband transitions, which

means that the coupling operator f is linear in the annihilation operator of the motional

mode, f = a, tuning the laser to higher motional sidebands results in nonlinear couplings;

for instance, when δ = −2ωz, a photon absorption plus the following spontaneous decay

annihilates two phonons and f = a2.

By simultaneous application of multiple light fields, tuned to different motional sidebands,

a variety of interactions can be realized, even those which may not have a “real” reservoir

counterpart. Interestingly, the ion’s final motional state of such engineered interactions

can be highly non-classical, like entangled pure states [MF96]. This possibility to gen-

erate switchable, tailored reservoirs for the ion paves the way for experiments going far

beyond classical notions of system-bath coupling. Additionally, allows for implementing

a requirement often implied in standard textbooks, and strictly fulfilled by only very few

implementations: Switching between open and closed systems, at arbitrary points in time.



Chapter 8

Conclusion and Outlook

Performing thermodynamic experiments in both the non-equilibrium and the quantum

regime is a demanding task. At the beginning of this work, we have investigated the

problem from an abstract point of view, and raised the question what requirements have

to be fulfilled by the system itself, on the one hand, and the experimenter’s possibilities,

on the other hand. This lead us to the formulation of the six terms in chapter 1. The

following chapters showed, that each of these requirements can be met by the trapped-ion

system, where the motion of the ion is the respective degree of freedom under investigation.

A central tool within this approach is the coherent interaction between light and matter,

which allows for an efficient manipulation of both the internal and the external degrees of

freedom of the ion. The latter can happen on the single quantum level and thus in fact con-

stitutes the experimental interface into the quantum regime. In addition to this concept,

the trapped-ion approach profits from other developments and techniques on the field of

quantum information such as different cooling techniques, the segmented trap idea, or the

unrivaled detection efficiency and so forth. Moreover, it could be seen that by resorting

to techniques stemming from two different qubit implementations, specific case-to-case

requirements in terms of experimental effort, coherence times, pulse fidelity, detection effi-

ciency and so on, can be optimally met. As for coherent ion-light interaction, all techniques

necessary for the implementation of thermodynamic tasks were demonstrated.

It has been shown, that the motional state of a trapped ion constitutes a physical system

best suited for quantum thermodynamic experiments. The system’s state can be prepared

into a well-defined initial thermal state. Thereby, the mean energy of the system can

range from ground state (n < 10−3) to almost arbitrarily high excitations, where the

range from n = 0 to n = O(1) is very accurately adjustable. This is a regime of utmost
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interest, since here, both finite temperature and quantum effects emerge. We discussed

and experimentally demonstrated different preparation techniques, and measured the time-

resolved state development during such a process. The preparation of non-thermal states,

is possible, too.

The parametric transformation of the system Hamiltonian can take on diverse forms. We

discussed and a couple of possible realizations under theoretical and practical aspects,

and implemented a series of transformations within this work. The linear, segmented Paul

trap design plays a prominent role when it comes to the realization of time-dependent

electric potentials. Numerical and practical methods for the generation of arbitrary, time-

dependent trapping potential were shown. The fidelity, desired potentials can be experi-

mentally realized with, is remarkable, and paves the way for various applications in both

the field of quantum thermodynamics and quantum information. Further transformations,

like the coherent displacement process, were studied, extensively tested, and utilized for

pursuing more sophisticated applications. The variety of realizable processes with highest

accuracy pointed out to be one of the most substantial arguments for the trapped-ion

system.

Equally powerful is the set of detection methods at hand. A set of fast, reliable methods

for the measurement of the system’s temperature has been demonstrated, covering both

the ultra-cold (n < 1), the intermediate (n = O(1)) and the high temperature (n � 1)

region. As we are dealing with non-equilibrium processes, it is essential not to restrict

oneself to thermal distributions. A very versatile tool has been presented enabling us

to measure the phonon number distribution of arbitrary states. It also builds the ba-

sis for more complicated schemes. Among these applications is the measurement of the

Wigner function and the full density matrix of the mixed quantum state, respectively;

Both has been demonstrated experimentally. These are very powerful methods, since they

allow for a complete description of the quantum state. Additionally, new, powerful and

techniques have been developed in order to account for the specific needs of quantum

thermodynamic experiments. A non-destructive procedure, allowing for the projective

measurement of energy eigenstates has been discussed for the observation of fluctuation

events in a non-equilibrium process. Again, we asses that the single-ion approach excels

in terms of detection and measurement possibilities compared to other systems. In par-

ticular, the option to measure single processes rather than performing averaging ensemble

measurements is a fascinating feature.

We presented methods to suppress decoherence in the system. Decoherence effects can

be efficiently prevented by a careful choice of the internal dynamics involved, which is
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closely connected to laser and magnetic field stability issues. For this, two different qubit

systems, comprising an optical quadrupole and a Raman transition, respectively, have been

implemented. Each of these qubit implementations poses different stability demands. By

the aid of these systems, it could be demonstrated by various results, that decoherence is

not a limiting factor for the presented experiments.

Finally, we have seen that one of the most prominent features of trapped ions compared to

larger systems is their isolation from the environment. Reasons for this are the ultra-high

vacuum environment, the high spectral insensitivity towards radiation, and the relative

insensitivity towards motional energy transfer into a nearly perfect harmonic oscillator.

The residual coupling is dominated by heating due to fluctuating electric fields, which is –

roughly speaking – worse, the smaller the trap is. This showed to be a severe problem for

the implementation of very complicated, time consuming operations like the phonon filter

in our micro-trap, and hindered us from implementing experiments based on the filter

technique apart from basic steps. Although, all other requirements for the filter, such as

laser-driven state rotations and efficient fluorescence detection, for example, have been

demonstrated. Together with the presented abilities to prepare, transform and detect the

motional state of the ion, the confidence is well-founded, that a cryogenic setup [Lab08] will

facilitate a series of further experiments exploring the quantum thermodynamic regime,

like a test of the quantum Jarzynski equality [Hub08b]; a cryogenic Paul trap (∼ 4 K) is

currently prepared and set up in our group.

Considering all presented theoretical and experimental findings, we draw the conclusion

that the trapped-ion system is outstandingly well-suited for the implementation of quan-

tum thermodynamic experiments. All properties postulated at the beginning of this work

have been shown to be realizable and all requirements have been fulfilled. Concerning most

points, not only a single, but a whole spectrum of possible solutions could be presented

and demonstrated experimentally. It bears repeating that under most aspects, the system

seems in deed predestined for our purposes; this is due to its intrinsic properties one the

one hand, and the set of powerful, yet accurate tools the coherent ion-light interaction

provides, on the other hand.

Close, fruitful connections to other fields have been unveiled: The transport transforma-

tion is of utmost interest in scalable quantum computation, and has been demonstrated

to be applicable for the realization of a one-atom field probe [Hub10], just to give two

of the numerous examples. The field calculation techniques presented here have facili-

tated the development of even more complex and miniaturized Paul and Penning trap

designs [Hel10]. In future, thermodynamic considerations may help, for instance, to en-
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gineer robust quantum gates, and bichromatic laser fields used for high-fidelity quantum

gates [Ben08b] resemble engineered laser baths. A study of the decoherence processes in

a Paul trap caused by exposing the system to more than one source of noise has been

proposed in Ref. [Bee10]. Here, an effective temperature can be used to characterize the

nonequilibrium environment.

The single ion system is very basic and extendable in many respects. Employing multiple

ions allows for the simulation of the interaction between multiple systems and a controlled

environment [Paz08, Cor09]. Anharmonic potentials can be used to study analytically

unsolvable problems, and light forces can be used to implement state-dependent, time-

varying potentials.

Altogether, the prospects on possible applications and new research perspectives opened

by quantum thermodynamical experiments are manifold and promising. Apart from those

treated above, experiments in the nearest future could comprise non-equilibrium processes

by temperature changes [Wil08], the verification of recently found (in)equalities of fun-

damental thermodynamic quantities [Jar97, Kaw07], or quantum engines [Rez06, Qua07,

Qua09]. For the first time, it could be comprehensively demonstrated how such experi-

ments can be realized.



Chapter 9

Appendix

9.1 Segmented Linear Paul Traps

Two different linear Paul traps were used for the experiments presented in this thesis. This

section presents all trap specific features that might be necessary for the understanding

of the conducted experiments. All construction details can be found in references [Sch08,

Deu07]. Most of the experiments were carried out in a micro-fabricated chip trap (denoted

micro-trap), which is described in the following section 9.1.1.

The transport experiments presented in sections 5.2.2 and 6.2.2 were performed in a trap

manufactured in printed circuit board (pcb) technology, therefore it is referred to as pcb-

trap. Section 9.1.2 presents layout and construction details for this Paul trap.

9.1.1 The Micro-Trap

The micro-trap is a linear Paul trap with a three-dimensional electrode structure. Its

layout is schematically depicted in Fig. 9.1 and shows the four plane electrode wafers kept

at a certain distance. Two of them carry the structures for the dc electrodes responsible

for axial confinement, the other two are connected to the radio frequency ac drive and

provide radial confinement. The ion is trapped along a line in the middle of the central

slit. The wafers itself consist of gold coated Aluminium-oxide (alumina, Al2O3) into which

the electrode structures were cut by femtosecond laser pulses.

This trap was especially designed for scalable quantum information experiments and excels

in its versatility to generate – static or time-dependent – external potentials for trapped

155
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Figure 9.1: Schematic of the micro-trap layout (front view). It consists of a wider loading
zone (to the left) and a narrower processing zone (to the right); these zones are connected by an
intermediate region where the electrode-electrode distance is tapered from left to right. Each of
the electrodes is individually addressable. EC1 and EC2 are end cap electrodes.

ions. This is mainly due to the high number of individually addressable electrodes: it

provides 33 pairs of single electrode segments plus one pair of end cap electrodes (EC1

and EC2) on each end of the linear trap structure, making a whole of 70 independent

electrodes.

The trap can be logically divided into three parts that differ in ion-electrode distance and

electrode width. The first one called trapping zone offers the largest ion-trap distance and

segment width. The design parameters of this region were chosen in order to facilitate the

loading process by moderate trap frequencies. The calcium oven is aligned such that only

this part of the trap is reached by neutral atoms. This prevents the other trap regions

from being contaminated by the calcium beam. Patches of partially charged or chargeable

material covering the electrodes are highly suspected to influence the trapping potentials

and to increase heating rates.

In a second, intermediate taper zone the ion-electrode distance is linearly reduced from

250µm down to 125µm. The segment width is kept constant at 250µm. This tapered

structure offers interesting possibilities to investigate systematically the influence of the

environment on the ion, as the distance between ion and electrodes can be varied in a very

controlled manner by moving the ion further into the taper.

The taper zone ends into the so-called processing zone. Both segment width and slit

height are reduced resulting in higher possible trap frequencies. This zone was designed

to be the place where quantum information tasks like quantum gates can be performed

best. The higher trap frequencies can be exploited to speed up quantum logic operations.

Besides, due to the high segmentation of this zone (19 segment pairs), multiple individual,

independent trapping potentials can be generated, each confining a small (processable)

number of ions.
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Both loading and processing zone have an additional pair of wide electrodes (0 and 32 in

Fig. 9.1) that can be used as a sort of end cap electrodes of the trap. The true end caps

(EC1 and EC2) completing the trap structure are not used most of the time, but can be

useful to generate a field along the axial direction.

9.1.2 The PCB-Trap

The pcb-trap was mainly used to perform transport experiments with single cold ions. It

is described in [Hub08a] or in more detail in the thesis of Dr. Th. Deuschle [Deu07]. The

pcb-trap is a segmented linear Paul trap consisting of four printed circuit boards1 (pcb)

arranged in an x-shaped geometry, i.e. the boards are arranged in 90◦ angles such that

dc and rf boards alternate, see Fig. 9.2. The two dc boards provide 2 × 15 independent

electrodes and thus allow for designing the axial potential in a wide parameter range, a

property we utilize for instance by generating time-dependent transport potentials.

2 mm 0.5 mm 0.12 mm (gap)

Segment no. 1 2 3 4 5 6... 14 15

4 mm 2 mm

TaperLoading Processing zone

Cu

Figure 9.2: Schematic of the pcb-trap layout (front view). It consists of a wider loading zone (to
the left) and a narrower processing zone (to the right); these zones are connected by an intermediate
region where the electrode-electrode distance is tapered from left to right. Each of the electrodes
is individually addressable. EC1 and EC2 are end cap electrodes.

The two rf electrodes (one on each board) are always kept at the same, alternating ac

voltage, typically 400 V peak to peak amplitude resulting in 750 kHz radial trap frequency.

As the micro-trap described in the previous section, the trap can be divided into three

parts that differ in the central slit’s height or the ion-electrode distance, respectively.

Note that the latter is a factor of eight larger than it is in the micro-trap; accordingly, the

electrode segment widths are scaled up, too (2 mm and 0.5 mm, respectively). This results

in lower trap frequencies for the same voltages applied.

The design objectives for the three trap zones were the same as for the micro-trap and

are described in the previous section. The region with the highest trapping volume eases
1 Material: P97 by Isola, pcb manufacturer micro pcb AG.
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loading of new ions into the trap and helps to avoid contamination of the processing zone

by the calcium oven. The processing zone is where all experiments presented in this thesis

were performed.

9.2 FPGA-Based Fast Voltage Supply

To realize a fast voltage supply for the 64 independent electrodes of the micro-trap, the

voltages are generated by a set of 16 digital to analog converters2 (dac) in parallel, each

of which is able to generate four independent voltages. This design offers the advantage

to be scalable to even much higher electrode numbers. Each of the four outputs of one

dac can be serially programmed to generate a voltage in the range from −10 V to +10 V,

where the amplitude resolution is 16 bit. All 16×4 voltages can be triggered and updated

synchronously by additional control lines.

Thus, 16 parallel data lines, each addressing one dac, and each containing serial pro-

tocol data for its four outputs, have to be transmitted in parallel in order to perform

synchronous, time-dependent voltage changes on all electrodes. For high update rates

and large electrode numbers, the data rate can be significantly large. For instance, over

30 MB/s of digital data has to be transfered for 64 channels, 16 bit per channel and an

update rate of 250 kHz.

To this end, the protocol data is precomputed by the experimental control software. To

realize a fast data transfer to the dac, the data is streamed to and buffered by a field-

programmable gate array3 (FPGA), which offers ≥ 64-bit bandwidth, and realizes the fast

data transfer to the dac board via ethernet during the experiment. With this setup, it

was possible to generate voltage sequences with update intervals down to 4µs for all 64

channels.

9.3 Realization of a Single Photon Time Stamp

The utilized digital counter used for photon counting4 has an internal 24-Bit register and

two digital input ports, SRC and GATE. For standard use, the TTL-signals generated from

the photomultiplier tube (PMT) for each detected photon are fed into SRC and increment

2 DAC8814; Quad, Serial Input 16-Bit Multiplying Digital-to-Analog Converter by Texas Instruments.

Maximum clock frequency 50 MHz.
3 Xilinx Virtex-5 FX30T-1 on Xilinx Virtex-5 FXT Evaluation Board.
4 National Instruments NI PCI-6733 High-Speed Analog Output with two digital 24-Bit counters.
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the register by one for each photon. In regular time intervals (detection time), a rising

edge on the GATE port writes the momentary register value into another memory area.

Thus, the accumulated number of photon events from the beginning of the measurements

until the rising GATE edge is read out and can be further processed by software (for

instance, counter overflow is intercepted and corrected).

This standard technique yields the number of photons detected during those time intervals

delimited by the GATE signals. The following trick makes it possible to obtain the arrival

time of each photon with minimal memory consumption: The SRC port of the counter is

fed with a TTL signal, whose edges are separated by a fixed interval ∆T , i.e. the value

of the register always exactly contains the time in units of ∆T since the beginning of the

measurement. The PMT-signals, however, are now fed into the GATE port. When a

photon is detected by the PMT, a rising edge triggers the readout of the register, which

exactly yields the time of the photon detection in units of ∆T . The result is a list of

detection times, each corresponding to one detected photon.

The great advantage over a direct sampling of the detection interval is the minimal amount

of data generated. The data rate does not depend on the time resolution but only on the

number of photon events. For the longest implemented counting intervals of approximately

200 ms and a time resolution of 100 ns, sampling the whole interval would produce 7.6 MB

of data (32-Bit) for each interval. For a mean photon count rate of 10 kHz, only 2000

photons are detected during this interval, giving a by three orders of magnitude reduced

data rate of less than 8 kB. The SRC signal, which actually plays the role of the “clock”

in the measurement, can be easily generated by standard function generators, so that

sampling rates up to the GHz-range can be easily accomplished.

9.4 Quantum State Phonon Distributions

Explicit expressions and convenient formulas for the most common phonon distributions

P (n) are summarized in this section. Hereby, P (n) = ρnn = 〈n|ρ|n〉, where ρ is the

density operator of the motional state. For a pure state |ϕ〉, this simplifies to | 〈n|ϕ〉 |2.

All distributions are normalized,
∑∞

n=0 P (n) = 1.

9.4.1 Thermal States

We begin with the most common state, the so-called thermal state. It is fully characterized

by its temperature T . We define the inverse temperature β := 1/(kBT ), where kB is
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the Boltzmann’s constant and T the temperature. With H being the Hamiltonian of the

system, the eigenstates |n〉 and eigenenergies En of the system are given by H |n〉 = En |n〉.
The density matrix of a thermal state is given by the Boltzmann distribution,

ρ =
1
Z

exp(−βH), (9.1)

where

Z = Tr {exp(−βH)} (9.2)

is the partition function of the canonical ensemble. From Eq. (9.1), we see that the den-

sity matrix of a thermal state has no (offdiagonal) coherences; its elements are ρnm :=

〈n| ρ |m〉 = δnmPth(n), with δnm being the Kronecker delta. The phonon number distri-

bution follows from Eq. (9.1) as

Pth(n) = 〈n|ρ|n〉 =
1
Z
e−βEn . (9.3)

For a harmonic oscillator with frequency ωz, the eigenenergies are En = ~ωz(n+ 1
2), and

Z =
∞∑
n=0

e−βEn =
eβ~ωz/2

eβ~ωz − 1
. (9.4)

For low temperatures β~ωz = O(1), it is convenient to use the mean phonon number

n :=
∑∞

n=0 nP (n) instead of β to characterize the distribution. For a thermal state with

inverse temperature β, the following equations help converting between these quantities:

n(β) = 1/(eβ~ωz − 1)

β(n) = ln
(

1 +
1
n

)
/ (~ωz)

Pth(n) =
nn

(n+ 1)n+1

Z =
√
n(n+ 1)

(9.5)

Figure 9.3 depicts distributions for thermal states corresponding to different n. A trapped
40Ca+-ion with ωz = 2π× 1.4 MHz cooled down to a mean phonon number of n = 1 has a

temperature of T ≈ 100µK. It is noticeable that in such cases, β~ωz = (~ωz)/(kBT ) ≈ 0.7,

so the thermal energy is on the same order of magnitude like the separation of the quantum

levels, so the emergence of quantum effects is obvious in this low temperature regime.

9.4.2 Coherent States

In a classical picture, a particle confined in a harmonic potential has the lowest energy

when resting at the potential minimum; this condition’s quantum counterpart of the lowest
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Figure 9.3: Phonon number distributions of different thermal states. These mixed states are
completely defined by their inverse temperature β = (kBT )−1. In the case of a harmonic oscillator
with frequency ωz, the mean number n of vibrational quanta (phonons of energy ~ωz), is more
pictorial to characterize the state. Conversion formulas are given in Eq. (9.5). One can clearly see
how the population more and more aggregates in the motional ground state n = 0 for temperatures
approaching n = 0 or T = 0, respectively. All these thermal distributions are exponential according
to Eq. (9.3).

possible excitation energy is the ground state |0〉. If the classical particle is displaced

from the potential minimum, it will undergo oscillations around the potential minimum.

Its motion can be described by a trajectory in phase space (spanned by position and

momentum), where each point of time corresponds to one point in phase space.

In the quantum case, due to the Heisenberg uncertainty principle, the state of the particle

can not be described by a single point with definite position and momentum. Instead, the

quantum counterpart is a so-called coherent state. Its position and momentum expectation

values follow the classical phase space trajectory, and its phase space representation (e.g.

the Wigner function) is centered around this classical trajectory point.

Consequently, we define the coherent state |α〉 as a displaced ground state of motion,

|α〉 = D(α) |0〉 . (9.6)

The displacement operator D(α) = exp(αa† − α∗a) displaces the state in phase space by
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Figure 9.4: Phonon number distributions of different coherent states. These distributions are
Poissonian according to Eq. (9.11). A coherent state is characterized by the complex parameter
α, being a measure for its excitation. Accordingly, its mean phonon number is given by n = |α|2.
The complex phase of the state is not reflected in the phonon number distribution. For higher n,
the distribution is almost Gaussian while for n→ 0, it becomes close to exponential.

α. The quantity α is a complex representation of a point in phase space,

α =
√
mωz
2~

x+ i

√
1

2m~ωz
p, (9.7)

where x and p are the position and momentum of the ion, respectively5. Figure 9.5

illustrates the effect of D(α). While the modulus |α| of the displacement parameter is a

measure for the strength of the displacement “force” and hence the particle’s excitation

(n = |α|2), its phase models the phase of the driving force. The displacement operator is

unitary and its inverse is equal to a displacement with negative magnitude,

D−1(α) = D†(α) = D(−α). (9.8)

Two subsequent displacements with magnitudes α1 and α2 are equal to one displacement

with magnitude α1 + α2 and a phase shift depending on both magnitudes,

D(α2)D(α1) = ei Im(α2α∗1) D(α1 + α2). (9.9)

5 This can be most easily seen from α being the eigenvalue of â corresponding to the eigenstate |α〉.
The harmonic oscillator annihilation operator â can be written as

√
mωz
2~ x̂+ i

√
1

2m~ωz
p̂.
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0

Figure 9.5: Illustration of the effect of the displacement operator D(α) on the ground state of
motion |0〉 by the Wigner function in complex phase space. The ground state is a Gaussian state
and therefore its phase space representation W (α) is a Gaussian around the origin α = 0. The
displacement operator shifts the state by α = 3(1 + i) without distorting the distribution’s shape.

In the number state basis, a coherent state reads

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 , (9.10)

from which the phonon distribution

Pcoh(n) = | 〈n|α〉 |2 = e−|α|
2 |α|2n

n!
(9.11)

can be directly obtained. This is a Poissonian distribution with mean value n = |α|2. For

stronger displacements, the phonon distribution can hence be approximated by a Gaussian

function. In the limit n → 0, the coherent and thermal state distributions become more

and more indistinguishable, after all the ground state of motion |n = 0〉 is both a coherent

(|α = 0〉) and a thermal state (at T = 0). This can be comprehended by the coherent

state distributions shown in Fig. 9.4.

The free time evolution of the coherent state |α〉 in a harmonic oscillator of frequency ωz
can be described by a time-dependent displacement parameter as

α(t) = e−iωzt α(0). (9.12)

This means, that the phase space distribution depicted in Fig. 9.5 simply rotates around

the origin (at frequency ωz), without changing its principal shape or spread.

Explicit expressions for phonon number distributions of displaced arbitrary Fock states

can be found in Ref. [Cah69]. With that, one can, for example, derive displaced thermal

state distributions.
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9.4.3 Squeezed Vacuum States
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Figure 9.6: Phonon number distributions of squeezed vacuum states. The parameter r defines
the squeezing amplitude. Note, that only even number states result from application of Ŝ(z) to
the ground state, since the squeezing operator is quadratic in â and â†, respectively.

A squeezed vacuum state results from application of the unitary squeezing operator

Ŝ(z) = exp
{

1
2

(
zâ† − z∗â2

)}
(9.13)

to the vacuum (ground) state |0〉. Here, the squeezing parameter z := r · eiθ defines the

amplitude r and the angle or phase (θ) of the squeezing. As the creation and annihilation

operators appear only quadratically in Eq. (9.13), only even number states are popu-

lated in the squeezed vacuum state. The corresponding number state distribution has the

form [Dod94]

Psv(n) =


1

cosh r

(
tanh r

2

)n n!
[(n/2)!]2

, for even n

0, for odd n
(9.14)

Psv(n) is depicted in Fig. 9.6 for different values of r. Its mean phonon number is given by

n = sinh2 r. The application of the squeezing operator is, of course, not restricted to the

vacuum state. The function P (n) for an arbitrary mixed input state is very complicated

in general. Phonon number distributions for arbitrary squeezed coherent and Fock states

can be found, for example, in Ref. [Dod94].
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9.5 Magnetic Level Splitting

For a weak magnetic field, the fine structure levels (spin S = 1/2, orbital angular mo-

mentum J and total angular momentum J) of 40Ca+split into 2J + 1 sublevels due to

the Zeeman effect. These levels are labeled by their magnetic quantum number m =

−J,−J + 1, ...,+J . Given a magnetic field strength B, the magnetic field-dependent en-

ergy of a certain level λ := (S,L, J,m) reads

Eλ(B) = Eλ(0) + ∆Eλ = Eλ(0) + µBB ·mgλ (9.15)

where µB = h× 1.400 MHz/Gauss is the Bohr magneton, h the Planck constant and gλ is

the Landé-factor of the fine structure level. It depends only on L and J (S = 1/2 for all

transitions here) and can be calculated from

g(L,J) = 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
, (9.16)

where the g-factor of the spin was approximated with 2. The following table shows g(L,J)

for all relevant levels:

Level S1/2 P1/2 P3/2 D3/2 D5/2

S,L,J 1
2 ,0,1

2
1
2 ,1,1

2
1
2 ,1,3

2
1
2 ,2,3

2
1
2 ,2,5

2

g(L,J) 2 2/3 4/3 4/5 6/5

Table 9.1: Quantum numbers and Landé-factors of all relevant levels in 40Ca+.

Therewith, the transition energy between two Zeeman levels λ1 and λ2 is given by

Eλ2(B)− Eλ1(B) = ∆E12(0) + µBB · (m2 gλ2 −m1 gλ1), (9.17)

where ∆E12(0) is the transition energy at zero magnetic field. In special, the S1/2-Zeeman

splitting of the spin qubit is obtained (here in terms of frequency) with gλ1 = gλ2 = 2 as

∆Z :=
1
~

(
E(0, 1

2
,+ 1

2) − E(0, 1
2
,− 1

2)
)

=
2
~
µB B ≈ 2π × 2.799 MHz×B/Gauss. (9.18)

Note that neither are there magnetic field insensitive levels nor is it possible to find a pair

of sublevels in S1/2 and D5/2, respectively, so that the differential energy shift cancels.

This would be advantageous to avoid loss of phase coherence by magnetic field fluctuations.

The odd isotope 43Ca+, that has – in contrast to 40Ca+– a non-zero nuclear spin I = 7/2

and thus a hyperfine structure, exhibits magnetic field insensitive levels with mF = 0, so

that in first order of B magnetic field insensitive transitions are possible [Kir09].
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9.6 Scientific Publications
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New Journal of Physics 10, 013004 (2008)

• Employing trapped cold ions to verify the quantum Jarzynski equality

G. Huber, F. Schmidt-Kaler, S. Deffner and E. Lutz

Physical Review Letters 101, 070403 (2008)

• Coherent Manipulation of a 40Ca+Spin Qubit in a Micro Ion Trap

U. G. Poschinger, G. Huber, F. Ziesel, M. Deiß, M. Hettrich, S. A. Schulz, K. Singer,

G. Poulsen, M. Drewsen, R. J. Hendricks and F. Schmidt-Kaler

Journal of Physics B: Atomic, Molecular and Optical Physics 42, 154013 (2009)

• A trapped-ion local field probe

G. Huber, F. Ziesel, U. Poschinger, K. Singer and F. Schmidt-Kaler

Accepted for publication in Applied Physics B: Lasers and Optics (2010), in print
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Transport of ions in a segmented linear Paul trap in printed-circuit-board

technology

G. Huber, T. Deuschle, W. Schnitzler, R. Reichle, K. Singer and F. Schmidt-Kaler

Published 14 January 2008 in the scientific journal:

New Journal of Physics

(Volume: 10 / Page: 013004 / Year: 2008)



T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Transport of ions in a segmented linear Paul trap
in printed-circuit-board technology

G Huber 1, T Deuschle, W Schnitzler, R Reichle, K Singer
and F Schmidt-Kaler
Institut für Quanteninformationsverarbeitung, Universität Ulm,
Albert-Einstein-Allee 11, D-89069 Ulm, Germany
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New Journal of Physics 10 (2008) 013004 (15pp)
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Published 14 January 2008
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Abstract. We describe the construction and operation of a segmented linear
Paul trap, fabricated in printed-circuit-board technology with an electrode
segment width of 500µm. We prove the applicability of this technology to
reliable ion trapping and report the observation of Doppler-cooled ion crystals
of 40Ca+ with this kind of trap. Measured trap frequencies agree with numerical
simulations at the level of a few percent from which we infer a high fabrication
accuracy of the segmented trap. To demonstrate its usefulness and versatility
for trapped ion experiments we study the fast transport of a single ion. Our
experimental results show a success rate of 99.0(1)% for a transport distance
of 2× 2 mm in a round-trip time ofT = 20µs, which corresponds to 4 axial
oscillations only. We theoretically and experimentally investigate the excitation
of oscillations caused by fast ion transports with error-function voltage ramps:
for a slightly slower transport (a round-trip shuttle withinT = 30µs) we observe
non-adiabatic motional excitation of 0.89(15) meV.

1 Author to whom any correspondence should be addressed.

New Journal of Physics 10 (2008) 013004
1367-2630/08/013004+15$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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1. Introduction

Three-dimensional (3D) linear Paul traps are currently used for ion-based quantum
computing [1]–[4] and high-precision spectroscopy [5]–[7]. An axial segmentation of the dc
electrodes in these traps enables the combination of individual traps to a whole array of micro-
traps. Structure sizes down to the range of a few tens of micrometres [8, 9] are nowadays in
use and mainly limited by fabrication technology. However, most of these fabrication methods
require advanced and non-standard techniques of micro-fabrication as is known from micro-
electro-mechanical system (MEMS) processing or advanced laser machining. Long turn-around
times and high costs are complicating the progress in ion trap development. In this paper,
we present a segmented 3D ion trap which is fabricated in UHV-compatible printed-circuit-
board (PCB) technology. While with this technology, spatial dimensions of electrodes are
typically limited to more than 100µm, the production of sub-millimetre sized segments is
simplified by the commonly used etching process. The advantages of PCB-traps are therefore
a fast and reliable fabrication and consequently a quick turn-around time, combined with low
fabrication costs. The feasibility of the PCB-technique for trapping ion clouds in a surface-
electrode trap has already been shown in [10]. In future, we anticipate enormous impact of
the PCB-technology by including standard multi-layer techniques in the trap design. On a
longer timescale on-board electronics may be directly included in the layout of the PCB-boards,
e.g. digital-to-analog (DA) converters may generate axial trap control voltages or digital radio
frequency (RF)-synthesizers could be used for dynamical ion confinement.

In this paper, we first describe the fabrication of our PCB-trap and the overall experimental
set-up in section2. The following section3 is dedicated to a comparison of measured trap
frequencies with numerical simulations for a characterization of radial and axial trapping.
Special attention is paid in section4 to the compensation of electrical charging effects of the
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Figure 1. Electrode design. (a) Close-up view of the blade design: the dc-blade
segment width is 2 mm in the loading and taper zone, and 0.5 mm in the
experimental zone. The trap consists of a 4 mm wide loading zone, a tapered
intermediate zone, and a 2 mm wide experimental zone. (b) Sketch of the
assembled X-trap consisting of four blades, drawn with missing front blade
holder for sake of clarity. Compensation electrodes C1 and C2 are parallel to
the trap axis.

trap electrodes since PCB-technology requires insulating grooves between the electrodes that
may limit the performance of the trap. We adjust the compensation voltages to cancel the effect
of stray charges and investigate the stability of these compensation voltages over a period of
months. Our measurements show that PCB-traps are easy to handle, similar to standard linear
traps comprising solely metallic electrodes. In section 5, the segmentation of the dc-electrodes
is exploited to demonstrate the transport of a single ion, or a small crystal of ions, along twice
the distance of 2 mm in a round-trip shuttle over three axial trap segments. Special attention is
given to fast transports within total transport times of T = 20–100 µs, corresponding to only
4–20 times the oscillation period of the ion in the potential. We checked the consistency of the
measured data with a simple transport model.

2. Experimental set-up

2.1. Design, fabrication and operation of PCB-traps

The trap consists of four blades, two of them are connected to a RF supply and the two
remaining, segmented blades are supplied with static (dc) voltages, see figure 1. The dc- and
RF-blades are assembled normal to each other (the cross-section is X-shaped). In a loading
zone, the two opposing blades are at a distance of 4 mm. A tapered zone is included in order to
flatten the potential during a transport between the wider loading and the narrower experimental
zone. In the latter zone, the distance between the blades is reduced to 2 mm. The material
of the blades is a standard polyimide material coated by ∼18 µm of copper on all sides of
the substrate. Etched insulation grooves of 120 µm in the copper define dc-electrodes. The
RF-drive frequency near �/2π = 11.81MHz is amplified and its amplitude is further increased
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Figure 2. Energy levels and relevant optical transitions of40Ca+.

by a helical resonator before it is applied to the RF blades. At typical operating conditions, we
measure a peak-to-peak voltage of aboutV = 400Vpp by using a home-built capacitive divider
with a small input capacitance to avoid artificial distortion of the signal by the measurement. The
dc-control voltages from a computer card are connected to the trap segments via low-pass RC-
filters with corner frequency at 1 MHz. The trap is housed in a stainless steel vacuum chamber
with enhanced optical access held by an ion getter and a titanium sublimation pump at a pressure
of 3× 10−10 mbar. This value was reached without bakeout, indicating the UHV-compatibility
of the PCB-materials2.

2.2. Laser excitation and fluorescence detection

The relevant energy levels of40Ca+ ions are shown in figure2. All transitions can be either
driven directly by grating stabilized diode lasers, or by frequency doubled diode lasers3. The
lasers are locked according to the Pound–Drever–Hall scheme to Zerodur Fabry–Perot cavities
for long-term frequency stability. Each laser can quickly be switched on and off by acousto–
optical modulators. Optical cooling and detection of resonance fluorescence is achieved by
simultaneous application of laser light at 397 and 866 nm. Radiation near 854 nm depopulates
the D5/2 metastable state (1.2 s lifetime).

Two laser sources at 423 (65 mW) and 375 nm (61 mW) are used for photoionization
loading of ions [11, 12]. The high loading efficiency allows for a significant reduction of the
Ca flux from the resistively heated oven and minimizes the contamination of the trap electrodes.
By avoiding the use of electron impact ionization the occurrence of stray charges is greatly
suppressed.

In this experiment, laser beams near 397, 866 and 854 nm are superimposed and focused
into the trap along two directions: one of these directions (D1) is aligned vertically under 5◦

with respect to the top–bottom axis and the other beam (D2) enters horizontally and intersects
the trap axis under an angle of 45◦. A high-NA lens is placed 60 mm from the trap center behind
an inverted viewport to monitor the fluorescence of trapped ions at an angle perpendicular to the
trap axis direction. The fluorescence light near 397 nm is imaged on to the chip of an EMCCD
camera4 in order to achieve a photon detection efficiency of about 40%.

2 Material P97 by Isola, PCB manufacturer (http://www.micro-pcb.ch).
3 Toptica DL100, DL-SHG110 and TA100.
4 Electron multiplying CCD camera, Andor iXon DV860-BI.
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experimental zone forV = 408Vpp. (b) Cross-section through the potential
shown in (a) along thex = y-direction yielding a radial trap frequency of
ωrad/2π = 663 kHz and a trapping depth of approx. 1.9 eV.

3. Numerical simulations

3.1. Radial confinement

The complex layout of the multi-segmented trap requires elaborate numerical techniques
to simulate the electrical potentials accurately in order to avoid artificial effects. Instead
of using widespread commercial FEM routines that mesh the whole volume between the
electrodes, boundary-element methods (BEM) are more suited but also more complex in their
implementation. The effort in such methods is reduced for large-space computations since they
only need to mesh surfaces of nearby electrodes and multipole approximations are done to
include far distant segments in order to speed up computations. We have written a framework
for the solution of multipole-accelerated Laplace problems5. This method is not limited in
the number of meshed areas and thus allows for accurate calculations with a fine mesh. In
the simulations presented here, we typically subdivide the surfaces of the trap electrodes into
approx. 29 000 plane areas to determine the charge distributions and the free-space potential
within the trap volume numerically. Figure3(a) shows the calculated pseudo-potential in the
(x–y)-plane of the experimental zone for a RF of�/2π = 11.81 MHz and a RF peak-to-peak
voltageV = 408Vpp. By symmetry the diagonal directions alongx = ±y contain the nearest
local maximum and thus determine the relevant trap depth of approx. 1.9 eV for the applied
experimental parameters. A cross-section through the pseudo-potential along this direction is
shown in figure3(b) at the same axial position as in figure3(a). From these simulations, we
are able to extract a radial trap frequency ofωrad/2π = 663 kHz in the absence of applied
dc potentials.

5 The solver was developed by the MIT Computational Prototyping Group (http://www.rle.mit.edu/cpg).
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3.2. Axial confinement

For axial confinement opposing dc electrodes are set to the same voltageUi , i = 1, . . . , 15
labeling the electrode number as depicted in figure1. These voltages are supplied by DA
converters covering a voltage range of±10 V with a maximum update rate of 1 MHz. Figure4
illustrates the potentialsφi (z) obtained when onlyUi is set to−1 V and all other voltages are set
to zero. For arbitrary voltage configurations, the axial potentialφ(z) =

∑
i Ui φi (z) is a linear

superposition of the single electrode potentials. Tailored axial potentials for the generation of
single or multiple axial wells with given secular frequency, depth and position of the potential
minimum are obtained by solving the linear equation given above for the voltagesUi . Time-
dependent voltages are used to move the potential minimum guiding the trapped ion along the
trap axis.

4. Cold ion crystals

4.1. Observation of linear crystals and measurement of trap frequencies

The trap is operated in the loading configuration with dc voltages ofUload = {. . . ,U7, . . . ,

U13, . . .}t=0 = {. . . , 6 V, . . . , 8 V, . . .} while non-specified segment voltages are held at ground
potential. From simulations we estimate that the axial trap frequency isωz/2π = 199 kHz at the
potential minimum close to the center of electrode 10. Linear strings and single ions crystallize
under continuous Doppler cooling with beams D1 and D2, consisting of superimposed
beams at 397 (0.3 mW with 60µm beam waist), 866 and 854 nm (both 3 mW with 100µm
beam waist), cf figure5.

Applying a sinusoidal waveform with 1 mV amplitude to electrode segment 10 allows
for a parametrical excitation near resonance. Observation of the ion excitation through
decreasing fluorescence on the EMCCD image signifies a resonance condition. This way,
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(b)

(a)

µm

Figure 5. (a) Fluorescence of an ion crystal with 14 ions in a zig-zag config-
uration as observed with the EMCCD camera. Exposure time was set to 100 ms
(optical magnification is 10.4). (b) Linear crystal with 14 ions and a slightly
more relaxed axial trap frequency than in (a). This induces a phase transition
into a purely linear configuration of ion positions.

we experimentally find a radial frequency ofωrad/2π = 700(2) kHz and an axial frequency
of ωz/2π = 191(2) kHz. We attribute the 5% deviations to residual electric fields arising
mainly from charging of the etched insulation groove cuts as well as to the limited accuracy
of the RF-voltage amplitude measurement. Stable trapping at aq-value of about 0.16 is
achieved. Measuring the mutual distances in a linear two- or three-ion crystal easily allows
for calibrating the optical magnification of the imaging optics to be 10.4, with a CCD-pixel
size of 24µm. For determining the resonant frequency of the cycling transition used for
Doppler cooling the fluorescence is detected on a photomultiplier tube (PMT) while scanning
the laser frequency at 397 and/or 866 nm. This yields an asymmetric line profile of about
30–50 MHz FWHM, exhibiting the features of a dark resonance with a maximum count rate
of 20 kHz. For all following measurements we keep the detuning of the 397 nm laser at0/2
(half of the linewidth) fixed and adjust the frequency of the 866 nm laser to obtain a maximum
fluorescence rate.

4.2. Compensation of micromotion

Ions in small traps are likely to be affected by stray charges that shift the ions out of the RF
null since those charges can often not be neglected in most ion traps. Therefore, the dynamics
of ions in general exhibits a driven micromotion oscillation at a frequency of�/2π leading to
a broadening of the Doppler cooling transition and higher motional excitation [13]. A second
disadvantage of micromotion is a reduced photon scattering rate at the ideal laser detuning of
0/2. To correct for potentials induced by stray charges and maybe geometric imperfections
we can apply compensation voltages to the electrodes labeled C1 and C2, as sketched
in figure1(b).

For detecting the micromotion we trigger a counter with a photon event measured by the
PMT in the experimental zone and stop the counter by a TTL phase locked to half the trap
drive frequency�/2π . If the ion undergoes driven motion, the fluorescence rate is modulated
as a cause of a modulated Doppler line shape, see figure6(a). Here, we detect the ion motion
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Figure 6. Histogram of photon count events for different values of micromotion
compensation voltages: (a) Trace far from compensation withUC1 = 98V fitted
to a sine function. (b) Near to optimum compensation withUC1 = 102.5 V.
(c) The amplitude of a sinusoidal fit for different compensation voltages shows
a linear dependence between the amplitude and applied compensation. Negative
amplitudes correspond to a 180◦ phase flip; this happens when the ion passes the
RF null. A linear fit reveals the optimal value atUC1 = 101.6 V. With this data
an optimal compensation is determined within an uncertainty of less than 0.3 V.
The overall data collection time is less than 5 min. (d) Optimum compensation
voltage plotted versus the operation time of the oven. We attribute the long-term
drift of this voltage to an increasing calcium contamination on the trap electrodes
in the experimental zone.

in the direction of the laser beam. If a flat histogram is measured the ion does not possess a
correlated motion with the RF driving voltage. Then, it resides close to the RF null where the
modulation vanishes, cf figure6(b). From taking a series of histograms for different values of the
compensation voltage a linear relation between observed modulation and applied compensation
is obtained. The optimal compensation voltage can then be read from the abscissa for zero
correlation amplitude, figure6(c).

Our long-term observation of the optimum compensation voltage indicates a weak increase
over three months. Since we did not bakeout the vacuum chamber, storage times of ions are
several minutes so that we needed to reload ions from time to time. During all experimental
sessions, we kept the temperature of the oven fixed so that the flux of neutral Ca atoms was
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sustained. This is not necessary in a better vacuum environment. An oven current of 7 A leads
to a flux such that we reach a high loading rate of 0.1–0.4 ions per second. Thus, by operating
the oven continuously we could accumulate a long operation time of over 150 h. The 20% step
in figure6(d) was caused by a power failure.

By comparing our measurements to the long-term recording of [14] for a 2 mm linear
trap [15] with stainless steel electrodes we find similar drifts in compensation voltages. Thus, it
seems that PCB-traps can be corrected equally well for micromotion so that the larger insulation
grooves do not harm the performance.

In all of the experiments presented here the beam of neutral calcium is directed into the
narrow experimental zone where micromotion is compensated as described above. In future,
however, we plan to use the loading zone where a higher loading rate through the larger involved
phase space during trapping is expected. Then, ions can be shuttled into the cleaner experimental
zone 8 mm apart. Calcium contamination will then be completely avoided and much lower
compensation voltages and drifts are expected. The segmented PCB-trap operated this way may
even show an improved micromotion compensation stability as compared to traditional linear
and 3D traps having less insulation exposed to the ions.

5. Transport of single ions and ion crystals

As recently suggested [16], ions in a future quantum computer based on a segmented linear
Paul trap might be even shuttled through stationary laser beams to enable gate interactions. In
a different approach, one might shuttle ions between the quantum logic operations [17]. This
would alleviate more complex algorithms and reduce the enormous technological requirements
extensively. According to theoretical investigations [18], transport could occupy up to 95% of
operation time in realistic algorithms. Given the limited coherence time for qubits, shuttling
times need therefore to be minimized. Our work as described below may be seen in the
context of the theoretical and experimental works found in [19]–[21]. With our multi-segmented
Paul trap, we have made first investigations of these speed limits in order to enter the non-
adiabatic regime and studied the corresponding energy transfer. Preferred transport ramps are
theoretically well understood [22]. The current challenge arises from experimental issues, i.e.
how accurate potentials can be supplied, how drifts in potentials can be avoided and whether
sophisticated shuttling protocols can be used [23]. First transport studies have been made some
years ago by the Boulder group using an extremely sparse electrode array [24]. Non-adiabatic
transports of cold neutral atom clouds in a dipole trap have been demonstrated in [25] and
show very similar qualitative behavior, even though on a completely different timescale (axial
frequency of approx. 2π × 8 Hz).

The PCB-trap described here contains 15 pairs of dc-segments. Using a suitable time
sequence of control voltagesUi (t), i = 1, . . . , 15, the axial potential can be shaped time-
dependently in a way to transport ions along the trap axis. In the following, we present the
results of various transport functions for a distance of 2d = 4 mm.

For these measurements, we follow a six-step sequence:

1) Initially, we confine an ion in an axial trapping potential in the loading configurationUload,
figure7(a). The single ion is laser cooled by radiation near 397 and 866 nm. Compensation
voltages have previously been optimized for this trap configuration such that the width of
the excitation resonance near 397 nm is minimal. Then, the laser beams are switched off.
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Uload, at the beginning (solid line) of the transport withUtrans(t = 0) = {−8.77,
9.34,−2.89, 2.30, 8.33, 1.95, 1.49, 0.03,−0.48, −0.70,−0.36, 0.47, 1.32, 5.68,
0.63}V and at its turning point (dashed line). (b) Trap control voltagesU1 to U15

for transporting the ion by an error function ramp. Discontinuities in the curves
result from the time discretization in steps of 1µs.

2) Before starting the transport,Uload is linearly changed into the initial transport potential
Utrans(t = 0) in 10 steps each taking 1µs. Note that the transport potential should be adapted
in shape and depth, and is not necessarily identical to the optimum potential for laser
excitation, for fluorescence observation, and for quantum logic gate operations. In our
case, the axial trap frequency forUtrans(t = 0) is adjusted forωz/2π = 200 kHz, and the
minimum positions ofUload andUtrans both coincide with the center of segment 10. The
voltages for the transport potential are chosen according to the regularization of [22].

3) By changing the control voltages such that the potential minimum ofUtransmoves according
to an error function, the ion is accelerated and moved to a turning point 2 mm away,
centered roughly above segment 13.

4) The ion is accelerated back to the starting point again using the same time-inverted
waveforms. By our calculations, we aim to determine the control voltages such that the
ion always remains within a harmonic potential well of constant frequencyωz throughout
the whole transport procedure.
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5) Finally, the transport potentialUtrans is ramped back linearly in 10µs into the initial
potentialUload.

6) The laser radiation is switched on again to investigate either the success probability of the
transport or the motional excitation of the ion.

The sequence is repeated about 103–105 times, then the parameters of the transport ramp in step
(3) and (4) are changed and the scheme is repeated.

Ideally, we would create an axial potential that closely approximatesφ(z, t) = mω2
z(z−

z0(t))2/2q with an explicit time-dependent position of the potential minimumz0(t). However,
all presented simulations and motional excitation energies were deduced from the numerical
axial potentials instead. Moving the potential minimum from its starting pointz0(0) = 0 to the
turning pointz0(T/2) = 2 mm and back again toz0(T) = 0 leads to a drag on the trapped ion.
For sake of convenience, we express the total time for a round-tripT in units of the trap period
τ ≡ Tωz/2π . The dimensionless parameterτ then denotes the number of oscillations the ion
undergoes in the harmonic well during the transport time. The functional form of the time-
dependent position of the potential minimumz0(t) is crucial for the transport success and the
motional excitation. We have chosen a truncated error-function according to

fσ (t) =
d

2

(
1 +

Erf [(4t/T − 1) σ ]

Erf[σ ]

)
, z0(t) =

{
fσ (t), 06 t 6 T/2,

d − fσ (T − t), T/2 < t 6 T,
(1)

as input to find the waveforms of all contributing electrode pairs, figure7(b).
Small first and second derivatives at the corner points assure that the ion experiences

only smoothly varying accelerations at these times. The parameterσ determines the maximum
slope of the function. The smoother the shuttling begins the higher average and maximum
velocities are needed for a fast transport. A high maximum velocityż0 results in far excursions
of the ion from the potential minimum so that it may experience higher derivatives not
fulfilling the harmonic potential approximation anymore. A compromise can be found between
slowly varying corner point conditions and ion excitation due to fast, non-adiabatic potential
movements. Experimentally, we found the lowest energy accumulated forσ = 2.3. In our
experiment, the update time of the supply hardware for the electrode voltages is limited to
1µs. To account for this effect in our simulations we also discretizez0(t) in time steps. These
discontinuities are evident in figure7(b) already indicating that a higher sampling rate of the
DA channels would be desirable. Furthermore, for short shuttles the amplitude discretization
through the DA converters makes an exact reproduction ofz0(t) impossible. This gives rise to
discrete dragging forces transferring motional excess energy to the ion. We verified by numerical
simulations that even for the fastest transports with durations of onlyT ≈ 10–12µs, deviations
from the non-discretized time evolution were negligible. Since in our case, the typical involved
motional energies are much larger thanh̄ω, a simple classical and one-dimensional model of
the ion transport is justified with the equation of motion

z̈(t) = −
q

m

dφ(z, t)

dz
= −ω2(z− z0(t))

2. (2)

We solve this equation numerically for functionsz0(t) with varyingσ . The resulting phase space
trajectories{z(t), ż(t)} are plotted in figure8 for T = 20µs (τ = 4) andT = 16µs (τ = 3.2).
In the first case, the phase space trajectory starts and ends close to{0,0}, i.e. both the potential
and the kinetic energy are modest after the transport. In the second case, the particle reaches
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its starting pointz0(T) = z(0) again, but resides with a high oscillating velocityż(T) but small
displacement.

5.1. Transport probabilities

This section addresses the question of how fast the transport of an ion in the manner described
above can eventually be performed before it gets lost. In the following, we discuss transports
in the adiabatic regimeτ � 1 and far off this regime. For the measurements, an experimental
sequence with transport durationτ is interleaved by Doppler cooling cycles of 1 s duration to
ensure to start always from the same initial energy close to the Doppler limit. Afterni successful
transports withi = 1, . . . , N, the ion may finally be lost. After 100–1000 repetitions, we bin
the data into a histogram ofni approximating the success probabilityPτ (n) that allows for
deduction of the fraction of ions having performed at leastn successful transports.Pτ (n) is fitted
to an exponential decay introducing the single transport success probabilityp̃τ , Pτ (n) = ( p̃τ )

n.
The probability forn successful transports equals( p̃τ )

n as the processes are independent with a
sufficiently long Doppler cooling period. To account for other sources of ion loss, e.g. from
background gas collisions, a loss rate without transport in sequence steps (3) and (4) was
subtracted. These losses can be modeled by introducing a second decay channel inPτ (n) to
finally yield net transport probabilitiespτ .

Figure9 depicts valuespτ for different transport durationsτ performed with a transport
functionz0(t) according to equation (1) with σ = 2. In the adiabatic regime, we obtain a success
probability of 99.8% forτ = 100. The ion stays deep within the potential well guaranteeing low
losses. This is in good agreement with theoretical predictions. The very high success probability
stays almost constant within the adiabatic regime down toτ = 4 (p4 = 99.0%). According to
our model, the ion experiences a relative displacement of over 300µm gaining a potential
energy of more than 30 meV. Even faster transports lead to higher transport losses resulting
in probabilities around 85%. When the energy of the ion exceeds about 30% of the depth of the
potential, we observe a strongly increased loss probability.
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Figure 9. Transport success probability as a function of transport time (dots),
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(solid), y-scale on right side. Inset: fluorescence level as observed by the CCD
camera showing the dark periods during the transport while the bright periods
indicate a successful transport.

5.2. Coherent excitation during transport

If the ions are to be laser-cooled after a fast shuttle, it is important to keep the excitation
of vibrational degrees of freedom minimal. Therefore, we quantitatively investigate the ion’s
kinetic energy after the transport for ramps in the non-adiabatic regime with 4< τ 6 20. We
generalize a method which was recently employed [26, 27] to measure motional heating rates
in a micro-ion trap.

After a transport, in step (6) of the experimental sequence, the oscillating ion is Doppler-
cooled by laser light, and scatters an increasing amount of photons as it cools down. We
observe the scattered photons by a PMT as a function of time. The scattering rate in our
model depends on the laser power quantified by a saturation parameters, the laser detuning
1, and the motional energy of the ion. In contrary to [26] we do not average over a thermal
state. For large excitations, the oscillation amplitude exceeds the waist of the cooling laser
resulting in a low scattering rate. A uniform laser intensity is therefore not appropriate for
describing our experiments. We take this effect into account by including a Gaussian beam
waist ofw0 = 60µm in our simulations. The efficiency of the laser cooling sets in with a sharp
rise of PMT counts shortly aftertrecover. Only then, the scattering rate reaches its steady state
value at the Doppler-cooling limit, see figure10(a). Adapting the theoretical treatment for a
thermal motional state in [26] to the case of a coherent motional oscillation [27] and including
a spatial laser beam profile, the recovery time of fluorescence is quantitatively identified with
the energy after the transport. The results are shown in figure10(b) and compared to the
theoretical simulations of our simple classical model. As expected, the motional excitation
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Figure 10. (a) Fluorescence rate after the transport and during application of
Doppler cooling. Fast transport results in large excitation and a late recovery
of the fluorescence level from vibrational excitation. (b) Measured excitation
energy after an error function transport withτ = 4–20. Error bars of the
data points account for the uncertainty of the excitation energy from the
photon scattering rate, taking into account uncertainties in the laser beam waist
60(10) µm, laser saturation uncertainty of 15%, and laser detuning uncertainty of
30 MHz. The overall uncertainty results in 15% errors for the excitation energy.
The theoretical prediction of the simple model (dashed line) for solely the error
function transport does not agree with the data. However, we found a motional
excitation of 0.427(73) meV due to the morphing steps of the potential before
and after the transport by replacing steps (3) and (4) in the measurement cycle
by a waiting time of equal length. The solid line shows this modified prediction
together with its standard deviation (dotted).

increases for short transport timesτ . For slow transports, i.e.τ � 1, the excitation does not
drop below a certain threshold. We found that this excess excitation is due to the morphing
steps (2) and (5) and might be caused by a non-ideal matching of the respective potential
minima. Even a few micrometres difference leads to a large kick during the linear morphing
ramp. We measured this effect independently by replacing steps (3) and (4) by equal waiting
times without voltage ramps. Corrected for this excess heating, the model agrees well with the
measured data.

The motional heating rate omitting any transport or morphing steps has been measured
independently for our trap by replacing steps (2)–(4) by waiting times of 500 and 2000 ms. We
deduce an energy gain of 3(1) meV s−1. During our transport cycles this increase in energy only
amounts to about 1.5µeV. This minor energy gain does not affect our measurement results and
conclusions on the transport-induced excitation.

6. Conclusion and outlook

Employing a novel segmented linear Paul trap, we demonstrated stable trapping of single ions
and cold ion crystals. For the first time we have shown fast, non-adiabatic transports over
2× 2 mm travels within a few microseconds by error function ramps. The main achievement
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is the characterization of the ion’s motional excitation. The method is based on the measured
modification of the ion’s scattering rate during Doppler cooling. In the future, however, sideband
cooling and spectroscopic sideband analysis will be applied yielding a much more sensitive tool
to investigate motional energy transfers. This will lead to a largely improved determination of
ion excess motion. Then subtle changes of the parameters and the application of optimal control
theory for the voltage ramps may be applied to yield lower motional excitation. Furthermore,
we will establish a dedicated loading zone and optimize the transport of single ions and linear
crystals through the tapered zone.

For micro-structured segmented ion traps with axial trap frequencies of several megahartz,
the application of the demonstrated techniques will lead to transport times of a few
microseconds only. This way, future quantum algorithms may no longer be limited by the ion
transport but only by the time required for logic gate operations.

Acknowledgments

We acknowledge financial support by the Landesstiftung Baden-Württemberg, the Deutsche
Forschungsgemeinschaft within the SFB-TR21, the European Commission and the European
Union under the contract no. MRTN-CT-2006-035369 (EMALI).

References

[1] Wineland D Jet al2005Proc. 17th Int. Conf. on Laser Spectroscopy(Singapore: World Scientific) p 393
[2] Becher Cet al2005Proc. 17th Int. Conf. on Laser Spectroscopy(Singapore: World Scientific) p 381
[3] Barrett M Det al2004Nature429737
[4] Riebe Met al2004Nature429734
[5] Schmidt P Oet al2005Science309749
[6] Rosenband Tet al2007Phys. Rev. Lett.98220801
[7] Roos C Fet al2006Nature443316
[8] Stick Det al2006Nat. Phys.2 36
[9] Seidelin Set al2006Phys. Rev. Lett.96253003

[10] Brown K Ret al2007Phys. Rev.A 75015401
[11] Gulde Set al2001Appl. Phys.B 73861
[12] Kjaergaard Net al2000Appl. Phys.B 71207
[13] Berkeland D Jet al1998J. Appl. Phys.835025
[14] Rotter D 2003Diploma ThesisUniversität Innsbruck
[15] Schmidt-Kaler Fet al2003Appl. Phys.B 77789
[16] Leibfried D, Knill E, Ospelkaus C and Wineland D J 2007Phys. Rev.A 76032324
[17] Kielpinski D, Monroe C and Wineland D J 2002Nature417709
[18] Chuang I 2006 private communication
[19] Home J Pet al2006Quantum Inf. Comput.6 289
[20] Hucul Det al2007Preprintquant-ph/0702175v2
[21] Hensinger W Ket al2006Appl. Phys. Lett.88034101
[22] Reichle Ret al2006Fortschr. Phys.54666
[23] Schulz S, Poschinger U, Singer K and Schmidt-Kaler F 2006Fortschr. Phys.54648
[24] Rowe M Aet al2002Quantum Inf. Comput.2 257
[25] Couvert Aet al2007Preprint0708.4197v1
[26] Wesenberg J Het al2007Preprint0707.1314
[27] Reichle Ret al in preparation

New Journal of Physics 10 (2008) 013004 (http://www.njp.org/)

182 Appendix



9.6 Scientific Publications 183

Employing Trapped Cold Ions to Verify the Quantum Jarzynski Equality

G. Huber, F. Schmidt-Kaler, S. Deffner, E. Lutz

Published 15 August 2008 in the scientific journal:

Physical Review Letters

(Volume: 101 / Page: 070403 / Year: 2008)



Employing Trapped Cold Ions to Verify the Quantum Jarzynski Equality

Gerhard Huber and Ferdinand Schmidt-Kaler
Institut für Quanten-Informationsverarbeitung, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany

Sebastian Deffner and Eric Lutz
Department of Physics, University of Augsburg, D-86135 Augsburg, Germany

(Received 11 April 2008; revised manuscript received 28 May 2008; published 14 August 2008)

We propose a scheme to investigate the nonequilibrium work distribution of a quantum particle under
well controlled transformations of the external potential, exploiting the versatility of a single ion in a
segmented linear Paul trap. We describe in detail how the motional quantum state of a single ion can be
prepared, manipulated, and finally readout to fully determine the free energy difference in both harmonic
and anharmonic potentials. Uniquely to our system, we show how an ion may be immersed in an
engineered laser-field reservoir. Trapped ions therefore represent an ideal tool for investigating the
Jarzynski equality in open and closed quantum systems.
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Nonequilibrium phenomena at the nanoscale are domi-
nated by fluctuations and by quantum effects. The interplay
of nonequilibrium thermodynamics and quantum theory is
hence of fundamental interest. Only a decade ago Jarzynski
published a major discovery in classical nonequilibrium
physics [1], relating the free energy difference �F after a
given transformation to the probability distribution of the
total work W done on the system:

 �F � �kT lnhe�W=kTi; (1)

where he�W=kTi �
R
dWe�W=kTP�W� is the average expo-

nentiated work and k denotes the Boltzmann constant. This
remarkable equality highlights the role of work fluctua-
tions and provides a generic way of computing the free
energy difference for any transformations, quasistatic or
not, once the work distribution P�W� is known. Most
importantly, the Jarzynski relation allows us to determine
�F even in the case of arbitrarily fast transformations,
when irreversible thermodynamics is not applicable.
Prior to the discovery of Eq. (1), the determination of the
free energy difference in such far from equilibrium con-
ditions was not believed to be possible [2]. Recently, the
classical Jarzynski equality and its generalization by
Crooks [3] have been successfully tested in single-
molecule stretching experiments [4,5]. Later, the work
distribution was recovered from repeated measurements
of the mechanical work done on a colloidal particle [6].

The situation is much different at the quantum level. So
far only studied theoretically, the Jarzynski equation holds
in its classical form for closed quantum systems [7], while
quantum corrections appear in the case of open systems
due to the coupling to an external reservoir [8]. Further
difficulties arise when considering the quantum-
mechanical nature of work [9] and the question of how to
measure it experimentally. It is evident that the classical
definition of work as force times displacement cannot
simply be taken over unmodified. It has recently been

established that work is actually not an observable in the
usual sense, as it is not given by an expectation value of
some Hermitian work operator, but rather by a time-
ordered correlation function [10]. On the other hand, the
problem of how to determine quantum work still remains
unsolved, explaining the absence of an experimental veri-
fication of the Jarzynski equality in the quantum domain.

We show in this Letter how to experimentally measure
nonequilibrium work using a single ion in a segmented
linear Paul trap. A unique property of ion traps is the
possibility to study the quantum Jarzynski equality, as
well as the quantum Crooks relation [11], for systems
that are either isolated or coupled to tailored quantum
environments using reservoir engineering [12,13]. Single
ions trapped in radio frequency Paul traps are quantum
nanosystems with remarkable properties. They can be laser
cooled to very low temperatures, reaching to the motional
ground state in the potential. Arbitrary quantum states can
be prepared, manipulated, and measured with high fidelity
[14,15]. Using the so-called electron shelving method, the
quantum state is revealed with close to unity detection
efficiency. The use of a segmented trap further allows for
engineering a vast variety of time-dependent trapping po-
tentials and hence the implementation of different model
Hamiltonians. In the following, we generalize the detection
methods for the motional state [16,17] in order to realize an
efficient filter for vibrational number states. We show that
trapped ions are not only good candidates for quantum
computing, but may also allow us to experimentally ap-
proach the emergent field of quantum thermodynamics.

Quantum Jarzynski equality.—We begin by considering
an isolated quantum system whose time-dependent
Hamiltonian is varied from an initial value H�0� to a final
value H���. We denote by �t

n and Etn the respective eigen-
functions and eigenvalues of the Hamiltonian H�t� at any
given time t. We further assume that the system is initially
thermalized at temperature T. The free energy difference
�F between final and initial state is then given by the
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Jarzynski equality, Eq. (1). The probability distribution of
the random work W is given by [10]

 P�W� �
X
m;n

��W � �E�m � E0
n��P�m;nP0

n; (2)

where P0
n � �1=Z0� exp��E0

n=kT� is the initial (thermal)
occupation probability and P�m;n are the transition proba-
bilities between initial and final states n and m,

 P�m;n �
��������
Z
dx0

Z
dx���

m �x�U�x; x0; ���0
n�x0�

��������
2
: (3)

Here U�x; x0; �� is the propagator of the quantum system.
The physical meaning of Eq. (2) is clear: the total work
done during a given transformation of the Hamiltonian is
obtained from the energy difference between final and
initial eigenstates, E�m � E0

n, averaged over all possible
initial and final states. Equation (2) shows in addition
that the randomness of the work stems from the initial
thermal distribution P0

n, and from the quantum nature of
transitions between states, as described by P�m;n. The origin
of work fluctuations is therefore of both thermodynamical
and quantum-mechanical nature. The free energy differ-
ence can be evaluated for an arbitrary transformation of the
Hamiltonian with the help of the Jarzynski relation, once
the work probability density P�W� has been determined.
We next describe a method to realize a quantum nonequi-
librium situation for a single ion in a linear Paul trap and
how to measure its corresponding work distribution.

Harmonic ion trap.—Linear Paul traps are characterized
by a strong dynamical confinement in the radial direction
(yz plane) and electrostatically bound in the axial direction
(x axis). With a radial confinement much stronger than the
axial, we will restrict ourselves to the axial external degree
of freedom. Near the center of the axial potential, the
confinement is harmonic and the axial frequency ! can
be varied in time by changing the control voltages [18].
The quantum state of motion along the axial direction can
be described by the Hamiltonian

 H�t� �
p2

2M
�
M
2
!2�t�x2; (4)

where M is the mass of the ion. For this simple potential,
the nonequilibrium work distribution (2) can be studied
analytically [19]. Besides the external, motional degree of
freedom, the ion provides an internal, electronic level
scheme. In our case, we consider a � system comprising
the ground state S1=2 and two excited states P1=2 and D5=2.
The P1=2 state rapidly decays into the S1=2, thus providing a
high spontaneous photon scatter rate used for fluorescence
detection. Laser-induced transitions from the ground to the
metastable D5=2 state are induced on the narrow quadru-
pole transition [linewidth �D 	 !�t�], if the spectral band-
width of the S1=2 �D5=2 exciting light field is small
compared to the sideband structure. Coherent laser pulses
on this narrow band optical transition allow us to exploit

and to store the motional quantum state information in the
internal quantum states.

The experimental measurement protocol of the work
distribution consists of four consecutive steps.

(I) The ion is first prepared in a thermal state with mean
phonon number, �n � �exp�@!0=kT� � 1��1, in the elec-
tronic ground state S level by laser cooling and optical
pumping. We prepare this state deterministically by
resolved-sideband laser cooling [20] into the vibrational
ground state jn � 0i and subsequently allowing the ion to
heat up for a certain time without laser cooling. As the
heating rate of the ion within the trap can be precisely
measured, this procedure is favorable for very low values
of �n. An alternative method, suited for higher values of �n, is
Doppler cooling on the S1=2 to P1=2 transition. Varying the
detuning of the cooling laser from the atomic resonance
results in different thermal states with mean phonon num-
bers down to the Doppler limit.

(II) In the second step, we measure the initial phonon
number n using the filtering scheme described in detail
below. In this way, we determine the initial energy eigen-
state E0

n (from spectroscopy measurements).
(III) In the third step, we transform the trap potential

from an initial value !�0� to a final value !���. This
changing potential will in general modify the ion’s mo-
tional state into a nonequilibrium state, while its internal
state remains unaffected. For simplicity, we consider a
linear variation of the axial potential !2�t� from !2�0� to
!2���. Figures 1 and 2 show a numerical evaluation, based
on the results of Ref. [19], of the transition probabilities (3)
and the work distribution (2) for realistic experimental
parameters and different transformation times �.

(IV) In the last step, we measure the new phonon number
m using the filtering scheme and determine the final energy
eigenstate E�m. The distribution of the nonequilibrium
work, W � E�m � E0

n, Eq. (2), is then reconstructed by
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FIG. 1 (color). Transition probabilities P�m;n for quantum num-
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��1 for a linear transformation of !2�t� with !�0� � 0:1 MHz
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repeating the measurement sequence. By evaluating
Eq. (1) for adiabatic and nonadiabatic processes, we can
verify the Jarzynski equality.

Filtering scheme.—A sequence of laser pulses on the
narrow S to D transition is applied to the ion, coherently
processing its internal and external degrees of freedom
[21]. We tailor this pulse sequence such that the ion will
end in the metastable D5=2 state with certainty if the vibra-
tional quantum state was jmtesti. Subsequently, the ion is
illuminated with light resonant to the S1=2 to P1=2 transi-
tion. If we observe no fluorescence, the ion is measured in
the D state. However, for vibrational states different from
jmtesti, the laser pulse sequence leads to a superposition
state, �jSi � �jDi, such that there remains a nonvanishing
probability j�j2 of projecting the superposition into jDi,
and thus observing no fluorescence. We therefore repeat
the procedure a few times such that a high quality of the
filtering procedure is ensured. Considering the evolution of
the quantum state itself, the influence of the above se-
quence reminds one of the operating principle of a filter:
its projective ‘‘transmission’’ is unity for a certain input
state jmtesti and zero otherwise. We adapt the laser pulse
sequence timing to reach all relevant eigenstates jni and
jmi with the filter.

The crucial requirement for a well-suited filter proce-
dure is to ensure the nonzero fluorescence outcome for all
states but jmtesti. It is sufficient to design the number state
filter to have high suppression factors in a vicinity of
jmtesti, since P�m;n is rapidly vanishing for high values of
jm� nj. Varying the duration of the pulses, we use the
following procedure; see Fig. 3. Starting from state
jS;mtesti, we apply a � pulse on the first red sideband

leaving the ion in jD;mtest � 1i. As the Rabi frequency
�n;n0 between vibrational states n and n0 depends on both
initial n and final n0, the laser pulse does not completely
transfer other vibrational states to the D state. When we
expose the ion to resonant light on the S to P transition,
zero fluorescence is observed if the ion was in jmtesti, but
for other vibrational states there is a certain probability to
observe fluorescence. To sharpen the discrimination, we
apply 2� pulses on the red and blue sideband, respectively,
interleaved by a fluorescence detection trial after each
pulse. Again, the 2� pulses and detections leave the ion
in the dark state jD;mtest � 1i, but yield a nonzero fluo-
rescence signal for all other states. This resembles so-
called trapping states which have been investigated in
cavity QED experiments [22]. This probability for zero
fluorescence detection decreases exponentially with the
number N of pulse or detection runs, as shown in Fig. 4,
for a wide range of states mtest 
 3. After N � 10 runs, all
probabilities but for jmtesti drop below 5%. As no coher-
ence is remaining after each detection interval, the scheme
has modest requirements on the phase stability. The driving
laser needs preserving phase only for one single 2� pulse,
but not during the entire filter sequence. The two lowest
vibrational states are treated even simpler: For mtest � 0, a
� pulse on the carrier transition brings the ion into jD; 0i.
Successive red sideband � pulses do not affect this state,
but fluorescence is observed with nonzero probability for
all other states. This scheme has been proposed for sto-
chastic cooling [16,17]. For mtest � 1, the carrier pulse is
simply replaced by a red sideband � pulse jS; 1i ! jD; 0i.
Then the procedure continues as for mtest � 0. The length
of the pulses is specific for each choice ofmtest; varying the
pulse allows us to access measurements over a wide range
of vibrational levels.
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D5/2

mtest

(i)
(iii)

(ii)
nn-1

n-2

P1/2

n'n'-1n'-2

...
...

...
...

FIG. 3 (color online). Levels and transitions involved in the
filtering scheme. Shown are transitions driven by the initial �
pulse (i) and the successive 2� red sideband (ii) and 2� blue
sideband pulses (iii), respectively. For jmtesti, these pulses induce
perfect � and 2� transitions between the metastable D5=2 and
the ground state level S1=2 (left side). No fluorescence is ob-
served when the ion is exposed to resonant light on the S to P
transition. For any other jni, the transfer will be imperfect
(dashed lines, right side) and there will be population in the S.
Thus, the excitation to the P level is successful and we observe
the emission of fluorescence photons.

Work /  hω0

W
or

k 
pr

ob
ab

ili
ty

-4 0 4 8 12 16 20

0.01

0.1

1

10-3

10-4

FIG. 2. Work probability distribution, Eq. (2), for a linear
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and !��� � 3 MHz, for �n � 1. Shown are the adiabatic case
�! 1 (�) and two fast transformations with � � 0:1 �s (�)
and � � 0:05 �s (�). For the latter, deviations from the
adiabatic case are clearly visible. Even negative work processes
arise: the probability contribution at W � �@!0 mainly stems
from the transition n � 2! m � 0, which occurs with proba-
bility P�2;0 � 10% (for � � 0:05 �s). This contribution can be
readily tested by the number state filter.
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To estimate the time taken by one experimental cycle
from preparation to detection, we assume a few 10 �s for
sideband pulses and a few hundred �s fluorescence detec-
tion time; one cycle with multiple filtering iterations will
then take less than 10 ms, short compared to the lifetime of
the D state (1.2 s for 40Ca�). To also assure that unwanted
dissipative effects do not introduce errors, the trap’s heat-
ing rate needs to be smaller than 1 phonon within the cycle
time. Traps with much lower rates have been reported. The
statistical error of the values P�m;n is further reduced by
repeating the measurement sequence.

Designing the bath properties and the potential shape.—
As discussed before, single trapped ions are highly isolated
from external reservoirs. However, it has been shown
theoretically [12], and also in first experiments [13], that
it is possible to introduce a coupling between the ion and an
artificially laser-induced bath. The variation of laser fre-
quencies and intensities allows one to engineer the cou-
pling and select the master equation describing the motion
of the ion. Here, the interaction is mediated by sideband
transitions between the S1=2 and D5=2 level; see Fig. 3. For
example, a zero-temperature reservoir can be implemented
by a light field tuned to the (cooling) red sideband tran-
sition. A large variety of other tailored reservoirs, such as
squeezed baths, can be generated as well. Within the
framework of this proposal, it is therefore possible to
investigate nonequilibrium transformations of open sys-
tems with tailored couplings between system and reservoir.
In particular, the distribution of the heat exchanged with a
reservoir can be determined using the same measurement
protocol by keeping the trap frequency constant, that is,
performing no work.

Exploiting the flexibility provided by a segmented trap
design, it is moreover feasible to investigate anharmonic

trapping potentials. Especially in the situation of a non-
adiabatic transport along the segments of the trap [18], the
ion is shifted out of the harmonic center of the electric
potential and experiences nonharmonic potential contribu-
tions [20]. For future work, one might include forces by
laser light on the ion, which depend on its internal elec-
tronic state, investigating the influence of quantum ther-
modynamics on qubit gate operations [23].

In conclusion, we have shown how the quantum
Jarzynski equality can be experimentally investigated us-
ing a single ion in the time-varying electrical potential of a
Paul trap, for both open and closed quantum systems. Our
proposal is based on the state of the art in many laborato-
ries working with single trapped ions and uses realistic
parameters. Experiments with such a device would allow
us to shine more light on the amazing interplay of quantum
mechanics and thermodynamics.
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Abstract
We demonstrate the implementation of a spin qubit with a single 40Ca+ ion in a micro ion trap.
The qubit is encoded in the Zeeman ground state levels mJ = +1/2 and mJ = −1/2 of the
S1/2 state of the ion. We show sideband cooling close to the vibrational ground state and
demonstrate the initialization and readout of the qubit levels with 99.5% efficiency. We
employ a Raman transition close to the S1/2–P1/2 resonance for coherent manipulation of the
qubit. We observe single qubit rotations with 96% fidelity and gate times below 5 μs. Rabi
oscillations on the blue motional sideband are used to extract the phonon number distribution.
The dynamics of this distribution is analysed to deduce the trap-induced heating rate of 0.3(1)
phonons ms−1.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Our research is aimed at the realization of scalable quantum
simulation and information processing [1, 2]. Quantum
computing with cold ions [3–6] has currently reached an
experimental limit of scalability with up to eight ions if
a conventional macroscopic trap is used [7]. This purely
technical limitation is believed to be lifted using a segmented
linear micro Paul trap, where only small groups of ions are
to be kept in the quantum processing unit, and multiple trap
sites are used for the storage of large-scale entanglement [8].
Several different options for encoding a qubit with a trapped
ion are possible and have been realized in various groups. One
might either employ superpositions of a long-lived electronic
metastable state and the ground state, or alternatively use
coherent superpositions of hyperfine or Zeeman ground states.
In this paper, we focus on 40Ca+ ions in a micro trap and
qubits which are encoded in Zeeman sublevels of the S1/2

ground state. We will discuss in detail how these qubits

are initialized, coherently manipulated and how finally the
quantum information is read out with high fidelity. With
the ion cooled close to its vibrational ground state, we are
well set for two-qubit quantum logic gate operations in a
multi-segmented linear micro trap, a scalable approach to ion
quantum processing.

The paper is organized as follows. First, we give a
brief overview on the experimental apparatus used including
the micro trap and the various laser sources. In section 3,
we discuss the advantages of our choice of Zeeman ground
state superpositions for the qubit encoding. Two basic steps
for qubit utilization, namely state preparation and readout,
are demonstrated in section 4. Finally, we explain in detail
how Raman transitions for the spin qubit manipulations are
characterized (section 5) and present results for sideband
cooling and coherent qubit dynamics (section 5.3). We show
how phonon number distributions can be extracted from the
analysis of Rabi oscillations on the blue sideband of the
Raman transition and investigate the dynamics of the phonon

0953-4075/09/154013+09$30.00 1 © 2009 IOP Publishing Ltd Printed in the UK
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Figure 1. (a) Geometric arrangement of the lasers driving Raman
(R1, R2 and CC), dipole (397 nm) and quadrupole transitions
(729 nm), relative to the trap axis and magnetic field direction �B.
(b) Level scheme of a 40Ca+ ion and all relevant transitions. A
magnetic field of about 6.8 G splits each fine structure level into
several Zeeman components, indicated by fractional numbers.

distribution in the micro trap. The outlook sketches the
future perspectives of our experiment for multi-qubit quantum
logic.

2. Experimental apparatus

2.1. A segmented micro ion trap

We use a segmented linear micro ion trap. It is a sandwich
structure of three alumina wafers, of which the top and bottom
ones are gold coated and the middle one acts as a spacer.
The trap structure is created by laser cutting with μm-scale
resolution. Each trap layer consists of a RF electrode providing
ponderomotive confinement in the radial plane and a set of dc
electrodes for confinement in the axial direction. The RF
electrodes extend along the whole length of the trap and have
notches at the positions of the gaps between neighbouring
dc segments in order to suppress axial bumps in the RF
field. They are supplied by up to 300 Vpp at 24.8 MHz.
The dc electrodes are supplied with voltages in a ±10 V
range by a computer-controlled battery-powered supply which
is designed to provide fast and accurate voltage waveforms
to the electrodes at low noise and output impedance. The
ionic motion exhibits one vibrational mode along the trap
axis which is to be used as the ‘bus’ mode for entangling
operations. Under typical trapping conditions, when a voltage
of −6 V is applied to one pair of dc segments and all other
dc electrodes are grounded, an axial frequency of ωax/2π =
1.35 MHz is measured. The radial confinement leads to
two nondegenerate radial modes with typical frequencies of
ω

x,y

rad

/
2π = {2.0, 3.5} MHz. For further details we refer to the

description in [9, 10].

2.2. Laser sources and ion detection

A single ion is loaded by the photoionization of a weak neutral
calcium beam by resonant two-photon photoionization [11].
Doppler cooling is achieved by means of a grating-stabilized
diode laser at 397 nm, slightly red detuned with respect to the
S1/2 to P1/2 dipole transition; see figure 1(a). As the cooling
cycle is not closed, a grating-stabilized diode laser at 866 nm is

used for repumping from the metastable D3/2 state. The light
from both sources is switched by means of acousto-optical
modulators (AOM). For Doppler cooling, we irradiate 100 μW
and 500 μW near 397 nm and 866 nm, respectively. The waist
size of both beams is about 30 μm at the ion’s location. When
necessary, population in the D5/2 state (1.2 s lifetime) can be
pumped to the P3/2 by a grating stabilized laser diode near
854 nm, followed by a fast decay to the S1/2 ground state,
which is referred to as quenching. Since the long lifetime of
the D5/2 state is important for qubit measurement, no quench
light must be present during readout. To ensure sufficient
extinction of the quench laser, a light of about 10 μW in a beam
waist of about 50 μm is switched by a double-pass AOM. All
diode lasers are locked to Pound–Drever–Hall (PDH) error
signals from stable Fabry–Perot cavities which are tuned by a
piezo-driven mirror.

In order to drive the S1/2 to D5/2 quadrupole transition,
we use an amplified diode laser system. This laser source near
729 nm is PDH locked to an ultra-low expansion cavity in a
UHV vessel. We estimate the laser linewidth to be better than
5 kHz as determined from Ramsey contrast measurements on
the quadrupole transition, where coherence decay times of
up to 200 μs were observed. The laser light near 729 nm is
switched and modulated by a double-pass AOM controlled by
a versatile function generator4 (VFG), a DDS/FPGA based
RF source [12]. This allows for generation of laser pulses
with almost arbitrary frequency, phase and amplitude profiles.
The resulting laser beam has a power of up to 140 mW and is
focussed down to roughly 10 μm, allowing Rabi frequencies
up to 1.5 MHz on the S1/2,mJ = +1/2 to D5/2,mJ = +5/2
transition. The polarization is chosen to be at an angle of
45◦ to the quantizing magnetic field, whereas the propagation
direction is orthogonal to it. This way, all allowed transitions
between the Zeeman sublevels of the S1/2 and D5/2 states
become accessible [4] (figure 1). The beam enters at an angle
of 45◦ with respect to the trap axis, allowing for momentum
transfer to the axial and the radial modes. We calculate the
coupling to ion motion (Lamb–Dicke factors) of ηax = 0.06
and η

x,y

rad = {0.034, 0.026}.
Raman transitions between the spin levels mJ = +1/2 and

−1/2 of the S1/2 ground state are driven by two laser beams
close to the strong S1/2 to P1/2 dipole transition. The beams
are derived from a frequency doubled amplified laser diode
system delivering up to 120 mW of power at 397 nm. The
laser is divided into three different beams which are termed
R1, R2 and CC. The Raman transitions are then driven either by
the pair R1/R2 or the pair R1/CC; see figure 1(b). All Raman
beams are switched and modulated by single-pass AOMs. The
AOMs for R2 and CC are supplied by the same VFG source as
the AOM for the 729 nm laser. The AOM for R1 is supplied
by an RF synthesizer, which also serves as a phase reference
for the VFG; therefore, the necessary phase stability between
R1/CC and R1/R2 is guaranteed. The limit of accuracy for
the relative frequency between the VFG and synthesizer was
measured to be 10 mHz, which has no adverse effect, because
the timescale on which a single measurement cycle is carried
out is much shorter (up to 20 ms).

4 VFG 150, Toptica Photonics.
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The 397 nm fluorescence light emitted by the ion during
Doppler cooling is detected by an electron multiplier CCD
camera and a photomultiplier tube. With typical fluorescence
rates of 50 counts in 3 ms from a single ion with a background
of about 5 counts from scattered light, we can discriminate the
state with a statistical error in the sub-per mil range [4].

All laser sources are controlled by a versatile computer
control program and continuously monitored by a wavemeter
with 5 MHz accuracy. A typical experimental sequence
consists of four steps: (a) the ion is Doppler cooled for 3 ms,
(b) then it is cooled close to the ground state of the axial
vibrational mode by resolved sideband cooling (section 5.3).
(c) The qubit is then initialized (section 4.1), and (d)
coherent manipulations are performed on the Raman transition
(section 5.1). Finally, (e) the population in the mJ = +1/2
qubit level is shelved (section 4.2) to the D5/2 level, and (f)
the state is read out by counting 397 nm laser induced
fluorescence for 3 ms. After quenching the state by light
near 854 nm, the cycle (a)–(f) is repeated, typically 100 times,
giving the average transfer probability on the qubit transition.

3. Qubit realizations with Ca+ ions and arguments
for a ground state spin qubit

The level scheme of Ca+ ions allows for at least three options to
encode qubit information in a long-lived superposition of two
electronic quantum states. The optical qubit is encoded in a
superposition of the ground state |0〉 ≡ S1/2 and the metastable
state |1〉 ≡ D5/2. Coherent manipulations are driven
directly on this quadrupole transition by laser pulses near
729 nm; an approach has been realized with great success by
the Innsbruck group [13, 14]. Disadvantages to this approach
are limitations to the coherence due to phase stability of the
laser source at 729 nm and ambient magnetic field fluctuations,
as well as the relatively small Lamb–Dicke factor which leads
to a rather weak momentum kick of the laser excitation on the
ion’s vibrational motion, affecting the two-qubit gate speed.
The optical qubit is read out efficiently and simply by state-
dependent fluorescence, as the ground state scatters photons
while the D5/2 remains dark.

Another option is to use 43Ca+ with nuclear spin I = 7/2
and to encode the qubit in hyperfine ground state levels
|F = 4,mF = 0〉 and |F = 3,mF = 0〉. Coherent
manipulations are achieved by employing a Raman transition,
which means that an ultra-stable laser source is no longer
required. It is straightforward to achieve excellent relative
phase stability if the two Raman beams are derived from
a single laser source. However, a large frequency gap of
about 3.4 GHz must be bridged with high-bandwidth AOMs.
Hyperfine clock states, insensitive to the linear Zeeman effect,
can be used as computational basis states [15], which greatly
increases the qubit phase coherence. The qubit readout is
based on state-dependent fluorescence.

For the measurements presented here we have chosen the
option to encode the qubit in spin sublevels |↓〉 and |↑〉 of
the ion’s electronic ground state S1/2 mJ = ±1/2 of 40Ca+

with I = 0, Zeeman split by an applied magnetic field. Quite
similar work has been performed with great success by the

Oxford group [16, 17]. However, in this work the scheme for
state preparation, readout and cooling is entirely different from
our approach. Furthermore, the experiments were carried out
in a conventional Paul trap and do not suffer from the enhanced
heating rates in a microtrap.

Coherent manipulations of the spin qubit are achieved
by employing a Raman transition, and the requirement of
an ultra-stable laser source can then be dropped as in the
case of hyperfine qubits, but a much smaller frequency
splitting of about 20 MHz allows the use of simple and
efficient AOMs. The high Lamb–Dicke factor of UV–
Raman transitions ensures fast two-qubit gate operations. As
compared to ion species with a hyperfine structure we work
with a much simpler level structure reducing the experimental
complications. Qubit readout, however, is more complicated
since both the |↓〉 and |↑〉 states can scatter photons near
397 nm. In order to discriminate between the two-qubit states,
the population in |↑〉 must first be completely transferred to
the metastable D5/2 state. A future possibility of avoiding
qubit dephasing due to its magnetic field sensitivity for the
40Ca+ spins will be using two physical qubits (ions), in a
decoherence-free subspace of Bell states to encode one logical
qubit [18, 19], in the spirit of designer atoms [20].

4. Qubit preparation and readout

According to the DiVincenzo criteria [21], the initialization
of qubits to a well-defined state and the readout of the
full quantum state of the qubits are essential criteria for
the realization of quantum information experiments. In our
experiment, both steps are realized by using a narrow optical
quadrupole transition at 729 nm, and both are optimized to
achieve high fidelities even under the presence of experimental
imperfections and noise.

4.1. State preparation via optical pumping

The common technique for preparing an initial quantum
state via optical pumping employs a circularly polarized
laser beam resonant with the S1/2 to P1/2 dipole transition
at 397 nm. In this case, both birefringence by the vacuum
windows and a small offset angle between the propagation
direction �k397 and the quantizing magnetic field results in
spurious polarization components. The improper polarization
components deteriorate the initialization fidelity. Furthermore,
as the target state is not completely dark anymore, this
leads to a continuous photon scattering of Doppler cooling
light, which counteracts the ground state sideband cooling
(section 5.3). Therefore, we use the high spectral selectivity
of the narrow quadrupole transition for optical pumping [20].
If the ion is to be initialized in the |↑〉 level, the population
from |↓〉 is transferred to the D5/2,mJ = +3/2 level by a
pulse at 729 nm and transferred back to the ground state by
the quench laser via the P3/2 state. This cycle is repeated until
the desired initialization is reached with high fidelity.

We compare two different schemes for this pumping:
either we use a pulsed scheme or we switch on both light

3
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Figure 2. Single ion population is pumped by the application of circularly polarized light at 397 nm to the |↓〉 state. From this state we use
optical pumping by laser light at 729 nm and 854 nm to pump to the |↑〉 via the D5/2, mJ = +3/2 level. (a) Pumping efficiency of the pulsed
scheme versus the 729 nm pump time of the individual pulses. The curves for various pulse numbers show how performance and robustness
increase for more pulses. Note that the total duration of the pump process increases with the number of pulses. (b) The cw scheme is found
less efficient.

fields continuously (figure 2). In the pulsed scheme, after an
approximate π pulse on the quadrupole transition the quench
beam at 854 nm is briefly switched on. We find that a quench
pulse of just 2 μs is sufficient for complete quenching of the
D5/2 state.

A 729 nm π -pulse length of about 10 μs determines the
amount of off-resonant excitation and thus the fidelity of the
scheme: the target transition |↓〉 to D5/2,mJ = +3/2 is
separated from the parasitic transition |↑〉 to D5/2,mJ = +5/2
by ∼8 MHz for a magnetic field of 6.7 G. The frequency
component of the Fourier transform of the effective square
pulses (without any pulse shaping) already results in an
expected pumping fidelity better than 99.6%, in agreement
with the value for the combined pumping and readout fidelity
(see below) in the experiment of 99.6%; figure 2(a). The cw
scheme suffers from the fact that the presence of the quench
beam hinders the coherent buildup of population in the D5/2

state5.

4.2. Spin readout

A simple readout of the spin state by fluorescence observation
is impossible because the Zeeman splitting of the spin levels
|↑〉 and |↓〉 is smaller than the natural linewidth �/2π ≈
22 MHz of the corresponding 397 nm dipole transition. A
scheme circumventing this by means of electromagnetically
induced transparency has been proposed and experimentally
realized [22], reaching a fidelity of 86%.

Our scheme reaches 99.6% fidelity and additionally shows
a high robustness against imperfect laser settings or noise
in the control parameters, still with a remarkably modest
experimental effort. In a first step we apply a rapid adiabatic
passage pulse (RAP) [12] where the amplitude is adiabatically
switched on and off, and the frequency is chirped across

5 The quench laser couples the metastable state to the rapidly decaying P3/2
state. Upon decay from this state, a photon is emitted which can be, in
principle, detected, indicating that the system has ended up in the ground
state. This represents an effective continuous measurement, disturbing the
coherent evolution of the S1/2–D5/2 superposition.
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Figure 3. Transfer efficiency of the spin qubit |↑〉 for various
schemes versus central detuning of the readout pulse. (a) Dashed:
the narrow peak is the result for a Gaussian pulse with a resonant
pulse area of π . (b) Dotted: the much broader peak corresponding
to a single RAP pulse shows that the robustness against frequency
errors has greatly improved. (c) Solid: the curve for the double RAP
shows that both performance and robustness have increased with
respect to the single RAP.

resonance6. Even for an ion after Doppler cooling, a single
RAP pulse on the |↑〉 to D5/2,mJ = +5/2 transition yields a
fidelity of 95%; the leftover population in the |↑〉 state is then
transferred by a second RAP to the D5/2,mJ = +3/2 state,
and we reach a 99.6% readout fidelity with a high resilience
against a drift of 729 nm laser frequency; see figure 3.

5. Raman transitions between the spin qubit levels

5.1. Raman spectroscopy and characterization of the
transition

In our experiment, we use Raman beams derived from one
laser source (see section 2). The laser is detuned from the
6 As stability against Rabi frequency errors is the main issue for readout
robustification, we have also employed the SCROFOLOUS technique
[23, 24] which is robustified by using a series of three π pulses with different
phases. Although the technique was found to yield the same performance and
an enhanced robustness against pulse area errors, the low resilience against
the laser frequency drift strongly limited the practical use.
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S1/2 → P1/2 resonance frequency by �, referred to as the
Raman detuning. It is up to several tens of GHz and can
be chosen to be both positive (blue detuning) or negative
(red detuning). As � is very large compared to the Zeeman
splittings within the S1/2 and P1/2 manifolds, which is on
the order of 10–20 MHz, it can be considered constant for
the different transitions between the Zeeman levels. The P1/2

state can be adiabatically eliminated from the dynamics, giving
an effective two-level system. The Raman Rabi frequency
now reads �1�2

2�
, where �i are the resonant single-dipole Rabi

frequencies associated with the individual beams.
A great advantage of the utilization of Raman transitions

for quantum logic is the better control over the Lamb–Dicke
factor. The difference k-vector of the beams strongly depends
on the chosen geometry; see figure 1(a). In our setup, two
different beam geometries are employed. In the first of these, a
pair of Raman beams, R1 and CC, propagates parallel to each
other and orthogonal to the magnetic field. The difference
k-vector of the two beams is effectively zero, so the Lamb–
Dicke factor is extremely small and electronic excitation is
insensitive to the ion’s motion. One of the beams (referred
to as ‘R1’) is π -polarized, driving the �mJ = 0 transition.
The other beam (referred to as ‘CC’, cocarrier) is polarized
orthogonal to the magnetic field. Therefore it yields two
circular components, one of which contributes to the coherent
dynamics of the effective two-level system if the Raman
resonance condition is fulfilled, i.e. if the relative detuning
of the beams matches the Zeeman splitting between the qubit
levels. The alternative geometry consists of R1 and a beam
propagating along the magnetic field direction (referred to
as ‘R2’) such that the k-vector of the beat pattern is aligned
along the trap axis. With no component of the k-vector in
the radial plane of the trap, this Raman light field interacts
only with the axial vibrational mode, and avoids any phonon-
induced dephasing from the radial modes commonly called
spectator modes. This fact is of tremendous importance for
our microtrap with prospects to many ions, as we can drop the
requirement of ground state cooling of all vibrational modes
which would be experimentally undesirable.

From the beam geometry and the axial vibrational
frequency, we deduce a Lamb–Dicke factor of η = 0.21,
which is much larger than for the optical transition.

A Raman spectrum is shown in figure 4, clearly displaying
the axial sidebands of motion for a single ion after Doppler
cooling with n̄ ∼ 15 quanta and an axial trap frequency of
1.35 MHz.

5.2. Raman Rabi oscillations on the carrier transition

Rabi oscillations driven by the R1/CC beams pair are shown
in figure 5. Here, with η = 0, no phonon-induced dephasing
can occur. For the experiment, we follow the sequence in
section 2 without ground state cooling in step (b) and apply
in step (c) both beams R1 and CC simultaneously for an
interaction time t. The experiment is repeated 100 times,
and the average excitation probability is plotted.

Showing no influence of the phonon number distribution,
this technique provides an excellent opportunity for studying
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Figure 4. Raman spectrum obtained as R1 is fixed in frequency, and
R2 is scanned over the sideband resonances. The excitation
geometry leads to a difference k-vector along the trap axis, such that
only axial, but no radial modes show up.
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Figure 5. Rabi oscillations on the Raman transition driven by the
R1/CC pair. No phonon-induced dephasing occurs because the
Lamb–Dicke factor is virtually zero, which allows for driving many
single-qubit rotations with high fidelity. The upper curve shows the
long coherence time, while the lower curve displays the first four
Rabi oscillations with high resolution. The two scans were taken
with different Rabi frequencies.

other sources of decoherence. These are ambient magnetic
field fluctuations, fluctuations of the relative phases of the
beams due to air currents or mechanical vibrations and laser
intensity fluctuations and spontaneous photon scattering. The
latter two mechanisms scale with the total effective pulse area
imparted to the ion on each of the dipole transitions pertaining
to the Raman transition. Because of this, a Ramsey contrast
measurement on a spin superposition created by R1/CC with
fixed pulse areas and variable delay between the Ramsey
pulses allows us to study the limits imposed by magnetic
field noise and interferometric stability. Such a measurement
has given a contrast of 90% after a delay time of 1.5 ms.
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Figure 6. Rabi frequency divided by geometric mean of the
scattering rates versus Raman detuning for the R1/CC pair (red
squares) and the R1/R2 pair (black dots). The solid line through the
R1/CC data is the theoretical value of

√
18�−1|�|.

As π -times of down to 2 μs are routinely achieved, this
separation of time scales appears sufficient for quantum logic
experiments. We find in our setup that an air shield and the
high passive mechanical interferometer stability of the optical
setup are sufficient to avoid technically induced dephasing.
The fundamental physical coherence limit of qubits is given
by spontaneous photon scattering [25, 26].

During operations with the Raman beams, the small
amount of population off-resonantly excited to the P1/2 state
decays with a rate corresponding to the inverse lifetime of
this state, which results in random repopulation of the qubit
levels. This off-resonant excitation reads for each beam i as
pP1/2 = �2

i

/
2�2, decreasing with the ratio of Rabi frequency

and Raman detuning. Similar to far-detuned optical dipole
traps [27], the photon scattering rate can be reduced if a large
� is chosen at a high laser intensity. We investigated the
photon scattering experimentally: for a given Raman detuning
and fixed beam powers, the Rabi frequency is measured from
Rabi oscillations as in figure 5 along with the scattering rates
caused by each of the Raman beams individually. For this,
the ion is initialized in |↑〉, and one of the Raman beams is
blocked. We apply the remaining Raman beam with a pulse
of variable length. Finally, from the population in |↓〉 we infer
the scattering rate of beam i.

For the analysis, we normalize the measured Rabi
frequency by the geometric mean of both scattering rates,
such that in the resulting quantity, the individual Raman beam
dipole coupling strengths �i are cancelled.

A value of
√

18�−1|�| is expected when the Clebsch–
Gordan coefficients for the transitions are taken into account.
The result is shown in figure 6, where the vertical axis can
be interpreted as the number of Rabi cycles that could be
driven on average before a single spontaneous scattering event
occurs, in the absence of any other decoherence sources. The
results for the R1/CC pair match very well the theoretical
expectation. The fact that the values for the R1/CC pair
match the theoretical expectation was initially not taken for
granted because of the type of laser source used: a tapered
amplifier generates a background of amplified spontaneous

emission whose width in the range of a few nm is given by the
gain profile of the semiconductor laser medium. Through sum
frequency generation, it is, in principle, possible that photons
at frequencies ω0 + nωFSR are generated in the doubling stage,
where ω0 is the laser mode frequency, and ωFSR is the free
spectral range of the doubling stage. If such a frequency
matches the direct optical S1/2 to P1/2 transition, resonant
photon scattering would occur.

The same experiment, but with the R1/R2 pair of Raman
beams, yields lower values for the Raman Rabi frequency. As
in this geometry the excitation is sensitive to the motional
degree of freedom along the trap axis, we attribute the
lower value to the decrease of the Raman Rabi frequency
with increasing phonon number and axial micromotion
components7 at a trap drive frequency of 24.8 MHz.

Another characterization of the Raman interaction is
done by the determination of the ac-Stark shifts, given by
�S = �2

i

/
4� for one beam i. The absolute ac-Stark shift

might be different for the two-qubit levels |↑〉 and |↓〉, leading
to a differential shift. Under these circumstances, the quantum
phase of qubit superpositions, or of multi-ion entangled states,
evolves not only according to the desired gate operations, but
shows an additional intensity-dependent rapid phase evolution.
If this is the case, intensity fluctuations of the Raman lasers
lead to qubit phase fluctuations, which represents an additional
strong decoherence source.

The absolute ac-Stark shifts for all beams and qubit
states is measured with the following procedure: first, the
qubit is prepared either in the |↑〉 or the |↓〉 level by optical
pumping with circularly polarized 397 nm laser light. Then,
a superposition on the quadrupole transition is created by
means of a π/2 pulse with the 729 nm laser, either with the
D5/2,mJ = +5/2 level for the |↑〉 state or D5/2,mJ = +3/2
level for the |↓〉 state. A second π/2 pulse after a delay time
of 50 μs concludes the Ramsey sequence. During this delay,
a phase shift pulse from one of the Raman beams is irradiated
on the ion, leading to a Ramsey fringe signal as the duration of
the shift pulse is scanned. The absolute shift is then calculated
from the fringe period tR according to �S = 2π/tR . For the R1
beam the |↑〉 level is shifted by 2π · 0.32(2) MHz, and the |↓〉
level is shifted by 2π · 0.33(2) MHz. Within the experimental
errors, the differential shift from R1 vanishes. In contrast, we
measured shifts from the R2 beam with 2π · 0.17(2) MHz for
the |↑〉 level and 2π · 0.29(2) MHz for the |↓〉 level, resulting
in a differential shift of about 2π · 120 kHz. Compensation
of the differential shift is possible by proper adjustment of the
polarization of the corresponding beam.

5.3. Resolved sideband cooling and blue sideband
Rabi oscillations

Cooling close to the ground state of at least one vibrational
mode is an essential prerequisite for two-ion gates, as even gate
schemes for ‘hot’ ions require operation in the Lamb–Dicke

7 The presence of axial micromotion was confirmed by checking for RF
echoes in the Raman spectrum of the R1/R2 pair, i.e. Raman resonances at
relative detunings of ωZeeman + nωRF. Note that the effect of micromotion on
the Raman Rabi frequency has even been used to allow the fine tuning of Rabi
frequencies in quantum gate experiments with Be+ ions [28].
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regime, η
√

n � 1 [29]. For cooling close to the ground state
one has to resort to a narrow transition with resolved motional
sidebands [30], such that transitions to states with one less
phonon (red sideband, RSB) can be driven preferentially and
the n = 0 state acts as a dark state in which the population
is finally trapped. In our system, we have two options to
spectroscopically resolve sidebands, either the R1/R2 Raman
transition or the quadrupole transition.

As the cooling always competes with the heating rate from
trap-induced electric field noise, a high cooling rate is essential
for a good cooling result. A priori, the Raman transition seems
to be better suited for cooling because of the higher ratio of
RSB to carrier Rabi frequency, which is essentially given by
η on the decisive ‘bottleneck’ step from n = 1 to n = 0.
This is because, ideally, the cooling rate is limited by off-
resonant excitation of the carrier transition with subsequent
spontaneous decay which can lead to the creation of one
phonon. However, the problem arises in the dissipative step of
cooling where the ion is repumped to the initial state to restart
the RSB excitation. In the case of the Raman cooling scheme,
the repumping is accomplished by the circular 397 nm beam
which suffers from the spurious polarization error discussed in
section 4.1. Therefore, the dark state n = 0 is not completely
dark anymore, leading to a competing Doppler re-heating
process which limits the attainable temperature.

In contrast, the sideband cooling on the |↑〉 to D5/2,mJ =
+5/2 quadrupole transition does not suffer from this because
the repumping is achieved by the quench laser near 854 nm,
which does not interact with the ion anymore once one photon
is spontaneously scattered. The cooling cycle is almost closed,
because the decay from the P3/2 state during the quench leads
preferentially to the |↑〉 level due to the selection rules. Only
unlikely decay events into one of the D-states can lead to
population of the |↓〉 level. We utilize a pulsed sideband
cooling scheme, since as for the qubit initialization, the power
and frequency of the quench laser are no longer critical
parameters then. The cooling pulse time is set such that
an excitation maximum is reached on the RSB. This time
typically ranges between 10 μs and 20 μs, and increases as
lower phonon numbers are reached because the RSB Rabi
frequency scales as ηax

√
n with the phonon number n. After

the RSB pulse, a quench pulse of typically 2 μs completes
the cooling cycle. After ten cooling cycles, about 10% of the
population is accumulated in the wrong ground state spin level,
such that a 397 nm repump pulse has to be employed. After
eight such sequences, we employ a second cooling stage where
the RSB pulse duration is increased, and the 729 nm optical
pumping procedure is used instead of the circular 397 nm
pulses. The longer time for repumping has no adverse effect
on the cooling rate because it is used only every ten cycles.

5.4. Determination of the phonon number distribution

We confirm the sideband cooling result by employing either
the quadrupole transition or the R1/R2 Raman transition. The
optimization of the cooling is performed by minimizing the
peak excitation of the RSB of the quadrupole transition, which
is essentially given by the probability of not finding the ion
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Figure 7. Coherent dynamics on the R1/R2 BSB after sideband
cooling. The graphs show the population in the |↓〉 level versus
pulse duration of a square Raman excitation pulse (a) directly after
sideband cooling, and (b) after a delay of 3 ms. The data were
obtained with a Raman detuning of � ≈ 40 GHz. The solid lines
are reconstructed from the extracted phonon distribution data with
the inclusion of a coherence decay time of 280 μs. We extract a
mean phonon number of 0.24 for the data set without waiting time.
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Figure 8. (a) Cosine transform of a R1/R2 pulse width scan on the
BSB after a 3 ms delay between cooling and probing. The dashed
lines indicate the different flopping frequencies given by the matrix
element for the given transition.

in the ground state. For more accurate determination of the
phonon number distribution we employ Rabi oscillations on
the R1/R2 blue side band (BSB), with the advantage that no
contributions from the radial vibrational modes can influence
the result, and on the other hand the larger Lamb–Dicke
factor of the Raman transition leads to a better separation
of the Rabi frequencies for the various n → n + 1 transitions.
Excitation data are acquired until the oscillation contrast of
the excitation signal has decreased beyond the projection noise
limit for long pulse widths; see figure 7. The recorded traces
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Figure 9. Coherent dynamics on the R1/R2 carrier transition after
sideband cooling. The graph shows the population in the |↓〉 state
versus pulse duration of a square Raman excitation pulse directly
after sideband cooling. The mean phonon number of 0.24 is used
for fitting the data.

are analysed by a cosine transform to obtain the frequency
components for the different contributing transitions, in full
analogy to experiments on the cavity QED realization of
the Jaynes–Cummings model [31]. Due to the finite data
acquisition time, the peaks in the cosine transform pertaining
to a given transition frequency are accompanied by aliases
at other frequencies which lead to systematic errors when
the phonon number occupation probability is inferred directly
from the peak heights. A deconvolution procedure was used
to remove this effect. The correctness of the method is proven
by the fact that the method yields the correct input phonon
number distribution when Monte Carlo generated data with
realistic parameters are used. The resulting accuracy is then
limited by the readout projection noise of the pulse width scan
data.

A resulting spectrum is shown in figure 8. Upon proper
normalization, the peak heights directly correspond to the
occupation probabilities for the different phonon numbers.
These data can then be used to reconstruct the coherent
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Figure 10. (a) Occupation probabilities Pn for the lowest vibrational levels n � 2, extracted from frequency spectra of the BSB pulse width
scans (see figure 8) after different waiting times. For comparison, the solid lines show the occupation probabilities given by a thermal
distribution p(n) = n̄n/(n̄ + 1)n+1, where n̄(t) is given by a linear fit through the mean phonon numbers calculated from the data. (b) Mean
occupation number n̄ calculated from Pn at different times after cooling. The linear fit indicates a constant heating rate of
ṅ = (0.3 ± 0.1) ms−1.

dynamics, allowing for the empirical inclusion of a coherence
decay time [32]. This is done according to

P|↓〉(t) =
∑

n

Pn

2
(A cos (�n,n+1t) e−γ t + 1), (1)

where P|↓〉(t) is the probability for finding the ion in |↓〉, Pn is
the phonon number distribution, �n,n+1 is the Rabi frequency
pertaining to the specific BSB transition, A is the readout
contrast and γ is the coherence decay rate. The coherence time
1/γ is found to be 280(20) μs. The enhanced decoherence
stems from spontaneous photon scattering [33]. The phonon
distribution is reconstructed for various waiting times after
sideband cooling in order to reveal the trap-induced heating
dynamics. The time-dependent phonon number distribution
is shown in figure 10, along with the resulting mean phonon
number. This directly gives the lowest attainable mean phonon
number of 0.24 and the heating rate to be 0.3(1) phonons ms−1.
This is about one order of magnitude better than earlier findings
of 2.13 phonons ms−1 [10], which is attributed to an improved
trap voltage supply.

The corresponding Rabi oscillations on the carrier of
the R1/R2 Raman transition are shown in figure 9. Taking
the phonon number after sideband cooling from the BSB
Rabi oscillations, we find excellent agreement with the
measurements made on the carrier transition.

6. Outlook

In the future, the full control of a single spin qubit demonstrated
here will be extended to two-ion crystals. Then, a two-qubit
quantum gate utilizing spin-dependent light forces will be
used for the deterministic generation of Bell states. Taking
advantage of the multi-segmented micro ion trap we intend
to split the entangled two-ion crystal and investigate the
separation of entangled states over distances of a few mm.
As the lifetime of entangled Bell states in the decoherence-
free basis states is long [19], measured to be a few seconds in
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experiments using the Zeeman sublevels of 40Ca+, we expect
to be able to generate many of these Bell states within their
coherence time. Protocols such as entanglement purification
[34], entanglement swapping [35] and the generation of cluster
states [36] will then be possible.
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Abstract We introduce a measurement scheme that utilizes
a single ion as a local field probe. The ion is confined in
a segmented Paul trap and shuttled around to reach dif-
ferent probing sites. By the use of a single atom probe, it
becomes possible characterizing fields with spatial resolu-
tion of a few nm within an extensive region of millime-
ters. We demonstrate the scheme by accurately investigat-
ing the electric fields providing the confinement for the ion.
For this we present all theoretical and practical methods
necessary to generate these potentials. We find sub-percent
agreement between measured and calculated electric field
values.

1 Introduction

The concept to realize and investigate quantum processes
with single ions in Paul traps was subject to an impressive
development over the last years. As for quantum informa-
tion with single to a few ions, there has hardly been an ex-
perimental challenge that could withstand this development;
consider, for instance, high fidelity quantum gates [1], multi-
qubit entanglement [2, 3], and error correction [4]. There
has been a recent development in ion trap technology that
was primarily initiated by the necessity—and possibility—
to scale up the established techniques to process larger num-
bers of ions. This idea how to scale up an ion trap com-
puter is to create multiple trap potentials, each keeping only

G. Huber (�) · F. Ziesel · U. Poschinger · K. Singer ·
F. Schmidt-Kaler
Institut für Quanteninformationsverarbeitung, Universität Ulm,
Albert-Einstein-Allee 11, 89069 Ulm, Germany
e-mail: gerhard.huber@uni-ulm.de

a small, processable number of ions [5]. Time dependent po-
tentials can then be used to shuttle the ions between differ-
ent sections. To generate such spatially separated potentials,
the respective trap electrodes are segmented along the trans-
port direction and supplied individually with time dependent
voltages. There have also been proposals to incorporate the
shuttling process into the quantum gate time by letting the
ion cross laser beams or magnetic field arrangements [6].
Another application of the shuttling ability is the exact po-
sitioning of the ion in the mode volume of an optical cav-
ity to perform cavity quantum electrodynamic experiments.
Recently, multi-trap configurations with locally controlled,
individual trap frequencies were proposed to generate clus-
ter states in linear ion traps to perform one-way quantum
computations [7].

This paper presents the implementation of a method us-
ing a single trapped ion to investigate local electric fields.
The method profits from the accuracy of spectroscopic fre-
quency measurements and relies on the ability to shuttle the
ion in order to reach different probing sites. We can demon-
strate that the new technique is suitable to characterize local
trapping potentials in segmented traps over extensive lengths
and even under conditions where imaging of the ion is lim-
ited. First, we describe the experimental system and the way
the electric trapping and shuttling potentials are generated.
After that, the measurement scheme using the ion as a local
field probe is presented. Then, the quantitative experimental
results are discussed and compared to numerical simulations
of the trapping fields.

2 Experimental field generation

We confine a single, laser cooled 40Ca+-ion in a linear
Paul trap. The radial confinement is generated by a har-
monic radio-frequency pseudo potential resulting from a
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25 MHz drive with an amplitude of about 350 Vpp. The
distance between the ion and the radio-frequency electrodes
is ∼250 µm. This results in radial trap frequencies around
3.5 MHz. For the axial confinement, 32 pairs of electrodes
are available. Each of these 64 segments can be individually
biased to a voltage Vi , |Vi | ≤ 10 V. In the trap region the
experiments were performed in, the segments are 250 µm
wide and separated by 30 µm gaps (details can be found
in [8]). The voltage data are preprocessed by a computer
and transmitted to a home-built electronics device. This de-
vice houses an array of 16 serial input digital-to-analog con-
verters (dac, 50 MHz maximum clock frequency), each of
which supplying four individual voltage lines, so that a data
bus conveying 16 bit in parallel suffices to obtain the de-
sired 64 outputs. The amplitude resolution of the converters
is 16 bit with a measured noise level well below the least sig-
nificant bit. The serial input design of the converters keeps
the amount of data being transmitted in parallel at a mini-
mum. This makes the design extendable to a large number
of channels.

In this work, we restrict ourselves to the investigation of
harmonic potentials. This is rectified by the fact that a rest-
ing, laser cooled ion only experiences the very minimum
of the potential. Such potentials are generated by applying
control voltages to the trap segments. Thereby, each specific
voltage configuration results in an axial trap with a given
trap frequency; the position of the potential minimum—this
is where the ion resides—can be changed to shuttle the ion
between different locations on the trap axis. Doing so, two
requirements have to be met by the time dependent voltages:
(i) The amplitudes must range within the limits given by the
dac electronics, ±10 V in our case. (ii) Each segment’s volt-
age is to change as continuously as possible to avoid un-
feasibly high frequencies. All these requirements are ful-
filled by the field simulation and voltage calculation tech-
niques presented in Appendices A and B, respectively. For
the experiments presented here, it is advantageous to per-
form slow, adiabatic potential changes, and thus to avoid ex-
cess oscillations of the ion. For that reason, the update rate
of the digital-to-voltage converters was chosen as ∼3.3 ms,
and a parallel port connection between computer and dac
device was used. In an alternative operation modus of the
trap supply device, the data transmission and updated rate
is significantly sped up by using a field programmable gate
array. Then we reach 4 µs even when updating all 64 chan-
nels simultaneously. For the application presented here, it is
sufficient to use a Doppler cooled probe ion. The probe’s
spatial extent can then be estimated from the ion tempera-
ture and the consequential extent of the motional wave func-
tion to be ∼60 nm. This value could be reduced to ∼5 nm
by sub-Doppler cooling and a tighter confinement of the
ion.

3 The local field probe measurement scheme

To test both the numerical methods and the developed elec-
tronic devices for accuracy, we employ a single ion as a
probe for the electrostatic potential. We exploit the fact that
it is possible to exactly measure the trap frequency of the
confining axial potential by spectroscopic means. Consider,
for example, a voltage configuration {Vi}(zp) to be tested for;
this configuration is meant to result in a trap at position zp

with frequency ω(zp). Then we can use time dependent po-
tentials to shuttle the ion from a loading position to zp [9],
whereby the final voltage configuration must be {Vi}(zp).
The spectroscopically obtained trap frequency at zp can then
be compared to the theoretically expected one, ωsim(zp).

The trap frequency is determined by measuring the dif-
ference frequency of the carrier and the first motional red
sideband (rsb) excitation of the ion in a resolved side-
band regime. For that, we excite the quadrupole transition
(4S1/2,mJ = +1/2) ↔ (3D5/2,mJ = +5/2) at 729 nm. As
the carrier resonance frequency does not depend on the trap
frequency,1 it is sufficient to measure the rsb frequency at
different locations zp .

The measurement scheme is illustrated in Fig. 1. It con-
sists of the following steps:

(i) An initial voltage configuration is chosen to trap and
cool the ion at the starting position z0. All lasers neces-
sary for cooling, repumping, state preparation and de-
tection are aligned to interact with the ion here. Addi-
tionally, z0 is the position where fluorescence emitted
by the ion can be detected by a photomultiplier tube
and a camera.

(ii) The ion is shuttled to the probing position zp . This is
accomplished by applying voltage configurations re-
sulting in a series of harmonic potentials whose min-
imum positions lead the ion from z0 to zp . For sim-
plicity, these potentials were chosen such that their
harmonic frequencies were almost constant and close
to ω(zp).

(iii) Applying a spectroscopy pulse at the probing posi-
tion zp . Now, the voltages are exactly {Vi}(zp). Rest-
ing at zp , the ion is exposed to a spectroscopy pulse of
fixed duration (100 µs). The pulse is detuned from the
(carrier) resonance by �f . This excites the ion with a
probability P into the upper state |D5/2〉.

(iv) Shuttle the ion back to z0, inverting step (ii).
(v) Having arrived back at the starting position, the state of

the ion is read out by illuminating it on the cooling tran-
sition. Whenever we detect a fluorescence level above
a certain threshold, the ion is found in the ground state

1Nevertheless, the carrier frequency was monitored to exclude drifts in
laser frequency or Zeeman splitting.
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Fig. 1 Illustration of the measurement procedure: (i) cooling and
preparation of the ion at the starting position z0 and (ii) transport of
the ion to the probing position zp . A spectroscopy pulse with a certain
detuning excites the ion there (iii). After shuttling the ion back (iv),
the quantum state of the ion is read out (v). After many repetitions for
different detunings an excitation spectrum of the ion at zp is obtained,
from which the trap frequency ω(zp) can be deduced

|S1/2〉, while a low fluorescence level indicates that the
ion has been excited to the state |D5/2〉.

The excitation probability for a specific detuning,
P(�f ), at the remote position zp is obtained by averaging
over many repetitions of steps (i) to (v). By varying �f , a
spectrum of the quadrupole excitation at the remote position
is obtained without moving any lasers or imaging optics but
the spectroscopy laser used in step (iii). This is a significant
advantage because that way even such trap positions can be
investigated that cannot be directly observed by the imaging
devices or reached by all lasers.

The frequency difference between the red sideband and
the carrier transition yields the trap frequency. Figure 2
shows two rsb resonance peaks obtained at different posi-
tions within the trap volume.

It is noticeable that each iteration cycle (i–v) including
two ion transports results—due to the binary nature of the
projective readout—in exactly one bit information about the
spectrum. Therefore, thousands of transports, each relying
on the calculated potentials, are performed for the deter-
mination of one frequency ω(zp). The transport, however,
can be performed so fast (∼100 µs) that its contribution to

Fig. 2 Resonances of the first red sideband excitation on the
S1/2 → D5/2 transition. The two peaks are measured at different trap
positions along the trap axis. The resonance frequencies are given with
respect to the carrier resonance fcar, so that the trap frequency at the
respective trap position can be read off. The full width at half maxi-
mum of the peaks is 8 kHz and determines the measurement accuracy.
The different peak heights stem from slightly different field intensities
experienced by the ion

the overall experiment duration is secondary; this duration
is still dominated by cooling and detection times (∼ms). In
future experiments, one might increase the frequency reso-
lution of sideband spectroscopy to better than a few parts in
104 relative accuracy [10].

4 Implementation and results

To implement the measurement scheme, we first calculated
voltage sets {Vi}(z), where z covers the whole extent of the
trap in steps of 5 µm (For arbitrary positions, the voltages
can be interpolated). Each set results in a certain, wanted
frequency ωsim(z). That means that for each arbitrary posi-
tion z in the trap, a set of voltages can be found, resulting
in a potential with its minimum at z and with trap frequency
ωsim(z). Then, in order to shuttle the ion, we simply subse-
quently apply the voltage configurations for z = z0, . . . , zp .

The calculated voltages are tested with high axial reso-
lution, i.e., in small steps of zp , in two faraway regions of
the trap. Doing this, both small local deviations should be
detectable and the stability over the whole trap structure can
be tested for. To see a variation in ω(zp) when increasing zp ,
it is of advantage that small variations of the trap frequency
around its mean value occur. This is a reliable way to ensure
that the ion, in fact, probes the remote position.

Figure 3 shows the expected, simulated trap frequencies
and the measured ones. The data are in excellent agreement
with the predicted frequencies. On both ends of the investi-
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Fig. 3 (a) Harmonic trap frequency as a function of the position along
the trap axis. The electrode voltages were calculated and applied such
that the trap frequency shows a small oscillatory variation around a
mean value of about 1.4 MHz to see the ion proceed along the axis.
The solid line shows the frequency of the wanted harmonic potential.
The data points are the spectroscopically measured, real trap frequen-
cies. The error bars show the uncertainty due to the finite resonance
linewidth. (b) Relative deviation of the measured from the simulated
frequency |ω(z) − ωsim(z)|/ωsim(z)

gated trap structure, the predicted course of ωsim(z) is con-
firmed within the spectroscopic accuracy of 0.6%. The mean
deviation of all measured data points is only 0.73%. Note
that the solid line shown in Fig. 3 is based solely on geomet-
ric data from a technical drawing of the trap; there is no free
parameter that was used to match the simulations with the
measurement.

5 Discussion and outlook

The high accordance between the simulated and the real
trap frequencies, as can be observed in the presented exper-
iments, indicates the reliability of at least four independent
contributions: First, the numerical field simulation is accu-
rate. This simulation is independent from a specific set of
voltages, but relies on a model of the three dimensional trap
design.

Second, the physical realization of this geometry is very
good, i.e., the manufacturing and assembling process of the

micro-trap is so precise that it is not limiting the field ac-
curacy. This aspect is coming more an more into the exper-
imental focus, since the miniaturization of the trap layouts
still proceeds. For example, a possible axial misalignment
�x of the two dc electrode wings with respect to each other
would mainly result in an axial shift of the oscillations de-
picted in Fig. 3(a) by approximately �x/2. Additionally,
the amplitude of these oscillations decreases with increas-
ing �x. Indeed, the residuals (Fig. 3(b)) show a small oscil-
latory behavior. This oscillation signal is shifted by at most
∼15 µm with respect to the trap frequency oscillation. Such
an effect could stem from a small misalignment of the two
trap layers (see [8]) or from a small offset of the theoretical
and the real, axial zero point of position. We attribute the
observed shift to an offset error since, in this case, the am-
plitude of the oscillation is not decreased, as it is the case
in the measured data.2 This shift is systematic and could
be corrected for. Third, the calculation of the voltages lead-
ing to the wanted potentials is highly reliable. This is also
qualitatively confirmed by the successful shuttling process
itself. From our measurements, we find that the generation
of the voltages and their supply to the trap electrodes is in-
deed highly accurate. We also conclude that trapping fields
from the applied voltages are not significantly perturbed by
background fields from stray charges.

As the generation of trapping fields in the multi-segment
trap was found to be accurate over the whole considered vol-
ume, it is possible to tailor potentials for special purposes.
For quantum computing tasks, a harmonic potential of con-
stant frequency is mostly required. Simulations show that it
is possible to obtain fixed frequency potentials with a rela-
tive frequency deviation on the order of 10−4. The fast trans-
port of quantum information in harmonic wells also requires
a high degree of control over the trap voltages [11]. The ap-
plication of optimal control methods can help optimizing
tailored time dependent potentials. Alternatively, one can
feed-back information, gained from the measurement pre-
sented here, into the generation process to refine the results
iteratively [12].

However, the scope of possible applications of the de-
scribed techniques is much wider than quantum comput-
ing tasks: Ions in time dependent potentials were pro-
posed to be used as a testbed for quantum thermodynamic
processes [13] or for quantum simulation [14, 15]. The pre-
sented method is just a first proof of principle of using single
atoms as ultra-sensitive probes. The measurement princi-
ple is not restricted to the investigation of the electric trap-
ping fields. Using a transition in the ion level scheme with
high differential magnetic moment, we can also employ our
method to investigate local magnetic fields with the ion. The

2The misalignment error can also be verified to be smaller than ∼10 µm
from microscope pictures of the trap.
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method might be seen as an alternative to cold atom sensors
for microscopic magnetic-field imaging [16] or to investi-
gate local current variations in a metal film [17]. Then, a
single atom field probe might be used as well for probing
magnetic micro-structures with a relative accuracy better
than 10−3. While the electric stray fields from surface con-
tamination might be equally well investigated with an ion as
with neutral atoms [18], smallest forces can be detected with
ions [19] or atoms [20]. Also, a study of decoherence and
heating effects and their dependence on the ion-electrode
separation or ion location is in reach.
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Appendix A: Field calculations

To create a specific electric potential φ(z) on the trap axis,
it is necessary to find the right set of voltages {Vi} being
applied to the trap electrodes labeled by i = 1, . . . ,N . The
potential generated by such a set of voltages is the linear
superposition of the N individual electrodes, whereby the
contribution of each electrode i is weighted by the applied
voltage Vi . After subdividing the axial position into a grid
of M points zj , j = 1, . . . ,M , we can write the overall po-
tential at any zj by

φ(zj ) = φj =
N∑

i=1

Aij · Vi.

Here we introduced the electrode potential matrix Aij . It de-
scribes the influence of the ith electrode to the overall po-
tential at xj . Each row i of A can be seen as a position-
dependent function, describing the potential generated by
electrode i (in units of Vi ), when all other electrodes are
set to zero voltage. This quantity A is independent from the
specific voltage and is solely given by the trap geometry, i.e.,
the shape and size of the electrode and its distance from zj ,
for instance.

Therewith, the potential generation can be logically di-
vided into two parts: The matrix A can be calculated in-
dependently from voltage constraints and independent from
the desired potential. Second, for each desired potential φ,
a set of voltages v has to be found by inverting the matrix
equation above. Tackling the first problem, one recognizes
that modern segmented trap geometries can be realized in
such a geometric complexity that conventional simulation
techniques like the finite element method (FEM) fail. In-
stead, we obtained the potentials by solving the boundary
element problem of the segmented trap design. Details can
be found in [21–24].

Appendix B: Calculation of the voltages

In the following, we address the problem of how to obtain a
set of voltages {Vi} that generates a given potential φ when
applied to the respective electrodes. The problem is formally
solved by matrix inversion as A−1φ. Several circumstances
make this straightforward ansatz unfeasible: First, there is
often no exact solution to the problem because φ is not an
exactly realizable potential (note that, in general, M � N

is possible). In this case, an approximate solution has to
be found. Additionally, as a specific electrode does not ef-
fectively contribute to the potential at a faraway point, this
electrode’s voltage is ill-determined. These cases have to be
treated adequately by the algorithm. We solved the inversion
problem with a singular-value decomposition of the matrix
A to identify its critical, singular values. The real N × M

matrix A is decomposed into the product

A = USWT , (1)

of the unitary matrices U (N × N ) and W (M × M) and
the diagonal N × M matrix S with non-negative entries
sk, k = 1, . . . ,min(M,N). This decomposition is part of
many standard numerical libraries and can be performed for
any input matrix A. The inverse can then be written as

A−1 = WS−1UT . (2)

This step is numerically trivial because the unitary matrices
are simply transposed and the entries of S−1 are given by
1/sk . At this point, the advantage of the decomposition be-
comes obvious since small values of sk indicate an (almost)
singular, critical value. One way to overcome these singu-
lar values would be to cut off their diverging inverse val-
ues. Instead, the Tikhonov regularization [25] method im-
plies a more steady behavior as it makes the displacement
1/sk → sk/(s

2
k + α2). The latter expression behaves like the

original 1/sk for large values sk � α, has its maximum at
sk = α and tends to zero for small, critical values sk � α.
From this we can see that the choice of the optimization pa-
rameter α is a compromise between exactness and bounded-
ness of the results. For α = 0, the exact solution (if existent)
is obtained, whereas large values of α guarantee small in-
verse values and thus bounded voltage results. Therefore, we
label the regularized quantities with index α. The approxi-
mate solution vα = (V1, . . . , VN) is

vα = WS−1
α UT φ, (3)

with S−1
α being the regularized matrix with entries sk/(s

2
k +

α2).
Before the problem of finding an optimal α is addressed,

another constraint regarding time dependent voltages, i.e.,
series of voltage configurations, has to be accounted for.
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While moving the ion by one step, i.e., from a position zp to
z′
p , the control voltage should vary as less as possible. This

is achieved by extending (3) to

v′
α = vα + WDαWT v, (4)

where v represents any previous voltage set, providing trap-
ping at zp . The second term in (4) contains a diagonal ma-
trix D with entries dk = α2/(s2

k + α2). dk tends to zero for
sk � α, so that uncritical voltages are affected only little by
the second term. For all critical voltages indicated by a value
sk � α, however, the first term in (4) vanishes due to the reg-
ularization replacement and what remains is the contribution
from 
v0 since then dk ≈ 1. Here, the choice of α determines
how strong the algorithm tries to generate similar voltages
in a (time) series of voltage sets.

The algorithm described above minimizes ‖Av′
α − 
φ‖2 +

α‖v′
α − v‖2 with respect to the Euclidian norm. That is,

the potential φ is reproduced as well as possible under the
constraint that solutions similar to the previous one are pre-
ferred. What remains is to find the proper value of α. Hereby,
one has to make a tradeoff between the boundedness of the
voltages and their continuity. Under practical circumstances
requiring |Vi | ≤ Vmax for some maximal voltage Vmax, α can
be iteratively increased to fulfill this constraint, on the one
hand, and to obtain as continuous voltage sets as possible,
on the other hand.
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tion in decoherence-free subspaces with hot trapped ions, Phys. Rev. A 75, 052337

(2007).

[Aol07b] L. Aolita, K. Kim, J. Benhelm, C. F. Roos, and H. Häffner, High-fidelity ion-trap
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[Die98] M. Diederich, H. Häffner, N. Hermanspahn, M. Immel, H. Kluge, R. Ley,

R. Mann, W. Quint, S. Stahl, and G. Werth, Observing a single hydrogen-like

ion in a Penning trap at T=4 K, Hyperfine Interactions 115, 185 (1998).

[Die08] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, Quan-
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