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Abstract

This dissertation describes a prototype experiment aiming at the realization of scalable quan-
tum information. The essential feature is the usage of a novel microstructured ion trap de-
rived from the Paul trap. It allows for storing and manipulating a large number of ions,
as compared to conventional linear Paul traps. This thesis describes how the way is paved
towards the realization of quantum information experiments in this ion trap. An analysis
of the electrostatic properties of the ion trap is presented, which is laying the foundation
for understanding the limits of confinement stability and effects beyond standard Paul trap
behavior. The focus of this work lies on the realization and characterization of single and
dual qubit operations, which are achieved by means of (semiclassical) atom-light interaction.
In our experiment, the qubit is implemented in the Zeeman sublevels of the ion’s ground
state, i.e. in the spin of the bright electron of a 40Ca+ ion. The main body of this the-
sis then describes the realization of the necessary steps of preparation, manipulation and
readout of this qubit. The preparation includes optical pumping and cooling close to the
motional quantum ground state by means of sideband cooling. Several possible techniques
for these steps are tested and analyzed. Coherent manipulations are carried out by means
of stimulated Raman transitions. Here, a strong emphasis is put on the characterization of
the various decoherence mechanisms, which are dominated by the motional excitation of the
ion due to thermalization of the ion with the trap electrodes, and by imperfections in the
ion-laser interactions. As by-product of the latter investigation, a new measurement scheme
for the experimental determination of atomic dipole matrix elements is presented. Finally,
experimental results on the preparation of Schrödinger Cat states and on the tomography of
a single ion’s motional state are presented. It is also described how Schrödinger Cat states
can be used as a measurement tool for the ultraprecise monitoring of a single ion’s phase
space trajectory, where deviations from the Lamb-Dicke limit dynamics are seen.
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Zusammenfassung

Diese Dissertation behandelt die grundlegenden Schritte eines Prototyp-Experiments welches
auf die Realisierung skalierbarer Quanteninformation abzielt. Das entscheidende Merkmal
liegt in der Verwendung einer neuartigen mikrostrukturierten Ionenfalle, welche auf der
bekannten Paulfalle basiert. Verglichen mit konventionellen Paulfallen erlaubt diese die Spe-
icherung und Manipulation einer grösseren Anzahl von Ionen. Diese Arbeit beschreibt wie
der Weg zur Realisierung von Quanteninformationsexperimenten in dieser Ionenfalle geebnet
wird. Zuerst wird eine detaillierte Analyse der elektrostatischen Eigenschaften der verwen-
deten Ionenfalle präsentiert, was ein grundlegendes Verständnis der Einschlusseigenschaften
und möglicher Effekte jenseites des idealen Verhaltens ermöglicht. Der Fokus dieser Ar-
beit liegt bei der Realisierung und Charakterisierung von Operationen mit einem und zwei
Qubits, welche mit Hilfe der (semiklassischen) Atom-Licht Wechselwirkung ausgefhrt wer-
den. In unserem Experiment wird das Qubit in den Zeeman-Unterzuständen des elek-
tronischen Grundzustands des Ions kodiert, also im Spin des Leuchtelektrons eines 40Ca+

Ions. Der Hauptteil dieser Arbeit umfasst die Realisierung der nötigen Verfahrensschritte
Präparation, Manipulation und Auslese dieser Art von Qubit. Die Präparation umfasst op-
tisches Pumpen und Kühlen nahe an den quantenmechanischen Grundzustand der Bewegung.
Mehrere mögliche Techniken dafür werden getestet und analysiert. Kohärente Manipulatio-
nen werden mithilfe stimulierter Ramanübergänge ausgeführt. Hier wird eine starke Beto-
nung auf die Charakterisierung der verschiedenen Dekohärenzprozesse gelegt, die von der
Anregung der Ionenbewegung durch Thermalisierung mit der Umgebung und Imperfektio-
nen bei der Ionen-Licht-Wechselwirkung dominiert werden. Als Nebenprodukt des letzteren
wird ein neues Messverfahren zur Bestimmung atomarer Dipolmatrixelemente präsentiert.
Zuletzt werden experimentelle Ergebnisse zur Präparation eines Schrödinger-Katzenzustands
und zur Tomographie des Bewegungszustandes eines einzelnen Ions gezeigt. Es wird ebenfalls
demonstriert, wie Schrödinger-Katzenzustände benutzt werden können um die Phasenraum-
trajektorie eines einzelnen ions mit hoher Genauigkeit zu verfolgen, wobei auch Abweichungen
vom Lamb-Dicke Regime beobachtet werden.
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1. Introduction

The reason for the late discovery of quantum mechanics is that genuine quantum phenom-
ena are hardly observed in our everyday life. Even though the stability of atoms, nuclei
and condensed matter objects - without which we would not even exist - originates from
quantum mechanics, essential quantum concepts like superposition states and entanglement
appear to be counterintuitive. They still lead to philosophical objections against the theory.
Because of this, quantum mechanics was not even fully accepted by some of its inventors,
like Albert Einstein or Erwin Schrödinger. However, it is up to now the only theory which
could withstand every experimental test with tremendous success. The last decades have
seen a paradigm shift from the pure investigation of quantum phenomena and tests of the
theory to the usage of quantum mechanics for technological applications. There are already
devices which play crucial roles in the modern world which heavily rely on quantum me-
chanics, e.g. semiconductor microelectronics or the laser. Applications of the pure quantum
effects mentioned above, however, remain scarce. Nevertheless, a large number of promising
proposals, an impressive number of stunning experimental demonstrations and even some
commercial products show that the application of fundamental quantum mechanics is cur-
rently one the most exciting fields of research. This field can be roughly subdivided into the
areas of quantum information, quantum simulation, quantum communication and quantum
metrology. Quantum information is based on the idea of using entanglement as a computa-
tional resource, which promises a tremendous increase in computational efficiency for certain
problems. The idea behind quantum simulation is to use the ability to control tailored
quantum systems to model real-life systems which are still not completely understood, like
e.g. high-temperature superconductors. Quantum communication makes use of fundamental
ideas like the no-cloning theorem to provide absolutely safe information transfer. Finally,
quantum metrology attempts to increase the measurement accuracy for natural constants
by means of entanglement enhancement are even to construct more accurate sensors, like
SQUIDS for magnetic fields.
Both the late discovery of these effects and the difficulty of their usage can be explained
by the fact that they are obscured by the complexity of systems consisting of many degrees
of freedom. If we consider a small system of interest, superposition states within this sys-
tem are destroyed by the interaction with many degrees of freedom from the surrounding
environment, a process which is called decoherence. This transfer of information from the
small system to the outside world, which is a model for the measurement process, provides at
least a partial explanation for the projection postulate. Ironically, entanglement is difficult
to observe because of - entanglement: Coherences within the system of interest effectively
decay because the interaction with the environmental degrees of freedom lead to mutual en-
tanglement. This in turn reduces the quantum coherence within the system, such that the
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1. Introduction

fundamental concepts of classical physics, i.e. causality, locality and reality are restored on
the macroscopic scale.

1975: Proposals for laser cooling (HS75, WD75) 

1978: Demonstration of laser cooling (HS75, WD75) 

1953: Quadrupole mass filter (HS75,) 

1958: Paul trap (HS75,) 

1978: Observation of ion crystals (Diedrich87, Wineland87) 

1986: Observation of quantum jumps (Bergquist86,Nagourney86, Sauter86) 

1995: 3D groundstate cooling (MMK+95) 

1998: Entanglement of two ions (TWK+98) 

1995: Cirac-Zoller gate proposal (CZ95) 

2000: Entanglement of four ions (SKK+00) 

1999: Individual laser addressing (Nägerl1999) 

2001: Decoherence free quantum memory (KMR+01) 

2002: Proposal of segmented ion traps (KMW02) 
2002: Demonstration of a CNOT gate (DBKL+02) 

2003: Demonstration of a geomtric phase gate (LBMW03) 
2003: Realization of the Cirac Zoller gate (SKHR+03) 

2003: Deutsch-Josza algorithm (GRL+03) 

2004: Quantum teleportation (RHR+04, BCS+04) 
2004: Heisenberg spectroscopy (LBS+04) 

2005: Quantum Fourier Transform (CBL+05) 
2005: Entaglement of eight ions (HHR+05) 

2008: Fault-tolerant gates (BKRB08) 

2009: Demonstration of scalability (Home 2009) 

2007: Entanglement of distant ions (MMO+07) 

2008: Cryogenic surface ion trap (LGA+08) 

2004: Single photon generation (KLH+04) 

Figure 1.1.: Milestones in ion-trap quantum computing..

The ability to investigate, control and utilize quantum systems thus relies on the ability
to isolate small systems sufficiently from the outside world and to provide techniques for
controlled quantum state manipulations and measurements. Today, the best possible tech-
nical realizations of this are traps for charged atomic particles, i.e. ion traps. These come
basically in two flavors, namely Paul traps, where a combination of static and rapidly alter-
nating electric fields is used to provide confinement in free space, or Penning traps, which
use static electric and magnetic fields to accomplish this task. Despite the very successful
history of Penning traps, Paul traps have shown to be a better suited tool to realize some
of the ideas mentioned above. An overview of the milestones of quantum physics with Paul
traps is shown in Fig. 1.1, where the selection reflects the personal opinion of the author.
The basic physical idea of the Paul trap, namely to provide stable confinement in two spa-
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tial dimensions by means of ponderomotive forces, initially led to its original use as a mass
spectrometer, for which it is actually still employed for today. However, it was recognized
that also stable confinement in three spatial directions is possible, which allowed for studies
on isolated single atomic particles. With the advent of laser-cooling, it became possible to
bring these particles completely to rest, enabling a large number of fundamental experiments,
which even the founding fathers of quantum mechanics would have never dreamed of. As
the trapped ions are isolated from massive objects, the suitable means to exert control and
obtain information is light. As lasers are monochromatic and coherent, they provide the ideal
tool for cooling, manipulation and read-out of the ions. If the atomic species which is used
has at least two (meta)stable energy levels, between which population can be transferred
by means of laser light, it represents a carrier of binary quantum information, a qubit. The
figures define the value of any quantum information register: The number of qubits that can
be stored and manipulated, the timescales on which decoherence occurs and the speed of the
information processing steps, i.e. the quantum gates. In particular, the latter has to beat
the decoherence timescale. Despite the successful demonstration of all necessary steps to
realize a quantum information processor based on a Paul trap, the limiting issue for actual
application is the scalability to a large enough number of qubits. The current state of the art
is the demonstration of complete control over a number of eight ion qubits, which is unlikely
to be overtrumped on the basis of conventional technology. A number of problems arise if
one attempts to store a large number of ions in a single linear Paul trap: First, the required
strength of radial confinement to maintain the ions aligned along a string increases with the
number of ions. Second, the decrease of the minimum distance between two qubits for larger
numbers of ions makes the ion addressing more and more difficult. Third, the addressing of
motional modes in frequency space also becomes a challenge for many ions, as the number
of motional modes increases linearly, leading to spectral crowding. To make this point clear,
these statements are illustrated in Fig. 1.2.

Several ways to circumvent these scalability problems have been proposed and partially
realized:

� Atom-photon networking
It has been successfully demonstrated that groups of up to eight ions can be fully
controlled in a single linear Paul trap. Thus, one could simply operate several of
such traps. This brings up the necessity to transfer quantum information between
the different sub-processors, i.e. the nodes of the quantum network. The natural
candidate as information carrier is of course the photon, which has a long tradition
as a carrier of quantum information. This scheme has been originally proposed in
[Cir97]. The scheme only works if a deterministic mapping of quantum information
from atomic to photonic qubits can be performed, for which cavity QED delivers the
most suitable physical realization. A successful demonstration of this mapping with
neutral atoms has been performed in [Wil07]. The combination of ion traps and high-
finesse cavities has already led to a deterministic single photon generation from ions
[Kel04], the combination of these techniques however still remains an experimental
challenge. An alternative method to provide the desired coupling between photons and
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Figure 1.2.: Illustration of the limited scalability in linear Paul traps: a) shows how the min-
imum ion distance decreases as more and more ions are stored in a trap (example parameters
assumed here are a trap frequency of 1 MHz and the mass of 40Ca+ ions). The inset shows
the equilibrium positions of the ions, also demonstrating the increasing inhomogeneity of the
string for larger ions numbers. The scaling behavior is found to be ∆zmin ∝ N−0.56 [Jam98].
b) shows how the radial confinement has to be increased for stable operation with larger
numbers of ions. The minimum trap aspect ratio is ωrad/ωax yielding a linear ion string is
plotted against the ion number. The inset shows how the instability occurs for decreased
radial confinement, see Sec. 2.2.

atoms is a free-space configuration with strong focusing [Tey09]. Another alternative is
not to use light, but charge excitations in metal wires to transfer the qubit information
over distances [Dan09].

� Probabilistic entanglement
A tremendous experimental simplification is achieved if the requirement of determinis-
tic coupling in the previously mentioned scheme, i.e. unit efficiency of qubit conversion,
is dropped. The price to be paid is that the computation scheme becomes probabilis-
tic. A possible realization was proposed in [Dua04b], with the key idea of making use
of emitted photons as heralds for entanglement. After a certain number of attempts,
one would therefore know that ions at remote locations are in a given entangled state.
This state can then be used as a resource for quantum computation without the ne-
cessity of further quantum information transfer, e.g. in the spirit of the cluster state
computation scheme proposed in [Rau01]. The scheme has recently been realized for
two ions [Moe07], but the future prospects remain questionable because of the low suc-
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cess rates for entanglement and the unfavorable scaling behavior for more than two
qubits. However, a hybrid approach where cavities are used to enhance the photon
collection efficiencies might still be a very promising candidate for large-scale quantum
computation.

� Laserless quantum computing
The necessity of ultra-stable laser sources in unfavorable wavelength ranges, with high
demands on power and stability, represents one of the greatest obstacles for the com-
mercial use of quantum computation. Also, some of the scalability limits listed above
arise due to the requirement of well-defined interactions between ions and laser light.
Furthermore, frequency and intensity fluctuations and scattering represent unavoidable
decoherence sources, which is carefully investigated in this thesis. A partial relief from
these difficulties would be to place an ion string in a strong magnetic field gradient,
which breaks translational symmetry such that the conservation of momentum does not
hold anymore. Thus, a coupling between qubit state and external degrees of freedom
can be achieved without short wavelength laser radiation, and thereby enables the cou-
pling of the internal states of distant ions. This was originally proposed in [Min01], and
the selective addressing of different ions in a magnetic field gradient has been demon-
strated in [Joh09], along with the observation of a signature of magnetic-field induced
coupling between radio-frequency and motion.

� Fast gates on large ion arrays
According to a gate proposal from 2003 [GR03], ultrafast laser pulses with durations
much shorter than the radiative lifetime of an excited state pertaining to a dipole tran-
sition can be used for coherent population transfer. The momentum kick accompanying
the photon absorption can then be used to mediate the gate by conditional pick-up of
geometric phases as in the conventional geometric phase gate [Lei03b]. It was realized
in Ref. [Dua04a] that due to the fact that the total gate time can be shorter than
the vibrational period of the ions, only local oscillations are excited and the errors that
occur from parasitic coupling to spectator ions is strongly reduced. It was found in Ref.
[Zhu06a] that the experimental effort can be reduced with the application of quantum
control techniques, and it is shown in Ref. [Zhu06b] that the usage of radial vibrational
modes instead of the axial ones yields major experimental advantages. Radial mode
entangling gates based on conventional cw-laser radiation have been demonstrated in
Ref. [Kim09], and entangling gates with pulse trains comprised of ultrashort laser pulses
were accomplished in Ref. [Hay10].

� Multiplexed trap architectures
A way to overcome the limits for the manipulation of large ion crystals is the usage
of multiplexed trap structures. The idea is to use more complicated electrode geome-
tries making up an array of miniature Paul traps, where smaller groups of ions can
be stored and manipulated easily. In order to make use of the full number of ions as
qubits, ions must be shuttled between the different trap sites. This approach was first
presented in [Kie02], and in the following years several groups have made attempts to
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fabricate and use microstructured segmented Paul traps. Shuttling and splitting oper-
ations have been successfully demonstrated [Row02]. Variations in the geometry such
as surface traps [Sei06], T-junction traps with three layers [Hen06] and semiconductor
traps [Sti06] have been successfully used. Two main issues determine the usability of
these segmented traps for a future quantum computer: The first is the feasibility and
scalability of the fabrication process, which led to the strong interest in surface and
semiconductor traps, as one hopes that it is possible to adapt well-established fabri-
cation techniques from the semiconductor industry for the production of arbitrarily
complicated structures. Second, as the trap structures become smaller and more com-
plex, the behavior of trapped ions will deviate more from ideal harmonically confined
particles. Especially the heating rate from the motional ground state increases and
micromotion compensation and optical access become more difficult. Because of this,
up to date more conventional microchip trap made out of gold-coated ceramic arranged
in a 3D geometry have been more successful, although they are more difficult to fab-
ricate. However, several experiments utilizing surface traps are catching up [Lab08].
Another advantage of surface traps is their dimensionality: Structures which allow for
rearranging the order of ion crystals can be fabricated more easily. Recently, high-
fidelity shuttling over an X-junction in a 3D geometry has been demonstrated [Bla09].
The most tremendous challenge for microstructured traps certainly is the largely en-
hanced heating rate, which scales as r−4 with respect to the minimum distance r of
an ion to the most nearby surface [Des06]. A possible solution to this is to utilize
other ion species for sympathetic cooling [Hom09], which however largely increases the
experimental overhead.

In this thesis, we employ the last of the presented approaches. We describe the effort to-
wards utilizing a microstructured trap with a linear 3D geometry for scalable quantum logic.
The manuscript is organized as follows: In chapter 2, we lay the theoretical foundations in
a way such that the thesis is mostly self-contained. We introduce the basics of atom-light
interactions, which are extended step by step to include motional degrees of freedom, dissi-
pation and far-off-resonant laser beams. We also give a theoretical account on the operation
principles of Paul traps, which is generalized for the treatment of arbitrary trap structures.
In chapter 3, we present the experimental setup which was partially created, enhanced and
optimized throughout the course of this dissertation. Technicalities are avoided as much as
possible, emphasis is put on the experimental limitations arising from technological issues,
and on the usability as a reference manual for future work on the experiment. In chapter 4,
we describe how the experimental apparatus is used to establish a qubit based on a trapped
ion. Basic qubit operations such as initialization, readout and coherent manipulation are
described in detail, along with measurement results on cooling and heating of trapped ions
and an exhaustive study of decoherence effects. The next chapter 5 describes how elaborate
numerical tools are used to shed light on the properties of our microtrap. It presents a precise
calculation of the trap potentials, which are used to infer secular frequencies. Measured trap
frequencies are then compared to experimental values. Furthermore, the compensation of
micromotion in our trap is explained. Chapter 6 presents a novel measurement method for
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atomic dipole matrix elements, i.e. transition lifetimes. This method is based on the methods
developed for handling the spin qubit. First results indicate that the method might be used
for attaining a comparable or even better accuracy than conventional methods. In chapter 7,
we perform a tomographic measurement of the quantum state of a motional mode of a single
trapped ion, which lays the foundation for envisaged experiments in the field of quantum
thermodynamics. Chapter 8 gives a detailed account on the experimental preparation and
manipulation of Schrödinger cat states of a single ion, i.e. on the entanglement between spin
and motional degrees of freedom. These measurements represent a crucial step for the real-
ization of two-qubit gates for quantum computation. Chapter 9 shows various measurement
results on two-ion crystals, providing an essential step towards quantum computation and
scalability. In chapter 10, we conclude the thesis and give an outlook on future perspectives.
Some rather detailed matter is presented in appendices: Appendix A shows a method to
obtain a dissipative quantum mechanical equation of motion for an effective two-level system
exposed to off-resonant laser fields. Appendix C describes how phonon number distributions
can be reconstructed from the coherent dynamics of a laser-driven ion. In appendix B, we
give an account on the trap voltage supply electronics, which represents a key technology for
the realization of scalable quantum information with segmented microchip ion traps. Finally,
appendix D deals with theoretical considerations on quantum state tomography schemes
superior and more powerful than the one used in chapter 7.
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2. Theoretical Foundations

In this chapter, we intend to provide the theoretical foundation for the classical and quantum
dynamics of trapped ion in a mostly self-contained way. After starting from the dynamics of
a laser-driven two-level system including dissipation in Sec. 2.1.1, we establish a necessary
link to fundamental atomic physics to explain how laser beam parameters have to set to
control the interaction with the ion in Sec. 2.1.2. We then include motional effects to the
laser-driven dynamics both semiclassically in Sec. 2.1.3 and on the quantum level in Sec.
2.1.4. Sec. 2.1.5 treats dissipative effects in multilevel systems, while Sec. 2.1.6 gives a
generalized framework for coherent and incoherent effects in multilevel systems interacting
with multiple off-resonant lasers. Finally, Sec. 2.2 gives a basic account on Paul-trap theory
which is present with an emphasis on applicability for general trap geometries.

2.1. Laser-Ion Interactions

This section treats some general and specific aspects of the interaction between light and
atoms. As a starting point, the dynamics of a two-level system is treated, with an emphasis
on how it can be used for basic single qubit operations and the observation of resonance
fluorescence. For understanding how the laser polarization affects the couplings in a multilevel
system, we give expressions for the coupling matrix elements for the cases of electric dipole
and quadrupole transitions. We then include the motional degree of freedom in order to
explain how laser cooling in both the regimes of unresolved and resolved sidebands works.
Finally, we give a framework for the treatment of multilevel atoms in multiple laser fields
in the presence of spontaneous emission. This enables a rigorous derivation of the relevant
parameters for driving stimulated Raman transitions, which is of crucial importance in the
following chapters.

2.1.1. The Two-Level System: Dynamics

We consider two electronic levels of an atom, referred to as ground state |g〉 and excited state
|e〉. The atom is placed in a laser beam, which is described as a monochromatic electric field
propagating in direction x:

~E(t) = ~E0 cos(kx− ωlt+ φ). (2.1)

The prefactor ~E0 = E0~ε gives the amplitude and polarization of the laser beam. Due to the
fact that the atom is localized within a small fraction of the optical wavelength, we set the
spatial phase kx of the wave to be constant which can be absorbed in the optical phase φ.
This approximation is to be dropped in Sec. 2.1.4. The Schödinger picture Hamiltonian is
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2. Theoretical Foundations

written as the sum of the atomic Hamiltonian Ĥ0 setting the energies of the two states, and
the interaction Hamiltonian Ĥi(t) coupling the states via the light field:

Ĥ = Ĥ0 + Ĥi

Ĥ0 = EgP̂g + EeP̂e = ~ωgeσ̂z
Ĥi(t) = Vge(t)σ̂

+ + h.c. , (2.2)

where

P̂g = |g〉 〈g|
P̂e = |e〉 〈e|
σ̂+ = |g〉 〈e|
σ̂z = −P̂g + P̂e (2.3)

and Eg and Ee are the energies of the atomic levels and ωge = (Ee − Eg)/~. Different
mechanisms for the coupling between the light wave and the atom exist, see Sec. 2.1.2
below. For the moment, we just assume a given coupling matrix element Vge(t) containing

the electric field ~E(t) between ground and excited state, which allows us to write down the
time dependent Schrödinger equation in matrix notation:

|Ψ〉 = cg |g〉+ ce |e〉

i~
d

dt
|Ψ〉 = Ĥ |Ψ〉

⇒ i~
d

dt

(
cg
ce

)
=

(
Eg Vge(t)

V ∗ge(t) Ee

)(
cg
ce

)
. (2.4)

The off-diagonal coupling matrix element

Vge(t) = E0 cos(ωlt+ φ)Mge(~ε) (2.5)

is comprised of the electric field amplitude, the oscillation at the laser frequency ωl and a
polarization dependent matrix element. With the definitions

ωeg = (Ee − Eg)/~
δ = ωl − ωeg
Ω = E0Mge/~, (2.6)

where Ω is called the Rabi frequency and δ is the detuning from resonance, we can transform
the Hamiltonian in a frame rotating at ωeg according to

Ĥ ′ = Û †ĤÛ − i~ ˙̂
U †Û (2.7)

with
Û = eiEgt/~|g〉〈g|+ eiEet/~|e〉〈e|. (2.8)
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and cos(ωlt+ φ) = (ei(ωlt+φ) + e−i(ωlt+φ))/2, we obtain a new representation of Eq. 2.4:

⇒ i
d

dt

(
cg
ce

)
=

(
0 Ωeiδt

Ω∗e−iδt 0

)(
cg
ce

)
, (2.9)

where terms oscillating at the sum of laser frequency and the atomic transition frequency,
ωl + ωeg were omitted. This is the rotating wave approximation (RWA), which is justified
by the fact that the sum frequency is in the 1015 Hz range for optical transitions, whereas
the timescales of interest are on the order of microseconds, such that the fast oscillations
average out upon integration of the Schrödinger equation. Note that the laser phase φ has
been absorbed in the Rabi frequency in Eq. 2.9. Another unitary transformation of the type
defined by Eqs. 2.8 and 2.8 with respect to the frame rotating at the detuning δ leads to the
following convenient representation of the Schrödinger equation:

⇒ i
d

dt

(
cg
ce

)
=

1

2

(
−δ Ω
Ω∗ δ

)(
cg
ce

)
, (2.10)

which has a time-independent Hamiltonian for constant Ω and δ. Hence, it can be straight-
forwardly integrated to give the propagator

Û(t) =

(
cos(Ω̃t/2)− i δ

Ω̃
sin(Ω̃t/2) iΩ

Ω̃
sin(Ω̃t/2)

iΩ∗

Ω̃
sin(Ω̃t/2) cos(Ω̃t/2) + i δ

Ω̃
sin(Ω̃t/2)

)
, (2.11)

where Ω̃ =
√

Ω2 + δ2 is the off-resonant Rabi frequency, at which population is transferred
back and forth between ground and excited state. Note that the coefficients cg, ce still pick
up a phase of ±δt/2 during time t which is not contained in Eq. 2.11 because we transformed
into the frame rotating at δ. At resonance, δ = 0, Eq. 2.11 reduces to

Û(t) =

(
cos(Ωt/2) −ieiφ sin(Ωt/2)

−ie−iφ sin(Ωt/2) cos(Ωt/2)

)
. (2.12)

In the resonant case, after initially starting in the ground state, the population in the excited
state is found to be

pe(t) = |ce(t)|2 = sin2(Ωt/2), (2.13)

which results in the well-known Rabi oscillations. If we now define the pulse area to be
θ = Ωt, it can be seen that a pulse with θ = π, termed π-pulse, can transfer the population
completely from the ground state to the excited state and vice versa. A pulse with θ = π/2,
termed π/2-pulse, creates a balanced superposition of ground and excited state upon starting
from either ground or excited state. Both types of pulses are elementary building blocks of
quantum algorithms.
Note the laser phase φ explicitly reappears in Eq. 2.12. Of course, the laser phase cannot
be controlled globally, but becomes both controllable and relevant when several propagators
of the form Eq. 2.12 are concatenated, corresponding to a sequence of laser pulses with
different phases. Another useful picture of this is to see the laser as a stopwatch which is
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always running. The first laser pulse then starts another stopwatch, namely the atom. The
experimentalist can change the pace of the laser stopwatch and give it sudden kicks, the
former corresponding to changing the detuning, the latter to changing the phase directly.
Furthermore, the pace of the atomic stopwatch can also be controlled by changing the energy
difference between ground and excited state by external control fields, exploiting either Stark-
or Zeeman shifts. At every laser pulse following the first one, the relative position of the
stopwatch pointers will decide on how the atom reacts on the field. Any uncontrolled external
influence on either the laser or the atomic stopwatch will lead to a loss of control over the
system, which is called dephasing. It is interesting to note that controlling the phase of
the atom is only possible if the laser phase is well defined during the whole pulse sequence,
therefore the coherence of the laser field is of crucial importance. The coherence time τc is
characterized by the autocorrelation function of the laser field, which is related to the laser
bandwidth ∆f by the Wiener-Khintchine theorem:

τc∆f = 1 (2.14)

Generally, the laser bandwidth has to be much smaller than the maximum duration of the
control pulse sequence.
Vacuum fluctations drive spontaneous decay processes, where the excited state is depleted
under emission of a photon. This depletion takes place a rate of

Γ =
1

τ
=
M2
geω

3
ge

3πε0~c3
. (2.15)

In order to include this disspipative process which gives rise to depletion of the excited state
and loss of phase coherence of superposition states, we generalize the treatment by describing
the system by a density matrix ρ̂:

ρ̂ =

(
ρgg ρge
ρeg ρee

)
=

(
|cg|2 cgc

∗
e

c∗gce |ce|2
)
. (2.16)

The Schrdinger equation of motion of the states is straightforwardly extended to the Heisen-
berg equation of motion for the density matrix:

i~ ˙̂ρ = [Ĥ, ρ̂]. (2.17)

Now the decay from |e〉 to |g〉 at rate Γ and the decay of the off-diagonal elements at rate
Γ/2 is empirically included which yields the famous Bloch equations:

ρ̇gg = Γρee + i
2Ω (ρ̃eg − ρ̃ge)

ρ̇ee = −Γρee + i
2Ω (ρ̃ge − ρ̃eg)

˙̃ρge = − ((Γ/2 + iδ) ρ̃ge + i
2Ω (ρee − ρgg)

˙̃ρeg = − (Γ/2 +−iδ) ρ̃eg + i
2Ω (ρgg − ρee)

(2.18)
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Here ρ̃ge = e−iδtρge and ρ̃eg = eiδtρeg are the off-diagonal elements the a frame rotating at the
detuning. From the steady-state solution ρ̇ij = 0 , one obtains the rate at which the two-level
atom will emit photons under laser exposure. It is given by the time-averaged population in
the excited state times the decay rate:

R = Γρee(t) =
Γ

2

Ω2

Γ2 + 2Ω2 + 4δ2
, (2.19)

which gives the familiar Lorentzian lineshape of atomic emission. A generalized version of
the Bloch equations is given below in Sec. 2.1.6. One can see that the natural linewidth Γ is
broadened if Ω becomes comparable in magnitude, which is called saturation broadening. It
is convenient to express Eq. 2.19 as

R =
Γ

2
S

1

1 + S + 4δ2/Γ2
(2.20)

with the saturation parameter

S =
2Ω2

Γ2
. (2.21)

Due to the quadratic dependence on Ω, S can be given in terms of the laser intensity I:

S =
12πc2

~ω3
geΓ

I. (2.22)

ωge and Γ can be found in atomic data tables [NIS06]. This relation can be directly used
to read off the laser power required to saturate a given transition. For laser cooling and
fluorescence observation in ion traps, saturation parameters of S =1..10 are typically used.

2.1.2. The Two-Level System: Coupling Matrix Elements

As will be explained in detail in Chapter 4, electric dipole (E1) and electric quadrupole
transitions (E2) are of particular interest for the work with Ca+. The coupling matrix
elements for these transitions read

ME1
ge = e 〈g|~ε · ~r|e〉

ME2
ge = e 〈g|~ε · (~r ◦ ~r) · ~k(0)|e〉, (2.23)

where ~ε is the amplitude vector of the electric field, i.e. its polarization, and ~k(0) is the
normalized propagation vector of the light wave. A quantizing magnetic field defines the
coordinate system up to an arbitrary rotation around the field axis.

By invoking the Wigner-Eckart theorem, one obtains for these matrix elements:

ME1
ge = 〈g||e rC(1)||e〉

∑
i=x,y,z

+1∑
q=−1

(
Jg 1 Je
−mg q me

)
c

(q)
i εi

ME2
ge = 〈g||e r2C(2)||e〉

∑
i,j=x,y,z

+2∑
q=−2

(
Jg 2 Je
−mg q me

)
c

(q)
ij εik

(0)
j , (2.24)

13



2. Theoretical Foundations

where c
(q)
i , c

(q)
ij are the Racah tensors [Jam98] and 〈g||·||e〉 denote the reduced matrix elements,

respectively. These are unique properties of the electronic transition under consideration and
can be inferred from the lifetime of excited states, i.e. the corresponding Einstein coefficients.
The matrix elements in round brackets, giving the relative coupling strengths between specific
mJ sublevels by a specific polarization component are the Wigner three-j symbols. The
important result is that even without the exact knowledge of the electric field strength at the
position of the ion and the Einstein coefficients, one is able to calculate the relative driving
strength of the transitions between the different sublevels within the ground and excited
state manifolds. This is of crucial importance for setting up the beam geometry for driving
the quadrupole transition , see Sec. 4.2.2, and for driving Raman transitions and exerting
spin-dependent forces, see Sec. 4.5 and 8.1. The value of the reduced matrix element,
together with the energy difference between ground and excited state, ultimately sets the
lifetime of the excited state by Eq. 2.15 when all decay channels to lower lying states are
considered. Dipole transitions lead lifetimes on the order of nanoseconds, thus excited states
which possess dipolar couplings to lower lying states are not suitable for storing quantum
information. By contrast, an excited state which is only connected to lower lying state by
a quadrupole transition has a lifetime on the order of seconds and can therefore be used as
information carrier.
The polarization vector ~ε determines the transition between the specific Zeeman sublevels
which are driven by the laser field. With the quantizing magnetic field along the z-axis, is
conveniently expressed in the basis

~ε
(0)
− =

1√
2

1
i
0

 ~ε
(0)
0 =

0
0
1

 ~ε
(0)
+ =

1√
2

−1
i
0

 . (2.25)

In the electric dipole case, the ~ε− component drives ∆mJ = −1/2, the ~ε0 component drives
∆mJ = 0 and the ~ε+ component drives ∆mJ = +1/2 transitions. If we consider a beam
propagating at angle θ to the quantizing magnetic field with its polarization at angle φ to
the ~k − ~B plane, i.e. φ = 0 if ~k ⊥ ~B ‖ ~ε, the polarization components can be expressed as

ε− = ~ε
(0)
− · ~ε =

1√
2

(i sinφ− cos θ cosφ)

ε0 = ~ε
(0)
0 · ~ε = sin θ cosφ

ε+ = ~ε
(0)
+ · ~ε =

1√
2

(i sinφ+ cos θ cosφ). (2.26)

In general, if we consider a beam with propagating in the direction ~k with polarization

components ε
(k)
− , ε

(k)
0 , ε

(k)
+ , and if we assume the magnetic field to be aligned in the y-direction,

the polarization vector is transformed by the rotation matrix

R =

(
cos θ sinψ sin θ − sin θ cosψ

0 cosψ − sinψ
sin θ sinψ cos θ cosψ cos θ

)
, (2.27)
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2.1. Laser-Ion Interactions

where θ is the azimuth and ψ is the inclination of the k-vector with respect to the coordinate
system defined by the magnetic field and the trap axis. The effective polarization components
acting on the atomic system can then be obtained by the scalar product

εp = ~ε(0)∗
p ·R~ε(k). (2.28)

2.1.3. Including the Motional Degrees of Freedom: Laser Cooling

In this section, we consider the effect of the spatial phase eikx which we omitted in the
previous section. Due to the fact that quantum mechanically, the ion has to be described by
a wavefunction with a finite spatial extension, it ’samples’ a portion of the light wave with
varying optical phase. Then, a varying phase is imprinted onto the wavefunction, leading to
momentum transfer due to the correspondence principle. This coupling between light and
motion is important in ion trap experiments for the following reasons:

� The ion has to be strongly localized in phase space. This is achieved by laser cooling,
where the coupling between light and motion is used for transferring energy from the
ion’s motion to the vacuum modes of the electromagnetic field.

� According to the DiVincenzo criteria, one needs to realize quantum gates between at
least two ions. Because of the strong localization, the wavefunctions of the ion do not
overlap, such that the coupling is only provided by the mutual (classical) Coulomb
interaction. The way to realize two-ion quantum gates is then to couple the motion of
one ion to the internal degree of the other one, which can be achieved by means of a
motion dependent light-matter interaction.

Due to the different physics and the distinct relevance, we treat the cases where the motion
is semiclassical and the case when it is quantized separately.

The trajectory of an atom with mass m moving a harmonic potential is simply given by

x(t) =

√
2E

mω2
sinωt

v(t) =

√
2E

m
cosωt, (2.29)

where E is the total energy. If we irradiate a laser beam onto the atom, it will fluoresce at
a rate given by Eq. 2.20, but in order to incorporate the Doppler effect, we have to replace
the detuning as δ → δ − kxv(t):

R(v) =
Γ

2
S

1

1 + S + 4(δ − kxv)2/Γ2
. (2.30)

If the laser is now red-detuned from the transition, i.e. δ < 0, the absorption rate will increase
if the ion moves antiparallel to the laser beam direction. Shortly after the absorption of a
photon, an emission process will take the atom back into the ground state. According to
momentum conservation, each absorbed photon will change the momentum along the laser
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Figure 2.1.: Doppler cooling: a) Cartoon of the ion as a two-level system placed in the laser
beam and emitting photons. b) Photon emission rate from Eq. 2.30 versus velocity for
saturation parameters S = 1 and S = 10 and a detuning of δ = −Γ/2. The dashed lines
indicate the slope at v = 0. Note the curve for multiple saturation has a less steep slope.
c) Velocity trajectory of an ion oscillating in a harmonic trap at frequency ωvib. The grey
shaded area indicates the emission rate as indicated in b). When crossing the resonant region,
emission processes take place which decrease the kinetic energy of the oscillation.

beam direction by ∆p = ~kl, but each photon will amount to a momentum kick ∆p = ~keg,
where the direction is random 1 such that the net momentum transfer from emission is zero
after a number of emission processes. Thus, the laser reduces the overall momentum along the
beam direction. In a three-dimensional harmonic potential, the atom possesses three mutually
orthogonal components of vibration, which can all be cooled by a single laser beam if the
beam direction is not collinear with any of the three modes, which is in contrast to free space
cooling in magneto-optical traps where at least four laser beams have to be employed. This
is normally the entire explanation the Doppler cooling process, however one might wonder if
the argument that the momentum kicks due to the emission processes do average out does
not break down in the three-dimensional case. The reason why Doppler cooling still works in
three dimensions is that the absorption takes place red detuned, whereas the emission takes
place on resonance, i.e. kl < keg. Thus, energy is continuously transferred from the atomic
motion to the vacuum light modes. Time-averaged, the cooling can be seen as a dissipative

1In a more realistic model, the emission is not completely isotropic due to the presence of a quantizing
magnetic field, it rather follows the familiar dipole emission pattern
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2.1. Laser-Ion Interactions

force
Fcool(v) = ~keqR(v), (2.31)

leading to an energy dissipation rate of

Ėdrift = Fcool(v) · v (2.32)

This is a drift process, which is counteracted by a diffusion process in momentum space
due to the random emission processes. A detailed analysis reveals that optimum Doppler
cooling takes place if the detuning just amount half the linewidth δ = −Γ/2 and at unity
saturation S = 1. However, a completely realistic treatment would have to involve the fact
that one is dealing with a multilevel system, leakage to other electronic states, the anisotropy
of the trap and of the emission pattern, the discrete nature of the emission processes and the
micromotion in ion traps, see Sec. 5.2. Quite generally, one finds that the limit for Doppler
cooling in ion traps is given by an average number of typically 10..30 motional quanta per
mode, depending mostly on the ion species and on the trap secular frequencies. Doppler
cooling can be seen as driving the atom to a thermal equilibrium with a reservoir given by
the laser, and the equilibrium temperature is given by the transition linewidth. Hence, one
will find the atom with a thermal distribution of phonon number after Doppler cooling:

pn =
n̄n

(n̄+ 1)n+1
with n̄ =

kBT

~ωv
(2.33)

Fig. 2.1 shows the photon emission rate versus atomic velocity for different saturation pa-
rameters. It can be seen that a finite probability exists that emission processes can take place
for kv > 0, leading to energy transfer to the atom. For low energies, i.e. small velocities,
the slope of the emission rate at zero velocity determines the relative weight of cooling and
heating processes and therefore sets the final temperature. Thus, narrow atomic lines and
small intensities lead to lower final temperatures, but smaller fluorescence rates and cooling
rates. This tradeoff is circumvented in ion trap experiments by using small laser power for
cooling, but larger power for trapping and fluorescence detection.

In the following, we explain how information about the motional state of a single harmoni-
cally confined ion can be extracted from fluorescence rate measurements. We assume a single
ion to undergoes classical oscillatory motion along the directions of the motional modes:

ri(t) = Ai sin(ωit+ φi) i = x, y, z, (2.34)

with the amplitudes Ai, frequencies ωi and relative phases φi for the three normal modes. In
principle one has to average any resulting quantity about the undefined φi, however as the
observation time is much longer than the oscillation periods this is not necessary. The energy
stored in the motional modes is given by

Ei = A2
imω

2
i . (2.35)

It should be mentioned here that the equipartition theorem from thermodynamics does not
necessarily hold for a single trapped ion, therefore we also do not make use of the notion
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2. Theoretical Foundations

of a temperature here. Because we obtain only information about the total energy, we still
have to make to approximation that the energy is shared equally among the three motional
modes:

Etot =
∑
i

Ei ≈ 3Ē (2.36)

For deriving an expression for the fluorescence rate, we take into account that the oscillatory
motion acts as to effectively modulate the frequency of the Doppler cooling beam, where
the modulation frequency is given by the oscillation frequency and the frequency deviation
δFM = ~k · ~vmaxi is given by

δ
(i)
FM = Aiωi

cosαi
λ

=

√
2Etot
3m

2π cosαi
λ

, (2.37)

where αi is the angle that the cooling beam makes with the oscillation vector pertaining to
mode i and λ is the cooling beam’s wavelength. With the modulation index Mi given by the
ratio of frequency deviation and modulation frequency, the relative power of the frequency
component which is seen by the ion to have an effective detuning of δeffi = δ0 ± nωi is given
by the Bessel coefficient

Pn = J2
n(Mi) with Mi =

√
2Etot
3m

2π cosαi
ωiλ

. (2.38)

For motional frequencies in the MHz range and large thermal excitations of hundreds of
phonons, modulation indices Mi ≥ 1 occur, such that the following approximation for the
Bessel coefficient is justified:

P (i)
n =

{
1

2Mi
n ≤Mi

0 n > Mi

(2.39)

If the condition holds that the fluorescence observation time is shorter than the timescale at
which cooling takes place, we can now use these results together with Eq. 2.30 for the final
fluorescence rate:

R =
∑
ni

(∏
i

P (i)
ni

)
Γ

2
S

1

1 + S + 4 (
∑

i niωi)
2 /Γ2

≈ 1

8

intMi∑
ni=0

(∏
i

1

2Mi

)
ΓS

2(1 + S)

(
1− 1

1 + S

∑
i

c2
in

2
i

)

≈ R0 −
intMi∑
ni=0

(∏
i

1

2Mi

)
ΓS

2(1 + S)2

∑
i

c2
in

2
i , (2.40)

where we additionally assumed δ0 = 0 for simplicity. Thus the n-summations have been
truncated to positive values for symmetry reasons and a second-order Taylor expansion with
respect to c2

in
2
i has also been performed in the second line. R0 as the fluorescence level a
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2.1. Laser-Ion Interactions

zero motional energy and ci = 2ωi/Γ have been introduced. As c2
i is assumes values in the

10−4 range, the Taylor expansion is clearly justified. Rearranging the correction term yields
the fluorescence rate defect

RH = R0 −R =

(∏
i

1

Mi

)
ΓS

2(1 + S)2

∑
i

intMi∑
ni=0

c2
in

2
i

≈

(∏
i

1

Mi

)
ΓS

2(1 + S)2

1

3

(∏
i

Mi

)∑
i

c2
iM

2
i . (2.41)

In order to obtain a useful expression, we consider that the individual properties of the dif-
ferent motional modes are blurred out in the summation, assume a single effective oscillation
frequency ω̄, angle ᾱ and modulation index M̄ . The final result for the fluorescence defect
rate then reads

RH ≈ ΓS

2(1 + S)2
c̄2M̄2

=
S

Γ(1 + S)2

Etot
3m

4π2 cos2 ᾱ

λ2
. (2.42)

For a number d motional modes carrying kinetic energy, which might occur for varying ion
numbers or very different heating rates for different modes, the defect rate does not depend
on d, because the lower energy per mode in Eq. 2.36 is balanced by the number of modes
contributing to the frequency modulation in the first line of Eq. 2.42. Furthermore, note the
remarkable fact that the final result Eq. 2.42 is independent of the average trap frequency ω̄.

2.1.4. Including the Motional Degrees of Freedom: The Resolved
Sideband Regime

We now treat the case that the linewidth of the atomic transition under consideration Γ is
smaller than the vibrational frequency of the trapped ion ωv. In this case, the quantization
of the motion plays an essential role. The ion is confined by a harmonic potential, its motion
is therefore the vibration of a harmonic oscillator. Restricting ourselves to one spatial di-
mension, the Hilbert space of the system is given by the product Hilbert space of the atomic
two-level system and the Fock-space of the harmonic oscillator, comprised of equidistant
levels separated by the vibrational frequency ωv. A sketch of the system is shown in Fig.
2.2. We include the Hamiltonian pertaining the harmonic motion of the ion Ĥm. In second
quantization, we have

Ĥm = ~ωv
(
â†â+

1

2

)
x̂ =

√
~

2mωv
(â† + â), (2.43)
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Figure 2.2.: Pictorial view on the product Hilbert space of a two-level system and a harmonic
oscillator, together with most important laser-driven transitions. Note that the level |g, 0〉
does not couple to the red sideband, and |e, 0〉 does not couple to the blue sideband.

The coupling Hamilton operator Eq. 2.5 has to be extended by adding the optical phase k x
associated with the ion’s position x along the laser propagation direction:

Ĥge(x̂, t) = Ω (σ̂+ + σ̂−) cos(kx̂− ωlt+ φ). (2.44)

The full Hamiltonian thus reads

Ĥ = ~ωgeσ̂z + ~ωv
(
â†â+

1

2

)
+

1

2
~Ω
(
σ̂+ + σ̂−

)(
e
i(k
√

~
2mωv

(â†+â)−ωlt+φ)
+ e
−i(k

√
~

2mωv
(â†+â)−ωlt+φ)

)
.

(2.45)

We define the Lamb-Dicke parameter to be

η = k

√
~

2mωv
, (2.46)

which is nothing else than the ratio of the extension of the ground state wavefunction of
the harmonic oscillator and the laser wavelength, therefore it gives the coupling strength
between light and atomic motion. Similarly to the treatment of the simple two-level system,
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we transform into the interaction picture with respect to Ĥ0 + Ĥm:

ĤI =
1

2
~Ω
(
σ̂+ei(η(â†e−iωvt+âeiωvt)−δt+φ) + σ̂−e−i(η(â†e−iωvt+âeiωvt)−δt+φ)

)
. (2.47)

Here we employed the RWA similar to above and made use of the Campbell-Baker-Haussdorff
formula e−i~ωv â

†âtâei~ωv â
†ât = âeiωvt. Eq. 2.47 is the famous Cirac-Zoller Hamiltonian,

[Cir95]. The occurring exponential can be expanded in terms of η:

ĤI =
1

2
~Ωσ̂+e−iδt+iφ

(
1 + iη(â†e−iωvt + âeiωvt)− 1

2
η2(â†e−iωvt + âeiωvt)2 + ...

)
+ h.c.

(2.48)
If η � 1 and for low vibrational quantum numbers, which defines the Lamb-Dicke regime of
laser-ion interactions, we can write

ĤI ≈
1

2
~Ωσ̂+e−iδt+iφ

(
1 + iηâ†e−iωvt + iηâeiωvt

)
+ h.c. . (2.49)
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Figure 2.3.: Matrix elements Eq. 2.51 for carrier, red sideband and blue sideband transitions
for two different Lamb-Dicke factors. Note that the red sideband and blue sideband matrix
elements differ only for small motional quantum numbers.

If now the laser is tuned close to either the atomic transition, δ = 0, or such that is
detuned by the vibrational frequency δ ± ωv, the corresponding terms in the bracket of Eq.
2.49 are singled out and the other one can be omitted. The system then almost behaves as
a simple two-level system. In the first case, one speaks of the carrier transition, where the
vibrational quantum number is not changed when a light quantum is absorbed or emitted. In
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the second case, we deal with a sideband transition, where one vibrational quantum is created
(δ = +ωv, blue sideband, bsb) or annihilated (δ = −ωv, red sideband, rsb) upon absorption
of a photon. Thus, if the Lamb-Dicke regime is attained, the atomic motion can be controlled
at the single quantum level. The difference to the simple two-level system is however that
the coupling strength, i.e. the Rabi frequency, depends on the vibrational quantum number
n. In the carrier case, all transitions |g, n〉 ↔ |e, n〉, and in the sideband case, all transitions
|g, n〉 ↔ |e, n±1〉 are driven. The specific Rabi frequencies for a particular n can then be read
off Eq. 2.49 by taking the matrix element of the ladder operators with the levels involved in
the transition:

Ωcar ≈ Ω

Ωrsb ≈ η
√
nΩ

Ωbsb ≈ η
√
n+ 1Ω. (2.50)

Inspection of Eq. 2.50 reveals that the blue sideband can be driven for n = 0, whereas the
red sideband vanishes, which is of crucial importance for temperature diagnostics. Beyond
the Lamb-Dicke regime, one has to consider all higher order sidebands ∆n ± m, including
the fact that an arbitrary number virtual phonons can be exchanged during a transition, i.e.
terms such as ââ† for the carrier transition. The effective Rabi frequencies are then obtained
from the matrix element [Cah69]

Mn,n+m = 〈n+m|eikx̂|n〉 = e−η
2/2(iη)|m|L|m|n (η2)

(
n!

(n+m)!

)sign(m)/2

, (2.51)

where L|m|n are the associated Laguerre polynomials. The Rabi frequencies are then simply
given by

Ωn,n+m = Mn,n+mΩ. (2.52)

Matrix elements for the car, rsb and bsb transitions for experimentally relevant Lamb-Dicke
factors are depicted in Fig. 2.3. The solution of the time-dependent Schrödinger equation for
the two-level system given by the propagator Eq. 2.11 can straightforwardly be extended in
the case that the detuning is close to a sideband of any order and if η and Ω are sufficiently
small to ignore off-resonant excitation on other transitions. The propagator can be cast into
block diagonal form by appropriate ordering of the coefficients when the m-th order sideband
is resonantly driven:

|Ψ〉 =
∑
n

cg,n|g, n〉+
∑
n

ce,n|e, n〉

|Ψ〉 →


cg,0
ce,m
cg,1
ce,1+m

...

 (2.53)
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We then obtain for the propagator:

Û(t) =


x0,m y0,m 0 0 · · ·
y0,m x0,m 0 0 · · ·

0 0 x1,m+1 y1,m+1 · · ·
0 0 y1,m+1 x1,m+1 · · ·
...

...
...

...
. . .

 , (2.54)

with

xn,m = cos(Ωn,mt/2) and yn,m = ieiφ sin(Ωn,mt/2) (2.55)

Analogously to Eq. 2.13, we obtain for the total population in the excited state upon driving
Rabi oscillations starting from the ground state:

pe(t) =
∑
n

|ce,n(t)|2 =
∑
n

pn sin2(Ωn,n+mt/2), (2.56)

where pn is the initial phonon probability distribution, which can for example be given by
Eq. 2.33.

Fig. 2.4 depicts Rabi oscillations for different thermal states with different mean phonon
numbers, where the average over many experiments is plotted. The data is also shown for the
same two Lamb-Dicke factors as in Fig. 2.3. One can see that a narrow phonon distribution,
i.e. a low temperature, is crucial for driving high-fidelity single qubit rotations if the driving
transition is sensitive to the motion.

2.1.5. Multilevel Systems Interacting with Multiple Laser Fields: Optical
Pumping

We now extend the treatment of a laser-driven two-level system to an arbitrary number of
states, which can be different electronic states or harmonic oscillator levels pertaining to an
electronic state due to quantized motion, see Sec. 2.1.4. We also will include spontaneous
emission processes in a more rigorous way than in Sec. 2.1.1. The suitable framework for
this is a description of the system by a density matrix and utilization of the quantum optical
Master equation as the equation of motion:

˙̂ρ = −i
[
Ĥ, ρ̂

]
+
∑
n,m

D̂nm(ρ̂). (2.57)

where n,m run over the various levels and the dissipator D̂

D̂nm(ρ̂) = Γnm
(
σ̂+
nmρ̂σ̂

−
nm − (ρ̂σ̂−nmσ̂

+
nm + σ̂−nmσ̂

+
nmρ̂)/2

)
, (2.58)

where Γnm is the spontaneous decay rate associated with the decay channel n → m and
σ̂+
nm = |m〉〈n| is the corresponding jump operator. The sum in Eq. 2.57 runs only over
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Figure 2.4.: Rabi oscillations on the carrier, bsb and rsb transitions for different mean phonon
numbers and Lamb-Dicke factors. a) and c) show oscillations for n̄ = 20, corresponding
to the situation after Doppler cooling. b) and d) show oscillations for n̄ = 0.2, which is a
typical result of sideband cooling. a) and b) are for η = 0.07, which is realized on the 729 nm
quadrupole transition, and c) and d) are for η = 0.2, corresponding to the stimulated Raman
transition at 397 nm. Note that in contrast to a), the sideband Rabi oscillations in case c)
dephase less rapidly as the carrier ones. This is due to the plateau of the matrix elements at
phonon numbers around 20, see Fig. 2.3.

terms with nonzero Γnm. Note that Γnm 6= 0 ⇒ Γmn = 0 and also σ̂−nmσ̂
+
nm = P̂nn. The

Hamiltonian governing the unitary part of the dynamics is generally given by

Ĥ =
∑
n

EnP̂n +
~
2

∑
l

∑
nm

(Ω(l)
nme

iωltσ̂+
nm + h.c.). (2.59)

The l-sum runs over the various lasers with frequencies ωl and Rabi frequencies Ω
(l)
nm. Note

that the nm sum runs only over the transitions between the levels and not over the levels
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Figure 2.5.: a) Cartoon of the sideband cooling scheme, where the motional deexcitation on
the red sideband and the dissipative repumping on the carrier transition are indicated. b)
The two main heating sources counteracting the sideband cooling process: One path is off-
resonant excitation on the carrier and subsequent spontaneous emission on the blue sideband,
the other one is off-resonant excitation on the blue sideband and decay on the carrier, both
leading to the creation of one phonon.

themselves. The lasers are typically tuned close to one particular transition, such that very
few terms are actually contained in the sum of Eq. 2.59. This enables one to perform a
suitable rotating-wave approximation.
The master equation Eq. 2.57 can be employed for a problem of particular importance for
quantum state manipulation with trapped ions, namely the population transfer by frequency-
selective optical pumping via a metastable intermediate state. This is illustrated in Fig. 2.7
and is relevant for state initialization and for the dissipative repumping step for sideband
cooling. In contrast to conventional optical pumping, where a particular transition is isolated
by proper alignment of the polarization of the driving laser, this population transfer process
offers an increased degree of control, furthermore it still works if there is no possibility to
address specific transitions by means of laser polarization, as it is the case for sideband cooling.
The idea is to transfer population coherently from the initial state |i〉 to an intermediate
metastable state |a〉, this transition is referred to as the excitation transition in the following.
From this metastable state, the population is transferred to a short-lived intermediate state
|b〉 on the quench transition, from where it decays back to either |i〉 or to the desired final
state |f〉. By repeating this cycle, the probability of not ending up in |f〉 can be in principle
pushed to an arbitrarily small value. For example, in the sideband cooling process we have for
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Figure 2.6.: Dephasing study of Rabi oscillations in thermal ensembles. For this example
case, the driving wavelength is chosen to 729 nm and the angle of the beam to the oscillation
mode is 45o, corresponding to a typical situation in experiments. For the trap frequency
varying between 100 kHz and 10 MHz and a 40Ca+ ion, the Lamb-Dicke factor is varying
between 0.22 and 0.022. For each trap frequency, a thermal phonon number distribution
according to Eqs. 2.33 is assumed. a) shows the population in the excited state after driving
2n + 1 π-pulses. The decrease from unity is due to the dephasing occurring at timescale
tdeph, which is reverted after the revival time trev. Curves for two different trap frequencies
are shown, such that it can be immediately seen that both timescales increase for a tighter
trap. b) shows tdeph and trev versus trap frequency. tdeph increases quadratically with ωv,
whereas trev grows linearly.

a single phonon removal step |i〉 = |g, n〉 and |f〉 = |g, n− 1〉. The process can be performed
either continuously, i.e. the lasers driving the excitation and quench transitions are always
switched on, or in a pulsed way, such that the population is first transferred from |i〉 to |a〉
by the first laser, and then dumped back to the ground state via |b〉 by the second laser.

The first scheme acts as to effectively decrease the lifetime of the metastable state |i〉
[Mar94], increasing the total population transfer rate. However, one is confronted with a
tradeoff situation because the lifetime of |a〉 leads to a less efficient coherent drive of the
|i〉 → |a〉 transition, which requires careful adjustment of Ωab. This problem is circumvented
in the pulsed scheme, which in turn suffers from the drawback that off-resonant excitations
|f〉 → |a〉 might occur for short excitation pulses on |i〉 → |a〉.

Figs. 2.8,2.9 and 2.10 show a detailed investigation of the continuous pumping process
by means of full numerical solution of the master equation Eq. 2.57, revealing some impor-
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Figure 2.7.: Generic four-level system for the investigation of frequency-selective optical
pumping, see text.

tant general aspects some of which appear to be counterintuitive. The case study assumes
typical parameters for the S1/2 → D5/2 transition as the narrow excitation transition, the
D5/2 → P3/2 as the quench transition and the decay from P3/2 back to S1/2 with a decay time
of 7.7 ns. A branching ratio of 2:1 for the decay back to |i〉 and |f〉 is assumed. Fig. 2.8 a)
clearly shows that the total transfer rate decreases for strong quench intensities, which can
be easily explained by the fact that the strong coupling to a short-lived state perturbs the co-
herent buildup of population in |a〉, suppressing the excitation transition in a quantum-Zeno
effect-like manner [Ita90]. A quite remarkable feature can be seen in Fig. 2.8 b): the mini-
mum time to reach a 99% transfer efficiency is independent of the excitation strength over
a broad range of realistic Rabi frequencies, in contrast to the intuitive guess that the Zeno
suppression could be counteracted by simply increasing the excitation Rabi frequency. In the
pulsed scheme mentioned above, this time is roughly given by calculating the probability of
ending up in the final state after n cycles: pn = 1 − bn, where b is the branching probabil-
ity to |f〉, perfect π-pulses are assumed and the switching and quench times are neglected.
Now n is determined such that the desired final state occupation probability is reached. For
the 2.5µs example in Fig. 2.8, 99% is attained after only four cycles, such that the pulsed
scheme outperforms the continuous one for larger excitation strengths. Not included in the
model however is the possibility of off-resonant excitation of parasitic transitions during the
excitation step, which might for example be other transitions in the S1/2 − D5/2 manifold
for spin initialization or the carrier transition in the case of sideband cooling. In the pulsed
scheme, for large excitation strengths, i.e. short π-pulses, off-resonant excitations are mainly
caused by the respective Fourier components, which can in turn be suppressed by utilizing
transform-limited pulses. In the continuous scheme, the off-resonant transitions are driven
because of the increased effective linewidth, see Fig. 2.10. Another counterintuitive effect

27



2. Theoretical Foundations

0 50 100 150 200 250 300
0,0

0,2

0,4

0,6

0,8

1,0

Ω
ab

/Ω
ia
=50

Ω
ab

/Ω
ia
=25

 

 

P
o

p
u

la
ti
o

n
 i
n

 f
in

a
l 
s
ta

te

Pump time [µs]

τ
π
=10µs

0 2 4 6 8 10
0,5

0,6

0,7

0,8

0,9

1,0

 

 

P
o

p
u

la
ti
o
n

 i
n
 i
n

it
ia

l 
s
ta

te

20 40 60 80
0

20

40

60

τ
π
=15µs

τ
π
=10µsτ

π
=5µs

 

 

τ 9
9
 [
µ
s
]

Ω
ab

/Ω
ia

τ
π
=2.5µs

a)

b)

Figure 2.8.: Investigation of the continuous pump scheme: a) shows the population in the final
state after pumping time t, where the initial population is assumed to be in the initial state
|i〉, for a coherent excitation Rabi frequency corresponding to a π-time of 10µs. The curves
show the pump dynamics for two different quench intensities, corresponding to Ωab/Ωia = 25
and Ωab/Ωia = 50. It can clearly be seen that the larger quench intensity leads to a reduced
total pumping rate. The inset shows the initial depletion of |i〉. Note the stronger suppression
of the quadratic onset for the larger quench strength. b) shows time required to accumulate
99% of the population in |f〉 as a measure of the pump efficiency, versus the ratio of quench
to excitation Rabi frequency for different excitation strengths. Note the nonintuitive fact
that the minimum time is independent of the excitation strength.

occurring here is that in the case of population cycling in a three-level system, the quench
laser does not directly increase the linewidth of the |i〉 → |a〉 transition, but acts as to merely
suppress the excitation. This can be understood by the fact that population cycled back to
the initial state is not taken into account. By contrast, when the population transfer to |f〉 is
considered, an effective broadening manifests itself in the final state population. An impor-
tant conclusion to be drawn from this is that when a substructure of level |a〉 is present, e.g.
when performing sideband cooling, adverse effects by off-resonant excitation of the carrier
is not directly visible by performing a spectroscopy measurement on the sideband with the
additional quench laser on.
Other techniques for population transfer employed for trapped ions are the STIRAP method
[Sor06], where short pulses are used in a counterintuitive sequence to drive the system through
a dark state, ending up in the desired final state [Ber98a]. Another possibility is the exploita-
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Figure 2.9.: Optimum quench Rabi frequency Ωab from Fig. 2.8 b) versus excitation Rabi
frequency Ωia, which displays a square-root behavior.

tion of electromagnetically induced transparency for the selective inhibition of unwanted
transitions [McD04].

2.1.6. Multilevel Systems Interacting with Off-Resonant Laser Fields:
Stimulated Raman Transitions and Decoherence Effects

Here, we explain a powerful method for the treatment of time dependent coherent and inco-
herent effects in atomic multilevel systems, which is adapted from Ref. [Sto07]. We specify
on alkaline-like ions without nuclear spin, i.e. without hyperfine structure. It is therefore
directly applicable for popular ion species such as 24Mg+, 40Ca+, 88Sr+, 138Ba+, 172Yb+ and
202Hg+, and can be easily extended to species with nonzero nuclear spin.

˙̂ρ = − i
~

[
Ĥ, ρ̂

]
+
∑
Je,σ

D̂(ΓJe , ÂJe,σ), (2.60)

where the dissipator D̂ is given by

D̂(Γ, Â) = Γ
(
Âρ̂Â† − (ρ̂Â†Â+ Â†Âρ̂)/2

)
. (2.61)

Je assumes the values 1/2 and 3/2 for the ions mentioned above, and ΓJe gives the decay
rate, i.e. the Einstein A coefficient for the corresponding transitions to the ground state. The
jump operators are given by

ÂJe,σ =
∑

mJg ,mJe

(
Jg 1 Je
−mg σ me

)
|Jg mJg〉〈Je mJe |. (2.62)
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Figure 2.10.: Illustration of the effective line-broadening of the quench laser. a) shows the
steady-state population in |b〉 in a three-level system with missing |f〉 versus detuning of the
excitation laser frequency, for two different quench intensities. Note that for the three-level
system, increased quench strength merely leads to a suppression of the excitation. b) shows
the population of 10 µs pumping in the |f〉 state of the four-level system. Here, the quench
indeed effectively increases the linewidth of the excitation transition.

The Hamiltonian consists of three parts:

Ĥ = ĤB + Ĥe + Ĥi. (2.63)

The Zeeman Hamiltonian ĤB simply describes the energy splitting of the mJ sublevels in
the presence of the quantizing magnetic field B:

ĤB = µBgJ
∑
mJ

mJB|J mJ〉〈J mJ |, (2.64)

with the Bohr magneton µB and the Landé factors gJ . Ĥe simply sets the energies of the
excited states:

Ĥe =
∑
Je

~ ωJe |Je〉〈Je|. (2.65)

Finally, the light-atom interaction Hamiltonian is given by

Ĥi =
∑
l

~Ωl

2
√

2
eiωlt

∑
Je,σ

εl,−σÂJe,σ + h.c., (2.66)
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Figure 2.11.: Level scheme for off-resonant interactions: a) illustrates the general situation
of a 40Ca+ ion in two off-resonant laser fields, along with the relevant energy scales. b)
shows in detail the various excitation and decay pathways for one laser beam with arbitrary
polarization components within the S1/2-P1/2 manifold.

where l runs over the different laser beams, which each have ’bare’ Rabi frequencies Ωl,
angular frequencies ωl and are comprised of the polarization components εl,σ. Due to short
lifetime of the excited states, the detailed quantum dynamics is not really of interest, we are
rather interested in the dynamics of the ground state levels only. In Schrödinger equation
framework, one performs an adiabatic elimination of the exited state levels to obtain an
effective Schrödinger equation for the ground state manifold. This does of course not include
decoherence effects. An analogous adiabatic elimination procedure on the master equation is
done as follows [Sto07]: Considering the projection on the ground state manifold,

P̂gg = |S1/2,mJ = +1/2〉〈S1/2,mJ = +1/2|+ |S1/2,mJ = −1/2〉〈S1/2,mJ = −1/2|
ρ̂gg = P̂ggρ̂P̂gg, (2.67)
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and under the assumption of a small saturation parameter (see above), one obtains the
required equation of motion:

˙̂ρgg = −i
[
ĤB, ρ̂

]
+ iρ̂gg

∑
Je

ĤiP̂JeĤi

∆Je − iΓJe/2
+ h.c.

+
∑
Je,σ

ÂJe,σ
Ĥiρ̂ggĤi

i∆Je + ΓJe/2
Â†Je,σ + h.c. (2.68)

Upon feeding all required properties of the atomic system and the laser beams into this
equation, the parameters characterizing the dynamics of the effective two-level system can be
extracted. This is described in detail in Appendix A, where we restrict ourselves to the in-
teraction via the P1/2 state, which corresponds to the regime where all measurements within
this thesis have been performed. The relevant dynamical parameters are the Raman Rabi
frequency, ac Stark shifts, the scattering rates at which population is incoherently transferred
between the spin levels and the dephasing rate at which the off-diagonal elements of the den-
sity matrix decay. In principle, all these quantities can be derived by hand from simpler
arguments. The power of the method however lies in the fact that it provides a generalized
framework by means of which these quantities can be obtained for general multilevel systems
interacting with arbitrarily many laser fields. Furthermore, even for the relatively simple case
presented in Appendix A, effects occur which are not predicted by standard treatments. It
is unclear by now if these are mere mathematical artifacts or actual physical effects. Addi-
tionally, it could be shown that the dephasing rate does not correspond to the one expected
from making an exact analogy to the simple two-level system. For more complicated level
structures, e.g. if the detuning is large enough to lead to relevant contribution from the P3/2

state, or if another isotope with hyperfine structure is used such that several electronic ground
state levels are present, quantum interference effects occur in the dynamical quantities which
can be beneficial for quantum information processing purposes [Oze05, Oze07]. The central
result obtained in the appendix, Eq. A.16, is to be used at various places throughout this
thesis.
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2.2. Linear Segmented Paul Traps

2.2.1. Confinement Mechanism

RF DC GND
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Figure 2.12.: Geometry for four basic types of Paul traps along with confinement parameters:
a) Original ring trap. The trap is also working without additional dc-voltage, i.e. a = 0.
b) Standard linear Paul trap. The dc-potential in the x− y plane is anti-confining and half
as strong as along the z-axis, which has to be counteracted by the rf potential. The rf-field
is vanishing along x, y = 0, which makes it a very convenient geometry for ion strings. c)
Segmented trap geometry. This geometry can be arrayed along the z-axis to obtain scalable
trap. Note that the rotational symmetry in the x−y plane is broken. One obtains a confining
dc-potential in the y-direction, whereas the dc-potential in x-direction is anti-confining with
twice the curvature as for the other directions.

According to the Earnshaw theorem, it is not possible to confine a particle in space only by
means of static electric fields [Ear42]. The solution is therefore either to use a combination of
magnetic and electric fields, which led to the invention of the Penning trap, or by employing
oscillating inhomogeneous electric fields giving rise to a ponderomotive force, which is the
underlying principle of the Paul trap [Pau58]. The origin of the ponderomotive force is
that a charged particle exposed to a rapidly oscillating electric field, will undergo rapid
oscillations at the same frequency. In a very pictorial view, this oscillation is an extra
degree of freedom, which can exchange energy with the particle motion on a slower timescale.
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The required frequency for the oscillating field lies in the radio frequency range for atomic
ions, it is therefore termed rf-field from now on.If the rf-field is inhomogeneous, the particle
will move towards regions with smaller field amplitudes, minimizing its oscillation energy.
Thus, the rf-field gives rise to an effective potential, termed the ponderomotive potential or
pseudopotential. The ponderomotive potential is generally given by

Vpond =
Z2e2| ~E|2

4mΩ2
rf

(2.69)

where Ze is the charge of the ion to be trapped, m is its mass, Ωrf is the angular oscillation
frequency of the rf field and | ~E| is the field magnitude. A better understanding of the origin
of the effective restoring force arises from the following viewpoint: Imagine a charged particle
moving towards an electrode supplied with an rf-voltage. The oscillating electric field will
cause an oscillatory motion of the ion which is by 180o out of phase to the drive, i.e. the
ion is always closer to the electrode when the polarity is such that it acts repulsive. As now
the field magnitude is larger close to the electrode, the maximum repulsive force during one
oscillation cycle is stronger than the maximum attractive one, leading to a net repulsive force
when averaged of many oscillation periods. Therefore the ion is always driven to the trap
center along the rf electric field lines. One might now wonder if there could be a possible
leakage route out of the trap volume if the ion moves along the static equipotential lines
x = y of the potential from Eq. 2.13, as the field then has no components driving the ion
back to the trap center. This is resolved by recognizing that the ion undergoes the same
driven out-of-phase oscillations as in the other case, only in the direction orthogonal to the
presumed escape route. It will thus always reside on a positive potential saddle lobe, where
a small force towards the origin persists. Note that the ponderomotive effect explains the
confinement mechanism in a Paul trap, but this effective potential cannot be simply superim-
posed to additional dc potentials which are also present in a Paul trap, therefore a dynamical
treatment of the mechanical behavior of a trapped particle has to be performed for a quali-
tative quantitative understanding of the confinement stability and strength.

The basic structure of the rf-potential providing the confinement is a purely quadrupolar
one for an ideal 2D Paul trap geometry with hyperbolic electrode surfaces:

V (x, y, t) ∝ (x2 − y2) cos(Ω(rf)t), (2.70)

which generates a harmonic ponderomotive potential. Multipolar geometries of higher order
can be used as well, leading to different trapping properties. Fig. 2.13 shows the potential
of Eq. 2.70 along with the basic confinement mechanism. 3D confinement in a linear trap
however requires an additional dc field. We assume the particle to be near the symmetry
center of a sum of two harmonic potentials at dc and rf. For three spatial dimensions, the
total potential reads:

V (x, y, z) = α(dc)
x x2 + α(dc)

y y2 + α(dc)
z z2

+
(
α(rf)
x x2 + α(rf)

y y2 + α(rf)
z z2

)
cos(Ωrft). (2.71)
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x

y

V

Figure 2.13.: Mechanism for confinement in a quadrupolar rf potential: The potential from
Eq. 2.70 for two different oscillation phases. The red and green example particles serve to
illustrate the confinement mechanism. The red ion moves along the x axis, experiencing a
strongly oscillating field oscillating along the same axis. The field is stronger on the left side,
when the ion is at a larger distance from the trap center, and points towards the origin. The
green ion moves along a static equipotential line, undergoing transverse oscillations. It can
be seen that it always experiences a force towards the trap center.

The potentials at dc and rf have to individually obey to the Laplace equation 4V = 0, such
that

α(dc)
x + α(dc)

y + α(dc)
z = 0

α(rf)
x + α(rf)

y + α(rf)
z = 0. (2.72)

where the potential curvatures α are given by

α(dc)
u = ξuZeVdc

α(rf)
u = ζuZeVrf , (2.73)

Vdc and Vrf are the voltages applied to the respective electrode sets and ξu and ζu are geometry
parameters. In the following, we deal only with the case Z = 1. We can now directly write
down the equation of motion for an ion of mass m and coordinate u:

mü = −2α(dc)
u u− 2 cos(Ωrft)α

(rf)
u u, (2.74)
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Figure 2.14.: Regions of stability for different trap geometries: The regions for which |βu| <=
1, u = x, y, z, resulting from Eq. 2.78 are shown. The regions for the individual coordinate
axes are shown for the three basic trap geometries, consistent with the axes labels and
parameter relation from Fig. 2.12. a) shows the stability regions for the 3D trap, b) and c)
show the regions for the linear and segmented trap design, where it was additionally taken
into account that stable 3D-trapping requires az > 0.

with the radiofrequency Ωrf/2π. Redefining

τ =
1

2
Ωrft

au = ξu
8eVdc

mΩ2
rf

qu = ζu
4eVrf

mΩ2
rf

, (2.75)

we finally obtain
ü = auu+ cos(2τ)2quu u = x, y, z , (2.76)

which has the form of three uncoupled Mathieu differential equations. The coefficients au
and qu are interrelated due to the Laplace equation and possible symmetries of the electrode
geometry, see Fig. 2.12. The general solution for Eq. 2.76 for arbitrary a, q along a single
coordinate is found by means of the Floquet theorem and continued fractions [Gho95]:

y(t) = A cos

(
βy

Ωrf

2
t

)(
1− qy

2
cos(Ωrft)

)
. (2.77)

This describes a simple oscillation at a frequency βΩrf/2, where β is function of a and q,
which is called secular motion. On this secular motion, a rapid small-amplitude oscillation at
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Ωrf is superimposed, which is called micromotion. The stability of the motion is determined
by the value of β:

β2 ≈ a− (a− 1)q2

2(a− 1)2 − q2
− (5a+ 7)q4

32(a− 1)3(a− 4)
− (9a2 + 58a+ 29)q6

64(a− 1)5(a− 4)(a− 9)
(2.78)

Stable trajectories are only obtained if |β| < 1, which is intuitively clear as the secular motion
must be slower than its ponderomotive drive. The regions of stability in the space of the
parameters a and q are universal properties of the Mathieu equation, only the scaling of the
axes depends on a given set of physical trapping parameters. Considering stable trapping
in three dimensions, the global region of stability is the intersection of the stability regions
for the individual spatial directions. This is illustrated in Fig. 2.14 for the three basic Paul
trap geometries. Due to the dependence of the trap parameters on the ion mass m, the trap
can be made very mass selective when the parameters are set to an outer tip in the region
of stability. This is exactly what the geometry was initially conceived for, namely as a mass
filter for mass spectrometry [Pau53].

2.2.2. Vibrational Modes of Ion Crystals

The linear and segmented traps now offer the possibility to store an entire string of ions along
the node of the rf-field, which coincides with z-axis, such that none of the ions is exposed
to the rf electric field under ideal conditions. This leads to the fact that an ion string in a
linear Paul trap represents a physical realization of a quantum register whose controllability
properties have so far not been beaten by any other experimental approach. The ion string is
characterized by its static and dynamic properties, namely by its equilibrium ion positions,
the frequencies and the structure of the vibrational modes. These are found by writing down
the potential energies for a set of N ions aligned along the z-axis, where the x, y and z
coordinates of the n-th ion are denoted as ~rn = (uxn, uyn,uzn)T :

V =
1

2
m

N∑
n

(
ω2
xu

2
xn + ω2

yu
2
ynω

2
z + u2

zn

)
+

e2

4πε0

N∑
n,m,n 6=m

1√
(~rn − ~rm)2

. (2.79)

The trap frequency ω2
z along the trap axis has to be smaller than the transverse frequency

ωr, for simplicity we assume a cylindrical symmetry here. Setting the elongations along the
x, y directions to zero, the equilibrium positions along the trap axis are found by balancing
the external trap force with the repulsive Coulomb force:

N∑
n

dV

duzn
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u

(0)
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≡ 0 = mω2
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n

u(0)
zn −

e2

4πε0

N∑
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u
(0)
zn − u(0)

zm

|u(0)
zn − u(0)

zm|3
, (2.80)

which can be solved analytically only for up tp N = 3. Now expand V around the equilibrium
positions to the second order in the coordinates:

V ≈
∑

a,b=x,y,z

N∑
i,j

d2V

duaidubj

∣∣∣
u

(0)
ai ,u

(0)
bj

δuaiδuaj ≡ Ṽ (ab)
ij δuaiδubj . (2.81)
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The δuai are small elongations from the equilibrium positions: δuai = uai − u(0)
ai . As mixed

derivatives vanish if the ions are aligned in a linear string, e.g.

d2V

duaidubj

∣∣∣
u

(0)
zi ,u

(0)
xj

= 0 for a 6= b, (2.82)

we can separately write down the matrix elements Ṽ
(aa)
ij :

Ṽ
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2
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∑
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2

|u(0)
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(0)
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(2.83)
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(2.84)

and correspondingly for Ṽ
(yy)
ij . These matrices can be diagonalized:

Ṽ (aa) = MT
a ΛaMa (2.85)

with the diagonal matrix

Λa =

µ
(a)
1 0 · · ·
0 µ

(a)
2 · · ·

...
...

. . .

 , (2.86)

and the orthogonal matrices

Ma =

M
(a)
11 M

(a)
12 · · ·

M
(a)
21 M

(a)
22 · · ·

...
...

. . .

 . (2.87)

The oscillation frequency of the n-th vibrational mode in a direction is given by the diagonal
entries of Λa:

ν(a)
n =

√
µ

(a)
n . (2.88)

The structure of the motional modes can be inferred from the orthogonal matrices Ma. The
relative amplitude and phase of the i-ion of an ion string oscillating at the n-th mode in

a direction is directly given by the matrix entry M
(a)
jn . We introduce a set of generalized

coordinates q
(a)
n :

q(a)
n =

∑
j

M
(a)
nj δuaj and δuaj =

∑
j

M
(a)T
jn q(a)

n (2.89)

Therefore the coupling strength of a motional mode to a given laser field, i.e. the correspond-
ing Lamb-Dicke factor, can be calculated from the eigenvector components, which is of crucial
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importance for entangling gates with single ion addressing [Jam98] or by means of a running
standing wave [Iva09]. The eigenvalues of the radial modes of vibration from Eq. 2.84 yield
information about the stability of ion crystals: negative eigenvalues indicate instabilities, i.e.
it occurs that for a too weak radial confinement and too many ions, the string assumes a
zig-zag configuration instead of a linear one. Results for the equilibrium ion positions and
the radial stability are shown in Fig. 1.2. The eigenvectors and eigenvalues of the matrices
Ṽ (aa) are used in appendix for a generalized framework for the coherent interaction of ion
crystals with laser beams.
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3. Experimental Setup

This chapter is devoted to a description of our experimental setup. Sec. 3.1 describes the
installation of the trap in its UHV chamber, and Sec. 3.2 gives a detailed account on the
setup of the laser systems. Sec. 3.3 shows how the imaging and fluorescence detection is
performed, and sections 3.4 and 3.5 briefly explain how suitable electric and magnetic field
are supplied to the trap site. Finally, Sec. 3.6 describes how simultaneous computer control
of the lasers, rf-sources, trap voltages and readout is accomplished.

3.1. The Trap, Vacuum Vessel and the Ovens

The fabrication, assembly and mounting of the trap is described in detail in [Sch09, Sch06,
Sch08] and shall be only briefly outlined here. The microchip Paul trap is basically a sand-
wich design of three alumina wafers, where the trap structure is created by a laser cutting
procedure. The top and bottom layers making up the trap electrodes are gold coated. The
three layers are glued and mounted in a commercial chip carrier. The rf and dc voltages
are supplied to the electrodes via bond wires. The chip carrier in turn is mounted on a
PCB board from which the voltage wires run to four 25 pin Sub-D connectors of the top
flange of the ultra high vacuum (UHV) chamber. Additional electric feedthroughs are for
the rf-supply and for the current for the two Ca ovens. The UHV is maintained by an ion
pump 1 and an additional titanium sublimation pump 2, such that after bakeout at 120°C a
pressure of typically 4·10−10 mbar is achieved, which is monitored by a UHV gauge 3. The
effusive Ca ovens are built according to ref. [Rot03]. They consist of a stainless steel tube
filled with Calcium granules, connected to a stainless steel rod by a sheet of Tantalum. The
resistive heating is provided by a current of typically 3.4 Ampere flowing from the rod via
the Tantalum sheet through the tube, where heat is generated due to the thin tube walls.
According to [Rot03], a temperature of roughly 200°C is attained, corresponding to a vapor
pressure of less than 10−12 mbar, such that the background pressure is not affected. The
oven is operated continuously, because its heating takes place on a timescale of 10 minutes,
as compared to a trap loss on a similar time scale. After three years of continuous operation
during experiments, no adverse effects from possible coating of the trap electrodes have ever
been observed. Neither did we observe any visible changes on the trap surface when the
trap is monitored by an extra CCD camera with macro objective (which is used for beam
alignment), nor did we observe any effects on the heating rate or trapping behavior, as is

1DN63CF StarCell, Varian Inc., Palo Alto, USA
2tectra GmbH, Frankfurt am Main, Germany
3Varian Inc., Palo Alto, USA
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3. Experimental Setup

argued in many research articles. An adverse effect which had to be taken care of is current
ripple from the Statron current supply, which is adversely affecting the qubit coherence time.
The oven is situated close to the ion, and the low inductance leads to a low rejection of high
frequency current ripple. Therefore, a low pass filter with 10 Hz cutoff was inserted 4, which
lead to an increase of spin coherence time from 100 µs to about 400 µs (see Sec. 4.2.2).

1

9
13...31

...

loading and

detection zone

transfer

zone

processing

zone d

d

w

h

g

s

DC-electrodes

RF - electrodesa) b)

Figure 3.1.: Our microchip ion trap: a) shows a schematic layout of the trap, where dc and
rf electrodes can be distinguished, furthermore the distinct loading and processor regions can
be seen. b) shows a picture of the trap, with the effusive Ca ovens in front of it. The bond
wires are too small to be seen, they run across the gap between the trap chip and the chip
carrier.

3.2. Laser Systems

All laser systems are derived from commercial laser diode systems 5. Except for the laser
at 375nm, they are extended cavity diode laser systems (ECDLs), operating at a single
longitudinal mode. All ECDL wavelengths are simultaneously monitored on a wavemeter 6

with a relative accuracy of 10 MHz, to which the respective probe beams are supplied via an

4The filter is comprised of 4x1 Ω power resistors and 8x500 µF capacitors
5TOPTICA AG, Gräfelfing
6WSU, High Finesse, Tübingen
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3.2. Laser Systems

729nm

R1,CCR2

854nm,
866nm

374nm,
423nm

B 397nm
pumping

397nm
cooling

trap axis

Figure 3.2.: General beam geometry of our setup: The picture illustrates how all laser propa-
gation directions are aligned with respect to the trap axis and the quantizing magnetic field,
which determines how the lasers couple the internal and motional state of the ions.

eight-port optical switching box 7. A general overview how the various lasers are irradiated
on the trap site is shown in Fig. 3.2.

3.2.1. 423 nm and 375 nm for Photoionization

The technique of resonantly enhanced two-photon photoionization is used to ionize 40Ca
isotope-selectively from the effusive Ca beam. Here, a beam at 423 nm excites the strong
41S0 to 41P1 dipole transition, and a laser at about 375 nm excites from the 41P1 state to
the continuum. The laser at 423 nm is a frequency doubled ECDL 8, where the doubling
takes place in a bowtie cavity with a BIBO doubling crystal at the focal point, generating
up to 10 mW (typically only 1 mW) of blue laser power out of 150 mW of seed power.
The laser diode itself is free running, and optimum ionization is taking place at fundamental
wavelengths from 845.58260 nm to 845.58290 nm, the optical grating of the ECDL has to
be adjusted from time to time via the piezo controller to compensate for drift effects. The
SHG cavity is locked to the seed laser to maintain high fundamental power at the doubling
crystal. Typically, about 200 µW up to 500 µW of laser power is delivered to the trapping
site, with a focusing lens of 250 mm and an estimated beam FWHM of 3 mm this leads to
saturation of the transition over a broad range of atomic velocities. It is empirically found
that the trapping rate is decreased below laser powers of about 100 µW. The laser at 375 nm

7High Finesse, Tübingen
8DL-SHG
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3. Experimental Setup

is merely a free running diode, as the transition to the continuum is independent of this
wavelength to a large extent. Superposition of the two ionization beams is done by matching
the position of the respective beam spots at low power on the trap chip surface near the
trapping site, viewed by a CCD camera with a macro objective.

3.2.2. 397 nm for Doppler Cooling, Ion Detection and Optical Pumping

866nm

ZFL-500HLN

ZHL-3A

ZHL-3A

ZHL-3A
-10dB

Figure 3.3.: Optical setup for the laser at 397 nm for Doppler cooling, fluorescence detection
and optical pumping.

The light at 397 nm, resonantly driving the 2S1/2 to 2P1/2 dipole transition of 40Ca+, is
derived from a UV ECDL 9 [Lan03]. The beam layout is shown in Fig. 3.3. This laser
is frequency stabilized onto an external reference cavity by means of a Pound-Drever-Hall
(PDH) locking scheme. The power in the lock branch is about 1 mW which is needed because
of the poor quality of the spatial mode profile of the UV ECDL. The FSR of the reference

9DL 100
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3.2. Laser Systems

cavity is 1.5 GHz, and its Finesse ranges at about 100. The transition is located at about
397.95920 nm. The cavity is mounted on an ultralow thermal extension ceramic block 10, its
drift is slow enough to be ignored. One of the cavity mirrors is mounted on a ring piezo, such
that one electrode can be supplied with a static high voltage 11 in order to obtain a resonance
for a Gaussian transversal mode within the wavelength range of interest, whereas the other
electrode is supplied by an HV amplifier 12 in order to perform controlled spectroscopy on
the corresponding transition. The largest portion of the laser output (about 12 mW, 10 mW
remaining after an external Faraday isolator) is supplied to the experiment via a polarization
maintaining single mode fiber 13. The low fiber output of only up to 1.4 mW is due to the
bad quality of the transversal mode profile of the UV diode. The input into the fiber is
controlled by an acousto-optical modulator (AOM) running at 80 MHz and up to 2 W input
power 14. The AOM supply can be switched between no power, full power or attenuated
power, such that the laser power at the ion can either be a multiple saturation of slightly
below saturation, see Figs. 4.4 and 3.3. The beam is then supplied near the vacuum chamber,
where it is split into two branches serving different purposes: one branch with typically about
130 µW is used for Doppler cooling and fluorescence detection, and the remaining power is
used for initializing the spin state by optical pumping. The respective beams are switched
by individual AOMs, where the first orders are coupled into short single optical fibers for
spatial filtering. This was found to be of crucial importance for the fidelity of the optical
pumping process, especially in connection with Raman sideband cooling, see Sec. 4.6. The
reason for this is that a substantial amount of stray light is still irradiated onto the ion if
the AOM in the corresponding branch is switched off. This stray light is due to solarization
in the UV fiber and diffraction at the AOM apertures and in the AOM crystal. Only with
SM fibers in both beams, good results for optical pumping and Raman sideband cooling
could be obtained. The Doppler cooling beam is π-polarized, such that mainly vertical (mJ

conserving) transitions are driven. The advantage is then that the Zeeman splitting between
these two transitions is smaller than it is the case for the ∆mJ=±1 transitions driven by
σ± polarized light, yielding higher fluorescence rates and better Doppler cooling. The NIR
beams at 866 nm and 854 nm are superimposed onto the Doppler cooling beam on a UV
reflective/NIR transmissive dielectric mirror. The optical pumping beam is directed along
the quantizing magnetic field. A λ/2 and PBS are used to control the power, and a λ/4 is
used to control the polarization. It was initially tried to use additional compensation coils
to align the magnetic field better along the beam propagation axis, such that the observed
fluorescence is minimized upon irradiation with a circularly polarized beam with the Doppler
cooling light switched off. However, fluorescence rates already close to the detection threshold
can be observed, and as the trap lifetime is substantially shortened without Doppler cooling,
this method was found to be not useful for further improvements of the pumping fidelity.

10Hellma Optics GmbH, Jena
11EHQ-8010p, iseg Spezialelektronik GmbH, Radeberg
12miniPiA 103, TEM Messtechnik GmbH, Hannover
13PMC-400Si-2,9-NA011-3-APC-50-P, SUK Hamburg
14QZF-80-20, Brimrose Corporation of America, USA
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3.2.3. 854 nm and 866 nm for Repumping and Quenching

ZHL-3A

ZHL-3A

ZHL-3A

ZFL-1000LN+

Figure 3.4.: Optical setup of the laser at 866 nm and 854 nm for repumping and quenching.
The 866 nm laser is PDH locked onto a cavity, whereas the 854 nm laser is free-running, but
it is switched with a second single-pass AOM in addition to the double-pass one.

The laser at 854 nm and 866 nm are used to remove population from the 2D5/2 and 2D3/2

electronic states respectively. The beam layouts for both laser systems are shown in Fig. 3.4.
The context in which this happens is however different for the two transitions: The 2D3/2

state is frequently populated due to decay from the 2P1/2 state during cycling of the 397 nm
transition, where the corresponding branching factor is about 1/12. Therefore, illumination
of the ion without the 866 nm laser on leads to rapid pumping into the dark metastable
2D3/2 state. In contrast, decay from the 2P1/2 to the 2D5/2 is dipole forbidden, therefore
continuous observation of resonance fluorescence is possible without the 854 nm laser for
repumping. However, 2D5/2 plays a crucial role for spectroscopy and spin readout (see Sec.
4.2.2), such that this laser is needed for the reset of the qubit and is therefore referred to as
the quenching laser in the following. Both lasers are infrared ECDLs 15. The 866 nm laser is
PDH locked in entirely the same way as the 397 nm laser (see Sec. 3.2.2), the resonance is
typically located at 866.45218 nm. The wavelength is adjusted via the HV-amplifier of the
reference cavity piezo such that the resulting fluorescence level is maximized. The 854 nm
laser is free running, the quenching process is sufficiently robust in the wavelength range
between 854.44380 nm and 854.44420 nm. Both lasers are supplied to individual double pass

15DL 100
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3.2. Laser Systems

AOMs 16 for switching via single mode fibers. The AOM outputs are superimposed on a PBS
and coupled into another single mode fiber. Finally, 500 µW up to 1 mW of 866 nm light
and about 130 µW of 854 nm light is supplied to the experiment. The beam is superimposed
to the 397 nm beam by means of a dichroitic mirror. Both beams have a FWHM of roughly
2 mm at the f=250 mm focusing lens, leading to high saturation parameters. The power
at 866 nm is high enough to make the experiment insensitive against wavelength drifts of
the corresponding PDH cavity, and small enough that the light is almost not seen during
fluorescence detection. For the 854 nm laser it was found that imperfect switch-off of the
beam, with only a few nW of power in the off-state, already has a deterioration effect on
the spin readout (see Sec. 4.4). Therefore, a second AOM 17 was inserted between the laser
output and the first fiber coupling, leading to an off-power level below the detection threshold
18, which made a spin readout fidelity of 99.6% possible.

3.2.4. 729 nm for Electron Shelving

~

Figure 3.5.: Optical setup of the 729 nm laser for spectroscopy and qubit readout. Note that
the beam supplied to the lock branch is derived from the amplified main beam despite its
worse noise background, because it was found that larger powers are essential for the lock
stability.

16TEF-270-100, Brimrose Corporation of America, USA
17GEF-80-20, Brimrose Corporation of America, USA
18as measured with an OPHIR NOVA II power meter
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Figure 3.6.: Characterization of the double pass AOM for the 729 nm laser: a) shows the
frequency response, which essentially determines the accessible internal state transitions. b)
shows the laser power in the diffracted output beam versus rf drive power, which determines
the maximum attainable Rabi frequencies.

The diode laser running at 729 nm is driving the dipole forbidden 2S1/2 to 2D5/2 transi-
tion, which has a linewidth of about 1 Hz. The optical layout is depicted in Fig. 3.5. Due to
the weak quadrupolar coupling, a lot of power is needed in order to reach Rabi frequencies
on the order of 1 MHz, such that the output power of an ordinary ECDL is not sufficient.
In contrast to the Innsbruck experiment, this transition is only used for auxiliary tasks like
spectroscopy, spin read-out, pumping and cooling, there the requirement of a narrow laser
linewidth is not as strict as in the case that fully coherent dynamics are to be driven on
this transition. Therefore a low-cost, easy to operate amplified diode system is the system of
choice. The master laser is amplified by a taper amplifier supplied with a current of 1400 mA,
yielding 800 mW of single mode output power after the final Faraday isolator, with an ASE
background given by the gain bandwidth of the semiconductor laser medium of the amplifier,
suppressed by more than 40 dB. A probe beam of the master laser is supplied to the waveme-
ter by a multi mode optical fiber. A portion of the main output beam is used for the PDH
lock to a high finesse, ultra-low expansion cavity 19, with a mirror transmittance of 10 ppm
at the required wavelength. The cavity is vertically mounted in a HV chamber in order to
minimize gravitational distortion effects. In contrast to all other laser systems, the sidebands
are not modulated onto the master laser by means of the Bias-T in the diode current supply
because they would be visible in the corresponding atomic spectra due to the narrow width

19Advanced Thin Films, Boulder, USA
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3.2. Laser Systems

of the transition. Instead, frequency modulation is achieved by means of an electro-optical
modulator (EOM), which is supplied by 33 dBm of power at a frequency of 18 MHz. No
extra rf resonator is used on the EOM. A λ/2 plate in front of the EOM is used to align the
polarization along the optical axis of the EOM crystal, otherwise this would lead to spurious
amplitude modulation, which causes an offset in the resulting PDH signal adversely affecting
the lock stability. Mode-matching to the optical cavity is achieved by using the movable col-
limator lens of the fiber output, such that the optimum beam waist is created at the cavity
input. The cavity vacuum vessel is enclosed in a PVC housing with a wall strength of 1 cm
to reduce heat exchange with the environment and the influence of sound waves. The power
in the PDH branch is limited by the transmission of the NIR reflective mirror directly after
the laser output, see Fig. 3.5, which is about 800 µW. At maximum 400 µW is then available
after the cleaning PBS after the fiber. It is empirically found that the lock stability becomes
better with increasing power, however the heating of the cavity is mainly due to this power
source, such that a better lock stability is bought at the price of an increased frequency drift
rate. Due to the fact that the linewidth of the cavity is much smaller than the linewidth of
the free-running laser, no error signal can be observed while scanning the laser frequency.
Therefore, a cavity with low finesse simply consisting of two NIR reflective coated curved
mirror in free-space configuration was established close to the high-finesse cavity such that
the geometrical dimensions with respect to fiber output and PDH photodiode were about
the same distance. An appropriate error signal was then established by inserting an extra
length of coaxial cable between local oscillator and PDH mixer. By mere luck, a resonance
of a transverse Gaussian mode was found at 729.34775(5) nm, which allowed for reaching
all relevant atomic transitions with a 80 MHz double-pass AOM. Therefore, no extra AOM
in the PDH branch is necessary, but due to the lack of the fast switching capability, the
linewidth of the cavity could not be obtained by means of a transmission ring-down mea-
surement. The on-resonance dip in the power reflected from the cavity is only 5%, which
could not be improved by any effort to improve the mode matching. It is therefore attributed
to bad impedance matching, i.e. mismatch of the mirror reflectivities and losses, which is
presumably due to dust grains on the lower cavity mirror. For future high-finesse cavity
setup, assembly in a clean room is therefore strongly recommended. The PDH error signal
suffers from a bad signal-to-noise ratio, which (together with the ASE background from the
TA) ultimately limits the achievable laser linewidth. The error signal is produced by mixing
the cavity reflection signal, detected by a New Focus 1801 FS 125 MHz photoreceiver with
the LO signal on a minicircuits ZRPD-1+ phase detector. It is then supplied to two servo
controllers: A slow PI controller is used to control the ECDL grating via the piezo element,
the design is similar to the one in Ref. [Tha99]. A fast PD controller, also similar to the
one in Ref. [Tha99] except for replacement of the CLC425 opamp by an AD817. The result-
ing laser linewidth is determined by Ramsey spectroscopy on the quadrupole transition, see
Sec. 4.2.2. The longest coherence time observed was 400 µs, corresponding to a linewidth of
2.5 kHz. The fact that the linewidth is not limited by other decoherence sources is justified
by the observation of much longer coherence times for Ramsey experiments on the Raman
transition between the ground state spin levels, see Sec. 4.7. Together with the free spectral
range of 2 GHz, under the rough assumption that the laser is frequency-stabilized to about

49



3. Experimental Setup

1% of the cavity linewidth, this is giving a finesse of only 8000, compared to the finesse of
300000 inferred from the mirror manufacturer data.
The main laser output is delivered to the experiment via a single mode fiber, where round
about 300 mW of power is available. The light is switched and modulated by a double-
pass AOM 20, which allows better switch-off and scanning of the frequency for spectroscopy
purposes without changing the beam alignment. The characterization of the diffraction per-
formance of this AOM with respect to input frequency and amplitude is crucial for exerting
control over the atomic system, the corresponding measurement results are shown in Fig.
3.6. For details of the rf supply of this AOM, see Fig. 3.9. The beam is directed orthogonally
to the magnetic field, and a λ/2 plate is used to align the polarization at roughly 45°with
respect to the magnetic field, such that all quadrupole allowed transition between the vari-
ous sublevels can in principle be addressed, see Sec. 4.2.2. In front of the vacuum window,
150 mW of laser power at a beam FWHM of roughly 8 mm is focused onto the ion with
a f=250 mm lens, such that high enough Rabi frequencies of up to 2π·500 kHz are readily
obtained.

3.2.5. 397 nm for Stimulated Raman Transitions

EOM

Figure 3.7.: Optical setup for the laser at 397 nm for off-resonant coherent manipulations.
The EOM is superior to an AOM for the task of lossless fast switching.

A single mode laser close to the 2S1/2 to 2P1/2 dipole transition is used for driving stim-
ulated Raman transitions between the ground state spin levels, which is supposed to be the

20GEF-80-20, Brimrose Corporation of America, USA
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workhorse for quantum logic experiments in our setup. As explained in Sec. 4.5, a large
amount of laser power is necessary for suitably fast quantum logic under sufficient suppres-
sion of decoherence effects. Therefore, an amplified NIR laser diode with subsequent second
harmonic generation (SHG) with a LBO crystal in a bowtie cavity is used 21. The gener-
ated SHG output laser power of up to 120 mW at a TA current of 1400 mA is sufficient for
basic quantum information experiments. The laser is typically used with wavelengths of the
fundamental beam in a range from 793.813 nm to 794.020 nm, corresponding to detunings
of ±100 GHz from the atomic resonance. The SHG beam is passed through a commercial
EOM 22 used for switching and intensity stabilization. A λ/2 plate is inserted to match the
polarization angle to the optical axis of the EOM, such that the on- to off- power ratio is
maximized, see Fig. 3.8. The EOM voltage leading to a 90°rotation of the polarization was
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Figure 3.8.: Characterization of the switching EOM: If the EOM is to be used for intensity
stabilization, one faces a tradeoff between maximum power and sensitivity to the feedback.

found to be 130 V, where is one of the EOM electrodes is supplied by standard laboratory
voltage supplies in series connection. The voltage actually supplied is typically 90 V to give
a steep transfer function for the fast branch of the intensity stabilization, however at the
expense of about 20% of the laser power. The reflected part of the power after a PBS be-
hind the EOM is coupled into a polarization maintaining (PM) single mode fiber with low
solarization loss. An additional λ/2 plate in front of the fiber coupler is used to match the

21TA-SHG pro, Toptica AG, Gräfelfing
22LM 0202, Linos Photonics GmbH, Göttingen
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polarization to the PM axis. After a polarization cleaning PBS behind the fiber output colli-
mator, typically 20 mW of UV laser power is available. A beam sample is taken by means of
single side UV AR coated microscope object carrier, which is attenuated and monitored on
a fast photoreceiver. The signal is used as the feedback signal for the intensity stabilization
servo. A fast servo acts onto the free EOM electrode, whereas an integrator servo is used
to maintain long term stability via feedback onto the TA current. This way, the fast servo
output can be dc-coupled in order to keep the mean output level at 0 V, allowing for large
output voltage swings without cutoff.

HI

HI

HI

HI

HIHI RA07H0608M

RA07H0608M

RA07H0608M

ZFL-500HLN

ZHL-3A

Figure 3.9.: rf network for the supply of the AOMs in the Raman beamline from Fig. 3.7.
Several switches determine which rf source is fed to which AOM, the corresponding truth
table is given in Table 3.1.

The main laser power is split into three parts by a series of λ/2 plates and PBSs, where
the splitting ratios are dependent on the actual experiments which is to be performed. The
beamlines after splitting are kept as short as possible, as optical path length fluctuations due
to air currents and mechanical vibrations of mirrors can cause fluctuations of the relative
phase, leading to additional decoherence rates mainly depending on the effective interferom-
eter areas. A beam propagation along the magnetic field axis, denoted R2 in the following,
is passed through an AOM for switching and modulation. The +1st diffraction order is sepa-
rated with an iris diaphragm after a 2:1 magnification telescope comprised of a f=50 mm and
a f=100 mm lens for tighter focusing. A λ/4 plate is used to manipulate the polarization,
which is of crucial importance for this beam. The beam is then focused onto the ion with a
f=250 mm lens. Of the other two beams, the one subsequently referred to as R1 is polarized
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3.2. Laser Systems

1 2 3 R1 R2 CC Purpose

0 0 X - VFG - Scattering and Stark shift measurements

0 1 X - - VFG Stark shift measurements

1 0 0 RS1 VFG - Raman transitions with η 6= 0

1 0 1 - VFG RS2 Spin dependent forces

1 1 1 - - RS2 CC beam alignment

1 1 0 RS1 - VFG Raman transitions with η = 0

Table 3.1.: Truth table for the required TTL settings of the Raman beams. The first three
columns show the logic states of the relevant TTL channels of the experiment control system
and the next three columns indicate which rf source is connected to the AOMs R1, R2
and CC, see Fig. 3.7. The last columns describes the purpose of each configuration. The
TTL channels are referred to Fig. 3.9 as follows: TTL 1 → VFG TTL channel 1, 2 →
vfgSwitchToCC, 3 → activateCCRS2. An X in the TTL setting columns means that the
logical state of the corresponding line is irrelevant for this setting.

horizontally with respect to the optical table, whereas the other one, called RCC is verti-
cally polarized. Both beams are passed through individual AOMs and are re-superimposed
on a PBS. The beam pair is directed orthogonally to the magnetic field, such that R1 is
π polarized, driving ∆mJ = 0 transitions, and RCC has balanced σ+ and σ− components,
driving the ∆mJ = ±1 transitions equally strong. The respective +1st diffraction orders
are selected by means of an iris diaphragm and focused onto the ion with a f=250 mm lens.
In contrast to the R2 beamline, no additional telescope is necessary because of the shorter
propagation distance. All AOMs are QZF-80-20. The rf supply network is shown in Fig. 3.9,
its sophistication arises from the fact that the beams are to be used in different combinations.
All AOMs are oriented such that the propagation direction of the sound wave in the crystal is
perpendicular to the beam polarization, which drastically affects the diffraction performance
of the QZF-80-20, in contrast to AOMs working in the IR. All three AOMs are situated at
approximately the same distance from the delivery fiber output, such that the beam diameter
inside the crystals can be adjusted to be the same value for all modulators by means of the
fiber collimator focusing screw. This way, high diffraction efficiencies of up of 65% to 75%
are achieved for all the AOMs.
In principle, much tighter focusing of the Raman beams is feasible, with illumination of
the complete 1” diameter of the focusing lenses spot sizes in the µm range are achieved.
This would provide much stronger Raman couplings, such that reduced decoherence can be
achieved by choosing larger Raman detunings. However, for small spot sizes strong decoher-
ence effects set in that are not fully understood but that can only be caused by an unstable
illumination strength of the ion, see Sec. 4.7. Possible physical effects are therefore pointing
instabilities of the beams or radial position drifts of the ion on the second scale.
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3. Experimental Setup

3.3. Imaging and Detection

The imaging system allows for simultaneous detection of ion fluorescence near 397 nm on
an electron multiplier CCD (EMCCD) camera system 23 or on a photomultiplier (PMT) 24.
While the camera mainly serves for asserting that the right number of ions is loaded and that
the ions are properly cooled and localized, the fluorescence data from which the experimental
results are obtained is collected with the PMT. This is because the PMT readout is more
easily accomplished than the readout of the EMCCD camera images. Simultaneous readout
of several ions however can only be accomplished with the spatially resolving camera, which
is already demonstrated in chapter 9 and will serve as the standard readout method in the
future. The spatial resolution also enables an improved filtering of the stray light background
as the image of the ion is directly at hand, in the PMT case this can be only accomplished
by adjusting a 2D aperture consisting of 4 independently movable blades 25.
The fluorescence is collected by a specially designed objective 26 with a focal length of 48 mm.
The inverted viewport allows for placing the objective at an approximate distance of 50 mm
from the ion, resulting in a covered solid angle of dΩ/4π ≈6% and a magnification factor of
28 at an image distance of about 1400 mm, which allows for the distinction of ions aligned in
a string at a typical ion distance of 3 µm and a pixel size of 24 µm. As the PMT photon count
rate sets the minimum time in which the bright and dark states of an ion can be reliably
distinguished, see Sec. 4.2.1, most of the fluorescence light is directed in the PMT branch of
the detection optics using a 80:20 beam splitter 27. Both in the PMT and EMCCD branches,
the light is spectrally filtered with a 397 nm band-pass filter 28. Considering the photon
collection solid angle, 96% transmission through the objective, 88% filter transmission and
the PMT quantum efficiency of 20% at 397 nm, a photon count rate in the range of 500 s−1 is
expected. By contrast, only count rates of 30 s−1 are actually attained, the huge discrepancy
between these rates is still unclear.

3.4. Trap Voltage Supplies

As the trap confinement mechanism relies on the application of suitable electric fields both
at dc and rf, individual supply systems for each of these components are needed. As the
dc supply electronics is of crucial importance especially in conjunction with the scalability
scheme based on the segmented trap, Appendix B is entirely devoted to this issue. Impor-
tant experimental findings for the characterization of the voltage supply are found in Secs.
2.1.3,4.2.3 and 4.3. It shall be briefly mentioned here that two main types of dc supplies were
used throughout this thesis: Most experiments were carried out with a purely static voltage
supply providing only voltages for a single segment pair, and all the other segments were

23iXon DV860DCS-BV, Andor, Belfast, Northern Ireland, 128x128 pixels
24P25PC, ET Enterprises, Uxbridge, United Kingdom
25SP60, OWIS GmbH, Staufen
26Sill Optics GmbH, Wendelstein
27CVI Melles Griot, Bensheim
28FF01-377/50-23.7-D, Semrock, Rochester, USA
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Figure 3.10.: Setup for imaging and fluorescence detection: The gray shaded area indicates a
solid box which provides shielding against ambient light. It is suspended on a 3D translation
stage, and the camera rests on two rails such that free movement of the whole imaging system
along the direction of the trap axis is possible.

grounded. This is because for the establishment of the qubit manipulation techniques that
constitute the main part of this thesis, the segmentation of the trap is not needed. A scal-
able version of the voltage supply for controlling 60 channels independently with computer
generated voltages has also been used and further developed, technical details are also given
in the Appendix B.
The rf supply electronics is mostly determined by the need for relatively large peak-to-peak
voltages of up to 600 V at a frequency of about 24 MHz. To achieve this, a seed signal gener-
ated by a Marconi synthesizer with output levels typically ranging between -15 and -9 dBm
is fed to a Minicircuits ZHL-5W-1 amplifier providing about 40 dB of amplification. From
there it is passed to a helical resonator as it is typically used in Paul trap experiments, which
possesses a Q-factor of about 30. The resulting voltage fed to the trap segments is divided

55



3. Experimental Setup

on a capacitive 1:100 divider as described in Appendix A of Ref. [Deu00], measured with a
1:10 voltage probe and monitored on an oscilloscope.

3.5. Quantizing Magnetic Field

The magnetic field defines the quantization direction. It is therefore absolutely necessary to
apply a magnetic field at a magnitude much larger than any ambient magnetic field fluctuation
in order to prepare a well defined atomic system. Furthermore, the field magnitude defines
the Zeeman splittings in the system and therefore sets all transition frequencies, such that
it is important to keep the magnetic field stable at short and long timescales to suppress
undesired decoherence effects, see Sec. 4.7. The field is generated by a pair of coils mounted
at adjacent diagonal viewports on the vacuum vessel. The coils each have a diameter of
about 28 cm and 280 windings each. They are supplied in series with a current of 2 A, which
is derived from a Statron power supply and stabilized with a feedback circuit designed by
the Innsbruck group. This relies on the measurement of the current via the voltage drop
at a temperature insensitive precision resistor (Vishay) and PID feedback regulation via a
power transistor. Additional monitoring of the current on a HP digital multimeter shows that
a static stability of better than 50 ppm is attained. From the measured Zeeman splitting
between the ground state spin levels |↓〉 and |↑〉 of about 18 MHz implies a magnetic field of
roughly 6.5 Gauss at the trap position.

3.6. Experimental Control System

In complex quantum control experiment, a considerable amount of data is to be exchanged
between various devices and experiment control computers at a fast rate. Laser powers,
frequencies and phases have to be controlled via AOMs for the quantum state manipulation
pulse sequences, all laser sources have to be switched on and off via TTL switches, voltages
waveforms have to be supplied to the trap segments and fluorescence data has to be collected
and evaluated. The experiment control hard- and software therefore plays a crucial role
and was subject to constant change and improvement. Therefore, we describe here the
configuration which served for most of the measurements presented in the chapters 7,6, 9 and
8.
Three personal computers serve to control the experiment. The main control computer
exerts all control tasks that are related to the conduction of the experimental sequences, i.e.
it controls the laser frequencies and on/off states. The devices attached to this computer
are depicted in Fig. 3.11. In earlier versions of the setup, this computer controlled the laser
frequencies and amplitudes mostly via GPIB control of RS SML synthesizers, in the present
version these synthesizers are operated at fixed frequencies and dynamic control is performed
only via fast USB data transfer to the VFG synthesizer. Moreover, the main control computer
serves for data acquisition by using the onboard counter electronics of the NI PCI-6733 to
read out the PMT.
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Figure 3.11.: Experimental control system: The main control computer controls the exper-
iment mainly via digital output channels of NI PCI-6733 cards and the USB-driven VFG
synthesizer. The 64 channel voltage control box has actually been used on another computer
for historical reasons, but will be attached to the main control computer in the future setup.

Another computer involved in the experiment control is the camera computer which exclu-
sively serves for the readout of the EMCCD camera, see Sec. 3.3. The remaining computer
mainly serves for the readout of the wavemeter and is also assigned to some less critical
control tasks. As the wavemeter provides laser frequency measurements with an accuracy
of below 10 MHz, it can be used to regulate laser frequencies by feedback if the frequency
stability is not crucial, which is exactly the case for the laser at 397 nm driving the Raman
transitions. The feedback signal obtained from a discrete software PI controller is fed back
to the master grating by means of a digital to analog converter circuit to which the digital
information is supplied via a standard serial interface. To assure proper laser operation, a
galvanic separation between the systems was found to be necessary, which was achieved by
utilizing an IL300 analog optocoupler. Furthermore, the computer is connected via a CAN-
bus interface to the iseg high voltage generator that coarse-controls the PDH cavity piezo
voltage for the 866 nm and 397 nm lasers.
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4. Implementation of the Spin Qubit

The foundation for all experiments with trapped ion aiming in the direction of quantum
computation and simulation rely on the possibility to encode quantum bits and to provide
initialization and read-out of this quantum bit. Furthermore, the ability to perform single
qubit manipulations is required. Of course all of these steps need to be performed as effi-
ciently as possible, i.e. with a high speed and high fidelity. In order to keep the experimental
effort reasonable, robustness against experimental parameter drifts is advantageous. Further-
more, the qubits represent a quantum memory, therefore one has to take care to suppress
environment-included decoherence. To fulfill these requirements, A lot of knowledge from the
fields of atomic physics and coherent control is needed, along with high degree of experimen-
tal try-and-error. In this chapter, it is shown how this is done in our particular experiment.
The chapter is organized as follows: First, in Sec. 4.1 we give a short survey on the dif-
ferent possibilities to encode qubits in trapped atomic ions. In the following section, Sec.
4.2, we describe how very basic steps such as internal state discrimination, spectroscopy on
the quadrupole transition, qubit initialization and qubit reset are implemented. In Sec. 4.3,
we present results from a simple fluorescence-based heating rate measurement. In the next
section Sec. 4.4, we show in detail how the spin qubit is read out via electron shelving. Then
we show in Sec. 4.5 how coherent manipulations can be performed by means of stimulated
Raman transitions and in Sec. 4.6 how sideband cooling is achieved, along with detailed
results of a heating rate measurement. The last section Sec 4.7 is devoted to an extensive
characterization of relevant decoherence processes.

4.1. A Brief Survey of Trapped Ion Qubit Types

In order to store any information in an atomic system, one need at least two internal states
which possess lifetimes which are longer than the time at which one intends to store, process
and retrieve this information. Three basic types of internal state are suitable: metastable
electronic states, hyperfine sub-levels of the electronic ground state and Zeeman sub-levels
of the electronic ground state. We have chosen to implement the latter approach, which is
especially well-suited in conjunction with our microtrap, for several reasons that will become
clear throughout this chapter. Fig. 4.1 shows the level scheme of a 40Ca+ ion, along with
the transitions used for our particular qubit realization. All of these qubit types have been
successfully implemented within the last two decades, each with unique advantages and dis-
advantages. Two main issues are of key relevance for the experimental approach:
Qubit handling: The type of qubit used defines the challenges occurring in the experimen-
tal realization of basic experimental steps such as qubit readout and coherent manipulation.
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Figure 4.1.: Level scheme of the relevant electronic states of the 40Ca+ utilized in our exper-
iment. The Zeeman substructure is omitted here. The laser-driven transitions between the
states are shown along with their purpose and the wavelength.

In the case of the metastable qubit, coherent manipulations are driven directly on dipole-
forbidden transition, typically of electric quadrupolar type, which possess lifetime of some
hundreds of milliseconds up to about one second for common species. The timescales for
these manipulations are set by the frequency spacings present in the system, which typical
range in the MHz regime, such that typical operations have durations in the microsecond
range. Thus, a large number of operations is possible within the metastable state lifetime,
however the bottleneck in this case is given by the coherence time of the driving laser. Work-
ing with this type of qubit, one therefore has to face the technological challenge of stabilizing
the driving laser in the 1 Hz regime, which is nowadays routinely achieved in quantum optics
laboratories. One particular advantage for this qubit type is that the readout process is
relatively simple, as fluorescence on the fundamental dipole transition will only be detected
if the qubit is projected into the ground state. The other two qubit types allow for coherent
manipulations to be performed by utilizing stimulated Raman transitions, as the frequency
splitting lies in the range of some MHz up to several GHz, which can be coherently bridged.
If the two beams driving the Raman transitions are derived from the same laser source or two
phase-locked lasers, the problem of phase stability is mostly circumvented, even free-running
lasers can be used. This is because now the relative phase of the two beams plays the role
of the absolute optical phase in the metastable qubit case. However, the qubit readout for
these types is more difficult: Generally, both qubit levels will yield fluorescence upon reso-
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4.2. Basic Qubit Operations

nant irradiation on a dipole transition. There are basically three ways to circumvent this:
First, a particular subtransition can be singled out (closed) by appropriate choice of the laser
polarization and sufficiently large frequency splittings, which provides a large enough number
of fluorescence photons before branching to other states takes place. Second, one can make
use of coherent effects to turn one of the qubit levels into a dark state by means of auxiliary
lasers, which requires careful control of the lasers intensities, polarization and detunings. The
last approach is the one we make use of for our spin qubit implementation, namely to use
a quadrupole transition to ’hide’ the population in one of the qubit levels in a metastable
state.
Qubit coherence: For the actual implementation of large-scale quantum algorithms, a deci-
sive key bottleneck defining the error rate is given by the qubit decoherence by te coupling to
fluctuating external fields. The predominant decoherence source is given by fluctuating mag-
netic fields generated mostly by electrical power supplies. If qubits with hyperfine structure
are used, so-called clock states can be chosen for encoding the qubit. These do not pos-
sess a first-order Zeeman splitting, such that this decoherence process is strongly suppressed.
Clockstate encoding is possible for both the hyperfine and the metastable qubit. However, a
strong suppression of magnetic-field induced decoherence is also possible for the other qubit
types by shielding the experimental setup and performing the experiments at a defined timing
with respect to the AC power line. Furthermore, advanced rephasing techniques can be used
for coherence protection [Bie09]. Moreover, it is possible to use two physical qubits (ions)
to make up one logical qubit, and then encode the qubit information in a decoherence free
subspace DFS. Therefore, the coherence time for the metastable qubit is ultimately limited
by the metastable states lifetime, whereas for the other types decoherence is mainly caused
by off-resonant scattering during coherent manipulations, see Sec. 2.1.6.
This section is concluded by an incomplete collection of references on the various experi-
mental realizations of the different qubit types: The metastable qubit based on 40Ca+ has
been realized in Innsbruck [SK03a], where also basic one- and two qubit operations with DFS
qubits have been performed [Mon09] and the clock state variant has been demonstrated with
43Ca+ [Kir10]. The hyperfine qubit based on 9Be+ has seen a long history of success in the
Boulder group [Win98], where the same isotope has also been used for clock state qubits
[Lan09] and DFS qubits [Kie01]. For hyperfine qubits, the isotope 117Yb+ recently became
very popular [Olm07]. The spin qubit has been realized based on 40Ca+ in Oxford [Hom06c]
and within this thesis [Pos09].

4.2. Basic Qubit Operations

4.2.1. State Discrimination by Fluorescence Counting

Any qubit readout scheme realized up to date is based on interrogating whether a given ion
irradiates fluorescence photons under exposure to resonant radiation or not. The discrimina-
tion procedure is always to count photons for a given time δt and compare the photon number
to a predetermined threshold σ. According to whether the measured photon number is below
this threshold or not, the ion is attributed to have been projected to the corresponding qubit
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Figure 4.2.: Fluorescence histogram: The number of occurrences is plotted versus the counted
phonon number for a count time of 10 ms. The arrow indicates the discrimination threshold
according to Eq. 4.1.

state upon readout. This basic information is used statistically to build up all high-level
measurement results. The decisive questions on this step are in what minimum exposure
time this can be answered at a given fidelity. This figure of merit is mostly given by the rates
at which fluorescence can be produced and detected and the corresponding background count
rate. The fluorescence rate is ultimately limited by the lifetime of the excited state on the
fluorescence transition, the other limits are of technical nature, i.e. the solid angle of photon
collection, light absorbance in the imaging system, the quantum efficiency of the detector and
the suppression of background light, both from the laser beam giving rise to the fluorescence
and background light at other wavelengths which is to be filtered out. The technical details
for our particular setup are described in Sec. 3.3, a histogram of photomultiplier counts is
shown in Fig. 4.2. For this measurement, PMT events were counted within a fixed count
time interval for the situation with repump laser at 866 nm off, such that mostly photons
from scattering of the 397 nm laser at the trap structure are seen, and with the repump laser
on, such that also resonance fluorescence photons from the ion are seen on the PMT. The
advantage of this approach is that due to the known switching state of the 866 nm laser, one
knows a priori if the ion is to be expected in the bright or dark state. The disadvantage is on
the one hand that imperfect off-switching of the 866 nm light leads to additional background
photons as the ion might be eventually pumped out of the dark state in the measurement
process. Furthermore, as the 866 nm laser is switched off for the background rate measure-
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Figure 4.3.: Fluorescence discrimination errors for different count rates: The solid lines indi-
cate the logarithmic total error probability for the fluorescence discrimination process versus
the readout time ∆t. The dashed lines indicate the hypothetical error under assumption of
an infinite lifetime of the metastable state. The different photon count rates ron and roff
indicated in the legend correspond to the extremal rates observed in our experiment. Note
that for a high ron rate, the sensitivity of the error on the background rate roff is strongly
reduced. The key message here is that it is relatively easy to achieve error rates below 10−2,
while it is hard to push the error below 10−3.

ment, one obtains underestimated background rates if the 866 nm laser is imperfectly filtered.
However, an alternative measurement procedure providing better results for later-on usage
is explained below. The two peaks in Fig. 4.2 corresponding to ion fluorescence (average on-
number s̄) and background light (average off-number n̄) are assumed to obey to Poissonian
distributions, which is justified by the quantum statistics of the single-atom photon source
and the random nature of the count process. We briefly summarize the key results from Ref.
[Roo00], Sec. A.2 for the error estimation of the discrimination process: If the Poissonian
count number distributions are replaced by Gaussian distributions, which is justified for large
enough count rates and detection times, a simple choice for the discrimination threshold σ is
found by demanding that the two possible discrimination errors, namely mistaking the ion to
be bright while it is actually dark and vice versa, are equalized. Upon integrating the parts
of the Gaussian distribution pertaining to these erroneous events, we obtain the threshold

σ =
√
n̄s̄. (4.1)
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Most of the results presented in this thesis have been obtained by using this threshold type,
however it was found that it leads to problems if the background count rate is very low and
the Gaussian approximation breaks down, i.e. the threshold is chosen to small. An advanced
scheme for measuring n̄ and s̄ is to make use of the quadrupole transition at 729 nm to
turn the ion bright or dark, which is more adapted to actual experiments where it is to
be measured if the ion is in |↑〉 or |↓〉. Another advantage of this scheme is that the finite
lifetime of the metastable state is included in the measurement. If the lifetime of this state
was infinitely long, one could press the error probability below any given threshold by simply
increasing the count interval in order to separate the Poissonians further from each other.
For example, with a D5/2 lifetime τ5/2 of about 1s, one would face an error probability in
the 1% range for a count interval of 10ms. Thus, an optimal count time ∆t along with and
optimal threshold σ can be found by correcting the probability for wrong bright counts by
probability for detecting above-threshold fluorescence from a spontaneous decay event. ∆t
is found by minimizing this probability, while σ can still be determined by the requirement
that the other error type, which is not affected by the finite metastable state lifetime, is
to occur equally often. The dependence of the discrimination fidelity on the count rates is
visualize in Fig. 4.3. However, as the fidelity bottleneck for the spin readout is given by the
optical pumping and shelving steps, see Sec. 4.2.4 and 4.4, we do not elaborate further on
this. It shall be mentioned that the fidelity of the fluorescence discrimination can even be
increased by time-resolved measurements, which was demonstrated in Ref. [Mye08]. In such
a time-resolved measurement, spontaneous decay events are likely to be discerned because of
the abrupt onset of fluorescence, furthermore error from cosmic ray events can be detected.
In general, fluorescence readout with a PMT is limited by the fact that for several ions, only
the total number of bright ions can be determined. For simultaneous readout of increasingly
large numbers of qubits, this represents a drastic information loss. It was shown in Ref.
[Hom06b] that an almost-complete internal state tomography of two ions is still possible if this
limited information is available. Other ways to circumvent this are single-ion laser addressing,
which has so far only been realized by the Innsbruck group [Näg99], or to use a segmented
trap and conduct a procedure of splitting and individual fluorescence measurement. Another
approach which was realized in Ref. [Bur10] and in this thesis, see Sec. 9.1, is to make use
of the EMCCD camera as an imaging device which provides spatial resolution in contrast to
the PMT.
The fluorescence state readout provides only binary information: the ion is always found
either bright or dark. In order to infer a dark state occupation probability as a measurement
result, each measurement has to be performed repeatedly under exactly the same conditions
such that the dark state probability can be inferred from the relative number of dark count
events. Even if perfect fluorescence discrimination was possible, this inferred probability will
statistically deviate from the physical occupation probability because of the finite number of
experimental runs. The process leading to the final outcome can be seen as the realization
of an unbalanced Galton board, where the decision probability at each stage is given by the
physical occupation probability. After N stages, the probability distribution to find ND dark
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events is given by a Binomial distribution

PD(ND) =

(
N

ND

)
pNDD (1− pD)N−ND (4.2)

such that the stand error of the resulting probability pmeasD = ND/N is

σ(pmeasD ) =

√
pD(1− pD)

N
. (4.3)

The key result is the N−1/2 scaling of the error with the number of experimental interroga-
tions. For example, 250000 interrogations would be needed to push the error reliably below
0.1%, whereas for the 200 interrogations typically used for the results of the thesis, one faces
a maximum error of about 3.5%. This represents the major drawback when working with
qubits based on single atoms, in contrast to ensemble based qubit realizations.
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Figure 4.4.: Spectroscopy on the S1/2 to P1/2 Doppler cooling transition. Shown are spectra
on the red side of the Doppler cooling transition near 397 nm for the typical saturated beam
power of 120 µW (black) and the typical desaturated power of 20 µW (red). The linewidths
resulting from the Lorentzian fit are about 2.5 times the natural linewidth of about 22 MHz
for the low power case and 3.8 times this value for the high power case. If the broadening
would be explained by mere power broadening, the corresponding saturation parameters
would be Ssat ≈13.4 and Sdesat ≈5.3, which would lead to a ratio of the peak fluorescence
rates of roughly 1.1, drastically mismatching the actual ratio of about 2.7. The origin of the
extra broadening can be attributed to residual micromotion, see Sec. 5.2, or a rather large
thermal excitation of the radial oscillation modes, see Sec. 4.3.

Fig. 4.4 shows results of spectroscopy measurements on the S1/2 to P1/2 transition, reveal-
ing the basic characteristic features such as linewidth, saturation parameters and maximum
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fluorescence rate. All following experimental results in the remainder of this thesis, unless
noted otherwise, have been obtained using the same essential experimental sequence: The
ion is first Doppler cooled for typically 2 ms and then prepared in either |↑〉 or |↓〉 by optical
pumping, see Sec. 4.2.4. If required, it is sideband cooled to the ground state of the axial
mode of vibration, see Sec. 4.6. Then, the coherent manipulations constituting the partic-
ular measurement take place, see Sec. 4.5.1. If the spin is to be read out, one of the spin
populations is shelved to the metastable state as explained in Sec. 4.4, before finally the
fluorescence is counted (Sec. 4.2.1) for 1..10 ms and the qubit is reset, see Sec. 4.2.5. The
bottleneck steps taking most of the time are the Doppler and sideband cooling steps and the
fluorescence readout, each taking up to several milliseconds. These durations can be reduced
to the 100 µs range upon technological improvements.

4.2.2. Spectroscopy on the Quadrupole Transition
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Figure 4.5.: a) Complete level scheme of the quadrupole transition between the S1/2 and
the D5/2 state with the full Zeeman substructure. The transitions marked as a,b and c are
actually used in the experiment.b) shows the decay channels for quenching the D5/2 state
on the dipole transition to the P3/2 on 854 nm. One can see that the 854 nm needs to have
circular polarization components for reliable quenching, furthermore the 866 nm repump
beam has to be switched on to deplete the D3/2 state.

With the fluorescence state discrimination explained in the previous section at hand, we
are in the position to make use of the quadrupole transition S1/2 →D5/2 to perform resolved-
sideband spectroscopy for a precise determination of the motional frequencies and a charac-
terization of the trapped ion’s motional state by investigating its coherent dynamics. A level
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Figure 4.6.: Relative strengths and frequencies of the various transitions between the Zeeman
level of the S1/2 and D5/2 states at a magnetic field of 6.5 G. The strengths are inferred from
Eq. 2.24, and it is assumed that the 729 nm beam propagates perpendicular to the magnetic
field with its polarization at 45°to the field direction, see Sec. 2.1.2. The black bars indicate
the |∆m| = 2 transitions which are driven by the light field component with polarization
orthogonal to the ~k, ~B plane, and the red bars indicate |∆m| = 1 transitions driven by the
in-plane polarization component. The dashed bars indicate |∆m| = 0 transition inaccessible
with the laser propagating at 90°to the magnetic field. The horizontal bar indicates the
accessible frequency range of the double pass AOM modulating the 729 nm beam, see Sec.
3.2.4.

scheme including the Zeeman substructure is shown in Fig. 4.5, the measurement presented
in this section have been carried out on the particular |↑〉 → |D5/2,mJ = +5/2〉 transition.
Fig. 4.6 gives an overview on how the different subtransitions can be accessed experimentally,
which is of key relevance later on when we describe how the quadrupole transition can be
used for optical pumping, see Sec. 4.6.

The spectroscopy measurement is performed by inserting a pulse of fixed duration (typically
100 µs) and fixed frequency after the preparation step. The measurement results after e.g.
100 runs then provides the probability that the ion has been excited to the metastable state.
If this measurement is now repeated while the frequency of the 729 nm laser is scanned in
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Figure 4.7.: Spectroscopy on the quadrupole transition: Data for a spectroscopy measurement
on the S1/2,mJ=+1/2 to D5/2,mJ=+5/2 is shown. The axial and radial sidebands are well-
resolved. The data was taken with the 729 nm locked to a on ordinary cavity with a resulting
linewidth of about 100 kHz limiting the spectroscopic resolution.

discrete steps, a spectrum such as shown in Fig. 4.7 is obtained. This spectroscopy method
is the most simple way for accurate measurements of the motional frequencies in our trap.
On the other hand, it is the prerequisite for using the 729 nm transition as a tool for qubit
preparation (Sec. 4.2.4), sideband cooling (Sec. 4.6) and readout (Sec. 4.4).

4.2.3. Coherent Dynamics on the Quadrupole Transition

We now turn to the coherent evolution of an the internal state of a single trapped ion under
exposure to a laser beam driving the quadrupole transition. This is important for mainly
two reasons: First, it reveals information about the motional state of the ion and second, it
is a decisive foundation for the spin readout procedure explained in Sec. 4.4. As the beam
is impinging horizontally at an angle of 45 with respect to the trap axis, it couples to the
motion along all three oscillation directions of the vibrational modes. Fig. 4.8 shows the
oscillatory behavior of he population in the metastable state upon exposure to a resonant
729 nm pulse of variable duration and fixed frequency. Information about the motional state
after Doppler cooling can be inferred from the decay of the envelope.
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Figure 4.8.: Coherent dynamics on the quadrupole transition: The fraction of population in
the metastable state is plotted against the duration of a square excitation pulse tuned to the
m1/2 = +1/2→ m5/2 = +5/2 transition. One can clearly see a very rapid dephasing due to
the interaction with three thermally population vibrational modes.

Taking the coupling to all these modes into account, the signal for excitation with a square
pulse of duration t is given by a multimode extension of Eq. 2.56:

PD(t) =
∑
{ni}

∏
i

pth(ni, n̄i))
1

2

(
1− cos

(
Ω{ni}t)

))
, (4.4)

where
Ω{ni} = Ω0

∏
i

M car
ni (η2

i ). (4.5)

The ηi and n̄i are the Lamb-Dicke parameters and mean phonon numbers for mode i, and
pth(ni, n̄i)) is the corresponding thermal phonon distribution Eq. 2.33. The probability for
finding a specific Rabi frequency is given by

p(Ω = Ω{ni}) =
∏
i

pth(ni, n̄i). (4.6)

If we now assume that the Rabi frequency differences are smaller than the inverse observation
time and the individual probabilities are small due to the many contributing frequencies, the
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contributions of each of the frequencies can not be individually discerned and a description
by a smooth continuous Rabi frequency probability distribution is justified. The probability
for attaining a Rabi frequency of Ω during one individual measurement is then given by
convolution of the discrete probability distribution with a Gaussian smoothing function:

p̃(Ω) ≈
∑
{ni}

∏
i

pth(ni, n̄i))e
−

(Ω−Ω{ni}
)2

2σ2 , (4.7)

which is normalized to

pb(Ω) =
p̃b(Ω)∫ Ω0

0 p̃b(Ω)dΩ
(4.8)
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Figure 4.9.: Effective Rabi frequency distribution: The symbols show sample probability
densities obtained from Eq. 4.8, and the solid lines result from a fit of this data to Eq. 4.10.
Data for two different parameter sets is shown, where the blue data (circles) set assumes
realistic experimental parameters which accurately reproduces the measurement results in
Fig. 4.8.

This smoothed probability distribution is empirically found to be well described by

p̃b(Ω) =
Ω0 − Ω

Ω
e−

Ω0−Ω
bΩ , (4.9)
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which is normalized to

pb(Ω) =
p̃b(Ω)∫ Ω0

0 p̃b(Ω)dΩ
. (4.10)

This distribution function is depending only on parameter b which can be fitted from a set
numerically obtained probability values. A comparison of pb(Ω) and calculated values from
Eq. 4.7 for different parameter sets are shown in Fig. 4.7. The great simplification is the
instead of six parameters ηi, n̄i, the thermal motion is characterized by only one parameter,
and the three-fold summation in Eq. 4.6 is replaced by a single integral:

PD(t) =

∫ Ω0

0
pb(Ω)

1

2
(1− cos(Ωt)) dΩ. (4.11)

The relation between the bare Rabi frequency and the experimentally determined π-time is
given by:

Ω0 =
π

τπ
(1 + b) (4.12)
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Figure 4.10.: Gauge of the Rabi frequency on the quadrupole transition: The Rabi frequency
has been measured for several different output amplitudes of the VFG synthesizer (see Sec.
3.6). Only one oscillation period has been recorded per amplitude, such that thermal effects
can be simply accounted for by an exponential decay factor. The result from the fit is then
the bare Rabi frequency Ω0 with a sub-percent inaccuracy.
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It should be mentioned that the coherent evolution measured in Fig. 4.8 in the presence of
thermal excitation can be equally well reproduced with the more simple approach from Ref.
[Roo00], Sec. A.1, where an analytic approximation is performed directly on Eq. 4.4, where
basically a Taylor expansion of the matrix elements M car

ni with respect to η2
i is carried out.

This yields the result

PD(t) ≈ 1

2

(
1− Re

∏
k

e2iΩ0t

1 + 2iΩ0tη2
kn̄k

)
, (4.13)

which reproduces the data shown in Fig. 4.8 for assumed parameters of {n̄} = {b} and {η} =
{b}. However, this approach is not viable for calculating the time evolution for arbitrary
time-dependent pulse shapes as it is performed in Sec. 4.4 for the spin readout. Finally, the
ability to associate the experimentally determined π-time to a bare Rabi frequency offers the
possibility to provide an accurate gauging of the Rabi frequency with respect to the amplitude
values fed to the VFG synthesizer. The results are shown in Fig. 4.10. A relation of

Ω0 ≈ −8.5 · 104x+ 1.0 · 107x2 − 1.3 · 107x3 (4.14)

with the VFG amplitude x is empirically determined, which of course only yields valid results
over a limited amplitude range. The ability to perform such an accurate calibration of
the coupling strength is a cornerstone for the experimental realization of coherent control
techniques. Finally, it shall be mentioned that the additional dephasing due to a magnetic
field fluctuations and the finite linewidth of the 729 nm laser was omitted here, which is
justified by the finding of Sec. 4.7 that the T∗2-time on that transition is longer than the
observation time for the measurements presented here.
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4.2.4. Qubit Preparation
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Figure 4.11.: Two different schemes for optical pumping: a) illustrates the optical pumping
via the P1/2 state or the alternative scheme via the quadrupole transition. b) shows the
erroneous polarization components in the 397 nm pumping beam occurring due to either
azimuthal or inclination tilt angles. One can see that preparation errors on the order of 1 %
can occur if the beam is not carefully adjusted.

A decisive step for most experiments with trapped ions the initialization in a defined
electronic state. In a quantum information context, this would amount to the DiVincenzo
criterion of qubit initialization. Especially when working with more and more qubits, the
quality of the initialization becomes very crucial as the total error probability scales ex-
ponentially with the number qubits. In order to devise robust high-fidelity initialization
schemes, a detailed understanding of the underlying atomic physics is necessary. As 40Ca
has only the two stable ground states |↑〉 and |↓〉, the task is simply to selectively deplete
one of these two levels. The most simple optical pumping scheme is to simply to deplete e.g.
|↓〉 by irradiation with a σ+ polarized beam at the resonance at 397 nm, with the 866 nm
beam also switched on to avoid population trapping in the D3/2 state. If the irradiation is
performed long enough, the |↓〉 level will be depleted even if the detuning and power of the
beams are not exactly controlled. However, the scheme is not robust with respect to angular
tilts of the pumping beam with respect to the magnetic field direction, as the spurious π and
σ− components which are occurring then also couple the |↑〉 level to the laser field. One can
simply find the stationary solution of the pumping rate equations which take into account the
powers pertaining to the different polarization components ε−ε0, ε+ and the branching ratios
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given by the Clebsch-Gordan factors, which leads to the stationary remaining population

P↓
P↑
≈ P↓ =

ε2− + ε20
ε2+ + ε20

(4.15)

The Zeeman splitting leading to different pump rates on the sub-transitions and the branching
to the D3/2 state have been neglected here for the sake of simplicity. In order to obtain
an estimation of the experimental accuracy requirements, the magnitude of the spurious
polarization components has been plotted versus the tilt angle in Fig. 4.11 b), where the
data was obtained by invoking Eqs. 2.28.
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Figure 4.12.: Optical pumping on the quadrupole transition: a) shows results for the robust
pulsed pumping scheme. The shelving probability is plotted against the duration of the
individual square pulses on the quadrupole transition. Results are shown for various numbers
of pulses in the pumping sequence. For increasing pulse numbers, one obtains a broad plateau,
such that the scheme is robustified against drifts in the Rabi frequency, the detuning and
the quench rate. b) shows results for continuous pumping with the 854 nm and the 729 nm
beams switched on simultaneously, for the same beam powers as in a). One can see that the
convergence behavior is very poor. Better results could however be obtained if the 854 nm
power is optimized.

A more robust pumping scheme which can be realized for 40Ca relies on the frequency
selectivity on the narrow quadrupole transition instead of polarization selectivity. The laser
at 729 nm is used to transfer population only from the level which is to be depleted to the
metastable D5/2 state, from which it transferred back to both ground state levels by quenching
at 854 nm. After a large enough number of cycles, the unwanted initial level is sufficiently
depleted. As can be seen from Fig. 4.11 a), the efficiency can be optimized if a purely π
polarized quench laser is used, however this would require an additional quenching beam for
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depletion of the mJ=+5/2 level for qubit reset. The results for the quadrupole pumping
scheme can be seen in Fig. 4.12, where both a continuous and a pulsed scheme are shown.
The pulsed scheme turned out to be more favorable for the experimental implementation as
it does not require a precise setting of the quench power, see Sec. 2.1.5 for the theoretical
treatment. One simply has to measure the π time on the pump transition, which would be
the |↓〉 to D5/2,mJ=+3/2 transition in our case, which requires conventional optical pumping
at 397 nm with σ− polarized light. One also has to determine the time it takes the quench
laser to deplete the metastable state, which can be simply done by measuring the remaining
dark population after shelving with a subsequent 854 nm pulse of fixed duration. Typically,
in takes about 1..2 µs to deplete the metastable state. The pumping is then performed by a
series of alternating pump and quench pulses, where 5..10 are typically sufficient for achieve
high pumping fidelities. The fidelity could be in principle improved by employing transform
limited pump pulses to avoid off-resonant excitation from the desired final state |↑〉. If the
quadrupole pumping scheme is employed, the drawbacks are that one additionally has to
keep track of the 854 nm laser wavelength and pumping transition frequency. The highest
combined pumping, shelving and readout fidelity achieved was 99.6%, where it is hard to
discern the effects from the various imperfections. It is assumed that the bottleneck in this
case was given by the shelving efficiency. With the conventional 397 nm pumping, typical
dark count probabilities after shelving of 97.5..98.5% are routinely achieved, which is still
sufficient for the experiments on one and two ion described in the remainder of this thesis.
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Figure 4.13.: Measurement of spurious polarization components: a) shows results for the
depump rate measurement, which directly gives the pump rate. b) shows results for the co-
herence decay measurement on a superposition of |↑〉 and |D5/2,mJ = +5/2〉, which roughly
determines the π component of the pump beam. c) shows the results for coherence measure-
ments at fixed pump pulse time of 35 µs for different angles of the quarter wave plate.
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It is difficult to measure the wrong polarization components because it is difficult to dis-
cern imperfect pumping from other experimental imperfections, however we show here how
quantum coherence can be utilized as a measurement tool to achieve this. The idea is to
compare the rate which the pump beam can transfer population to the rate at which it de-
stroys a coherence between its ’dark’ state and the metastable D5/2 state, see Sec. 4.7 for a
detailed explanation of coherence measurements. For the population measurement, the ion
is pumped to |↑〉 with the quadrupole pumping technique described above, and before the
shelving a depump pulse of σ− polarized light at 397 nm is applied. The remaining pop-
ulation in |↑〉 vesus the depump pulse duration is shown in Fig. 4.13, and a depump rate
of γpop=2.47(8) µs−1 is obtained. For the coherence measurement a coherent superposition
is prepared on the |↑〉 to |D5/2,mJ = +5/2〉 transition by a π/2 pulse at 729 nm. Before
probing, the superposition is decohered by pulses of σ+ polarized light at 397 nm. If no σ−

or π components were present in the beam, it would not couple to the levels present in the
superposition state such that it would remain unaffected. The coherence loss rate, which is
found to be 0.0186(6) µs−1, is therefore a direct measure of the spurious polarization com-
ponents. Two assumptions are made to find the amount of wrong polarization: First, we
assume that the driving strengths for σ+ and σ− light are the same, i.e. the Zeeman splitting
is neglected. Second we assume that the π component is much stronger, which is justified
when looking at Fig. 4.11 b). Taking the Clebsch-Gordan factors into account, we find

γpop =
1

9
ε2+γ0 ≈

1

9
γ0

γcoh =
1

9

1

2
ε20γ0, (4.16)

where the appearance of ε2+ instead of the ε2− actually used in the measurement is due to the
first assumption above and the additional factor 1/2 in the second line is due to the fact that
only half the population resides in |↑〉 in the decoherence measurement. γ0 is the raw pump
rate defined by the Rabi frequency in the 397 nm, the detuning and the lifetime of the P1/2

state. We then find
ε20 = 2

γcoh
γpop

≈ 1.5%, (4.17)

which is completely consistent with the comparison of the efficiencies for the 397 nm and
quadrupole pumping schemes. Fig. 4.13 shows measurement results revealing the required
precision of the setting of the quarter wave plate for the pump beam: The coherence mea-
surement was performed for a fixed decoherence pulse time of 25 µs at varying angle of the
waveplate, such that a σ− component is added to the beam, along with a fit to

C(α) = C0e
−A sin(α+α0)2

. (4.18)

It can be inferred that at the needed adjustment precision of the waveplate is about 1°, which
should be independent of the power in the pump beam as only the ratio of the σ+ and σ−
components determine the pumping fidelity. The power of the pump beam throughout all
the measurements shown in Fig. 4.13 has been 52 µW.
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4.2.5. Qubit Reset

For various applications, e.g. optical pumping for spin initialization, qubit reset and side-
band cooling or more involved experiments like experiments on electromagnetically induced
transparency or deterministic single photon generation [Alm10] which are not within the
scope of this thesis, it is advantageous to be able to provide calibration of Rabi frequency
and detuning also on dipole transitions which do not not allow for coherent driving. Here,
we employ the shelving technique to demonstrate that precise Rabi frequency calibration is
possible on the D5/2 to P3/2 transition at 854 nm as well as the D3/2 to P1/2 transition at
866 nm. The experimental procedure for the two transitions is essentially the same: The ion
is initialized in the corresponding D-state, then a depump pulse of fixed duration is applied
and the remaining population in the D-sate is measured. As this is repeated for a range of
different depump pulse times, an exponential decay of the D-population is found such that a
decay rate can be inferred. If the decay rate is measured for varying power, one can determine
a relation between the dipole Rabi frequency and power. In our treatment we assume that
we are on resonance of the corresponding dipole transitions, which is justified as the 866 nm
laser can be tuned sufficiently precise to resonance by optimizing the 397nm fluorescence
rate, ad the 854 nm resonance we determined by means of the same experimental technique
as is used for the Rabi frequency measurement, except that the 854 nm frequency is scanned
for a fixed depump pulse duration. On resonance, the optical Bloch equations with the loss
channel included can easily be written down:

ρ̇11 = γρ22 +
i

2
Ω (ρ21 − ρ12)

ρ̇22 = −(γ + Γ)ρ22 +
i

2
Ω (ρ12 − ρ21)

ρ̇12 = −1

2
(γ + Γ)ρ12 +

i

2
Ω (ρ22 − ρ11)

ρ̇21 = −1

2
(γ + Γ)ρ21 +

i

2
Ω (ρ11 − ρ22) , (4.19)

where Ω is the depump beam Rabi frequency, γ is the decay rate from the excited back
to the metastable state and Γ is the decay rate from the excited to the electronic ground
state. For not too small Rabi frequencies, one finds upon numerical solution of Eqs. 4.19
that the depump process can be sufficiently well described by simple exponential decay of
the population the metastable state, where the decay constant Γdep is a function of Ω,γ and
Γ. However, no analytical relation could be found, such that a number of decay constants
was obtained for values of the Rabi frequency between 2π·0.1 MHz and 2π·10 MHz, where
the values for γ and Γ were chosen to be the ones for the corresponding transition [Jam98].
It was found that

Γdep = CdepΩ
2 (4.20)
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matches the behavior very well over the entire range of Rabi frequencies, such that the
proportionality constants

C
D3/2→P1/2

dep = 0.00332MHz−1

C
D5/2→P3/2

dep = 0.00315MHz−1 (4.21)

could be determined.
For the first transition, the ion is initialized in |↑〉 by optical pumping and shelved to the
D5/2, mJ=+5/2 state. Quenching pulses at 854 nm at variable duration are used to remove
population from the metastable state, finally the remaining population measured. The results
are shown in Fig. 4.14. For each specific depump power, a depump rate Γdep can be inferred,
such that Eq. 4.21 can be invoked to yield the desired relation between power and Rabi
frequency:

Ω2 = 1.0(1)MHz2µW−1 (4.22)
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Figure 4.14.: Quenching of the D5/2 state: a) illustrates spectroscopy on the 854 nm transition
by depumping the D5/2 state with a pulse of fixed duration and variable laser frequency. b)
shows the dynamics of the depopulation of the D5/2 state on resonance for varying pulse
duration and different power levels. c) shows the quench rates versus power inferred from
these measurements.

The measurement on the D3/2 to P1/2 transition at 866 nm had to be performed in a
slightly different way, as no laser at 710 nm for coherent population transfer to the D3/2 state
was at hand. Here, population is simply pumped to the D3/2 state with the 397 nm laser and
the 866 nm switched off. The shelving from |↑〉 is then performed after the 866 nm depump
pulse, such that the remaining population in D3/2 and in the |↓〉 level is measured as bright.

78



4.2. Basic Qubit Operations

Thus, only a limited fraction is counted dark after complete depump of the D3/2, however
the desired decay constant can still be measured with sufficient precision. The results are
shown in Fig. 4.15, and the relation between power and Rabi frequency reads

Ω2 = 5.0(1)MHz2µW−1 (4.23)

The striking dissimilarity between the constants in Eqs. 4.22 and 4.23 is explained by the
fact the data for the 854 nm depumping was taken at a much earlier time when the 854 nm
and 866 nm beams were freely propagating over a large distance and the focus was much
larger than necessary. One should expect to see very similar values for the present situation
with the fiber output collimator for the 854 nm and 866 nm beams close the ion trap, see
Fig. 3.4.
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Figure 4.15.: Quenching of the D3/2 state: a) shows the population transferred to the D5/2

state after depumping the D3/2 state with the resonant 866 nm laser with variable pulse
duration for different depump powers, see text. b) shows the depump rates inferred from
these curves.
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4.3. 3D Heating Rate Measurement by Fluorescence
Observation
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Figure 4.16.: Fluorescence heating rate measurement: The detected fluorescence is plotted
versus waiting time between Doppler cooling and the start of the fluorescence detection. The
precision is not good enough to claim a significant difference between the one and two ion
case.

The most simple technique for measuring the heating rate of trapped ions is to measure
the resonance fluorescence level after a variable waiting time. A more precise information
can be inferred from time resolved fluorescence measurements, where the dynamics of the
Doppler recooling process can directly be seen [Wes07, Eps07]. Here, we restrict ourselves
to the simple static level measurement techniques providing information about all motional
modes. In contrast to the approach in Refs. [Wes07, Eps07], the back-action of the near-
resonant laser radiation on the motional state is ignored here. Fig. 4.16 shows fluorescence
level measurement taken on one- and two ions with a delay between Doppler cooling and
the start of the fluorescence counting interval. We can invoke Eq. 2.42 for the fluorescence
rate, where we additionally consider a factor σ � 1 describing the collection efficiency of
the imaging optics, an effective number of contributing modes d and a total kinetic energy
described by linear heating: Etot(t) = E0 + Θt. The time-dependent count rates per ion for
one and two ions are then given by

R(1,2)(t) = σ
(
R0 −

(
R′H(E

(1,2)
0 + Θt)

)
(4.24)
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The measurement results are fitted to a linear behavior R(1,2)(t) = a(1,2)−b(1,2)t, yielding the
results a(1)=11.1(1)ms−1, a(2)=9.6(2)ms−1, b(1)=0.145(9)ms−2 and b(2)=0.16(1)ms−2. Due
to the (expected) non-significant difference between b(1) and b(2), we used their mean value b

in the following. If we neglect E
(1)
0 , which is justified for about 20 initial phonons per mode

after Doppler cooling of a single ion, we can solve for σ,Θ and E
(2)
0 :

σ =
a(1)

R0
≈ (4.25)

Θ =
bR0

a(1)R′H

E
(2)
0 =

(a(1) − a(2))R0

a(1)R′H
. (4.26)

All assumed parameters and resulting quantities are compiled in Table 4.1.

Parameter Symbol Value Estimated uncertainty

Saturation parameter S 5.1 ±1.1

Mean oscillation frequency [MHz] ω̄ 2π·2.0 ±0.5

Mean oscillation angle factor cos2 ᾱ 0.5 ±0.05

Initial energy for single ion [phonons] E
(1)
0 0.0 +20.0

Photon collection efficiency [%] σ 0.02 ±0.001

Heating rate [phonons/ms] Θ 2.1·105 ± 3·10−4

Two-ion initial energy [phonons] E
(2)
0 2100.0 ± 300.0

Table 4.1.: Final results fluorescence heating rate measurement.

The validity of the results is justified as follows: The most critical approximation for deriv-
ing Eq. 2.42 is the Taylor expansion made in Eq. 2.40, which clearly holds as a linear decrease
of the fluorescence is observed. As a conclusion, we find a 3D heating rate which is fully con-
sistent with the more precise finding to be presented below. However, the astonishingly large
number of initial quanta in the two-ion case could not be explained yet.
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4.4. Qubit Readout via Electron Shelving
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Figure 4.17.: Scheme of the RAP process: The portion of the excited (target) state in the
eigenstate Eq. 4.27 is plotted versus laser detuning and coupling strength. Adiabatic switch-
ing of the coupling strength together with sweeping of the detuning across resonance guar-
antees a smooth transition into the target state.

As mentioned in the introduction of this chapter, an additional complication for the spin
qubit is the requirement of an additional step for the discrimination of the qubit levels |↑〉
and |↓〉. Upon irradiation at 397 nm or 393 nm, both levels will give rise to fluorescence.
Frequency selectivity at these dipole transitions would require Zeeman splittings much larger
than the linewidth of about 24 MHz, which would lead to other experimental complications.
Therefore, the only feasible solution is the mapping of the spin qubit to the metastable one.
As only information about the occupation probabilities can be obtained anyway when the
metastable qubit is read out by means of the fluorescence discrimination method, the mapping
procedure does not have to be coherent, i.e. the phase information can be discarded. A phase
coherent mapping would be realized by performing π-pulses on the quadrupole transition,
which brings up the necessity of a careful experimental calibration and stabilization of the
coupling strength and optical frequency for that transition. Even if this is realized, the Rabi
frequency is subject to intrinsic statistics of the ions are not ground-state cooled on all modes
to which the laser beam driving the quadrupole transition couples, see Sec. 4.2.2. Thus, a
technique for fast, efficient and robust transfer of population is needed. One possibility is to
perform optical pumping to the metastable state via the S1/2 →P3/2 transition at 393 nm,
where the spin selectivity can be achieved by using another laser beam driving the D3/2 →P3/2
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4.4. Qubit Readout via Electron Shelving

at 850 nm for suppressing excitation from e.g. |↓〉 by means of an EIT resonance [McD04].
Out approach however is to make use of the optical quadrupole transition for realizing robust
readout by application of the rapid adiabatic passage (RAP) technique. The basic idea is
that the coupling laser gives rise to new eigenstates, in one of which the system stays if the
coupling is switched on and off adiabatically, however it is driven from one the initial bare
atomic level to the target one by simultaneously sweeping the laser across the corresponding
resonance frequency. This basic process has first been demonstrated with metastable Helium
atoms crossing an excitation beam at the Rayleigh length [Eks96]. The underlying quantum
dynamics is illustrated in Fig. 4.17.
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Figure 4.18.: Photodiode signal from a 729 nm pulse for rapid adiabatic passage. Note the
discrete steps due to the sampling interval of the waveform generator. The dashed line
indicates how the frequency is chirped across the resonance.

Consider a two level system with a laser induced coupling as described by the Hamiltonian
from Eq. 2.10. Diagonalization of this Hamiltonian yields the new eigenstates

|ψ−〉 = −∆ +
√

∆2 + Ω2

Ω
N−1/2
− |g〉+N−1/2

− |e〉

|ψ+〉 = −∆−
√

∆2 + Ω2

Ω
N−1/2

+ |g〉+N−1/2
+ |e〉, (4.27)

with

N± =

(
∆∓

√
∆2 + Ω2

)2

Ω2
+ 1. (4.28)
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We obtain the populations

P (−)
g = P (+)

e =
1

2

(
1 +

∆√
∆2 + Ω2

)
P (−)
e = P (+)

g =
1

2

(
1− ∆√

∆2 + Ω2

)
. (4.29)
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Figure 4.19.: RAP efficiency versus peak Rabi frequency for different chirp ranges: The plot
shows resulting transfer efficiencies while the peak amplitude is scanned. The solid lines are
obtained from a numerical solution of the time-dependent Schödinger equation for the two-
level system, including thermal effects by averaging over a distribution Rabi frequencies, see
text. For small chirp ranges, one observes a Rabi oscillation-like behavior, while adiabaticity
is fulfilled for chirp ranges of 100 kHz or larger. For larger even chirp ranges, the increase
in robustness is bought at the expense of a higher power requirement. Note that no free
parameters were used for the simulation, all parameters were inferred from the puls width
scan measurement of Fig. 4.8 and the power gauge measurement Fig. 4.10.

Starting in the ground state, with the laser switched of and far red detuned, Ω =0,∆� 0,
the ground state is identical to |ψ+〉. If the parameters are now changed adiabatically and
the detuning is ramped to the blue side, the systems always stays in |ψ+〉, and the final state
is |e〉. The eigenenergies pertaining to |ψ−〉 and |ψ+〉 are given by E± = ±(~/2)

√
∆2 + Ω2.
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Adiabaticity is now guaranteed if the process is conducted such that

~|〈ψ−|ψ̇+〉| � E+ − E− (4.30)

is always fulfilled. The derivative of the ket is to be understood as the total derivative with
respect to the time dependent parameters Ω and ∆.
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Figure 4.20.: Robustness of the shelving process with respect to frequency errors: The dark
count probability is plotted versus the central frequency for different transfer pulses. The
black dashed curve shows the results for a Gaussian pulse with fixed frequency with its
amplitude chosen such that it yields a π-rotation at resonance, whereas the dotted red line
and the solid blue line show the transfer efficiency for a single and a double RAP pulse,
respectively. One can clearly see that the RAP pulses are indeed robust over a large frequency
range, and the total efficiency of the double RAP is much better than for the single RAP.

In order to fulfill the adiabaticity criterion, the detailed pulse shape does not matter. Our
choice is a linear ramp of the detuning along with Gaussian-like shape of the Rabi frequency:

∆(t) = 2π
R∆t

NσTσ

Ω(t) = Ω̃

(
A0e

− 2t2

Tσ

)
−NσTσ/2 < t < +NσTσ/2, (4.31)
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Figure 4.21.: Parasitic shelving: The figure shows the shelved population versus peak Rabi
frequency for the same parameters as in Fig. 4.19. The central frequency is resonant with
the |↑〉 → |D5/2,mj = +5/2〉 transition, the ion was initialized in |↓〉 such that no population
should be transferred under ideal condition. Data for the same chirp range as in Fig. 4.19
is shown, where the coloring is identical. The population transfer is insensitive to the chirp
range, which suggests a completely incoherent transfer mechanism.

with the chirp range R∆, the time scale Tσ, the peak amplitude A0 and Nσ defining how
many 1/e widths of the are taken into account. The function Ω̃(x) is the actual Rabi fre-
quency pertaining to the VFG amplitude A, see Sec. 4.2.2. Such a pulse monitored on a
photodetector is shown in Fig. 4.18. The crucial question is now how the parameters for the
pulses, i.e. the peak Rabi frequency, the duration, the sample number and the chirp range are
to be chosen. Plugging the pulses functions Eqs. 4.31 into the adiabaticity criterion Eq. 4.30
yields a complicated expression, furthermore it does not directly give information about the
robustness. Suitable parameters were therefore found by an experimental investigation of the
efficiency and robustness. First, a total pulse duration of 100 µs was chosen as this clearly lies
within the T ∗2 time on the quadrupole transition, see Sec. 4.7. To guarantee smooth on- and
off-switching, we set the Gaussian envelope to be cut at 1/e2. The remaining free parameters
are now the amplitude, the chirp range and the sample number. The latter parameter is set
to 40 to keep the amount of transferred data to the VFG reasonable. Now the peak amplitude
is scanned for various chirp ranges while the population transferred to the metastable state is
measured, the results are shown in Fig. 4.19. One can see that adiabatic following is attained
at a chirp range of 100 kHz. The amplitude is now chosen to be slightly above the kink to
be robust against power drifts but also to keep the total pulse area small. The robustness

86



4.4. Qubit Readout via Electron Shelving

is now assessed by performing the transfer efficiency measurement at these parameters, but
with varying center frequency. The results are shown in Fig. 4.20, where one can see that
a broad plateau of a width roughly corresponding to the chirp range is given, indicating
stability of the shelving rate despite the drift of the 729 nm laser frequency. The stability
is even enhanced if the shelving on an additional backup transition is performed, which is
the |↑〉 → |D5/2,mJ = +3/2〉 transition in this case. By contrast, population transfer with
a transform limited Gaussian pulse leads to a strong dependence on the center frequency,
such that no robustness is given and the transition frequencies would have to be recalibrated
frequently.
A second important criterion for the fidelity of the shelving process is the amount of pop-
ulation transferred on the wrong transition, i.e. the excitation from |↓〉 to the D5/2 state.
Fig. 4.21 shows the population transferred from |↓〉 versus RAP amplitude under the same
conditions as in Fig. 4.19. Four possible mechanisms could be responsible for this unwanted
behavior: i) direct off-resonant excitation, ii) off-resonant excitation from the discrete ampli-
tude and frequency steps in the pulse and iii) resonant background light from the laser and
iv) (near-)resonant excitation on higher order motional sidebands. Simulation results indi-
cate that the first two mechanisms lead to negligibly small population transfer for reasonable
RAP parameters. The fact that the population transfer is does not depend on the chirp
range excludes a resonant excitation mechanism such as iv). Therefore we conclude that
the unwanted excitation is caused by incoherent background light. For optimum shelving
fidelity, it is therefore necessary to chose the lowest RAP amplitude at which the shelving
probability from |↑〉 saturates, and one has to trade the robustness increase from larger chirp
ranges against infidelity as larger saturation amplitudes are required for larger chirp ranges.
A possible technological solution to this is to employ a filtering cavity with a linewidth in
the MHz range for the amplified 729 nm beam.
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4.5. Stimulated Raman Transitions

The possibilities to perform coherent manipulations by means of the 729 nm laser driving
the quadrupole transition are quite limited. This is on the one hand due to the linewidth
of the 729 nm, where a stabilization to the 1 Hz range is technologically possible but rather
tedious. Furthermore, as will be worked out in Sec. 4.3, the radial motion of ions in our
microtrap represents an even more limiting constraint. As a second possibility for laser-
driven coherent manipulations, we utilize stimulated Raman transitions driven by a pair
of laser beams detuned by some tens of GHz from the S1/2 to P1/2 state, which can be
seen as a resonantly enhanced two-photon transition. Stimulated Raman transitions can
be used for separate or joint manipulation of the internal and external degrees of freedom
of trapped ions, such that they provide a versatile tool for quantum optics and quantum
information experiments. The characterization of the various types of interactions along
with the associated decoherence effects is the main focus of this thesis.

4.5.1. Raman Spectroscopy and Single Qubit Rotations

In order to perform single qubit rotations, one needs to provide a controllable coherent
coupling between the qubit levels |↑〉 and |↓〉. This can be realized by simultaneous irradiation
of two laser beams split by a frequency difference which is given by the Zeeman splitting of
the qubit levels. It is intuitively clear that one of the beams has to include a π polarization
component and the other one has to include a circular polarization component, such that
one of the Zeeman levels of the excited P1/2 state can serve as the intermediate level for the
resonant population transfer. If we assume the blue beam to be completely π polarized and
the red beam to consist only of circular components, we can invoke Eq. A.12 to obtain the
Raman Rabi frequency upon neglecting off-resonant terms and usage of Eq. A.10:

Ω =
1

2∆

1

3
√

2
εb0ε

∗
r−e

i(∆k−δ′t), (4.32)

where δ′ = δ − ωL is the detuning of the frequency difference from the ground state Larmor
frequency. Irradiating both beams simultaneously for a constant duration at fixed intensities
therefore realizes the unitary transform Eq. 2.12. Two main advantages arise from the
usage of stimulated Raman transitions: First, the optical frequency and phase of the driving
laser does not occur in the expression for the Rabi frequency, only the relative frequency
and phase play a role. The frequency difference can be controlled to arbitrary accuracy by
usage of phase-locked rf sources driving the switching acousto-optical frequency shifters, and
the relative phase is limited by the mechanical interferometer stability of the optical setup.
Second, the coupling to the ionic motion can be controlled via the difference wavevector ∆k.

As already mentioned in the description of the experimental setup in Sec. 3.2.5, we utilize
two different beam geometries for driving Raman transitions: a collinear geometry without
any coupling to the ionic motion (beam pair R1/CC) and an orthogonal geometry with a
coupling only to the axial motion (beam pair R1/R2) described by a Lamb-Dicke factor in
the range between 0.25 and 0.3, depending on the axial trap frequency. Fig. 4.22 shows a
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Figure 4.22.: Spectroscopy on the orthogonal Raman transition: This spectrum taken over a
large frequency range nicely illustrates that the beam pair couples only to the axial mode of
vibration.

Raman spectrum taken with the R1/R2 beam pair: in the experimental sequence, a Raman
pulse of fixed duration is irradiated after the preparation step, then the spin is read out by the
electron shelving technique presented in Sec. 4.4 along with the fluorescence discrimination
technique from Sec. 4.2.1. This is the basic experimental sequence used whenever the qubit is
manipulated and read out, which is used in the remainder of this thesis unless noted otherwise.
The spectrum on the orthogonal Raman transition clearly displays a peak corresponding to
the carrier spin-flip transition and symmetrically spaced sidebands pertaining to the harmonic
axial motion. In contrast to the quadrupole transition, no radial sidebands appear in the
spectrum.

Fig. 4.23 shows a Raman spectrum taken with the R1/CC beam pair. No axial sidebands
are present. Due to the absence of inhomogeneous broadening of the coupling strength
from thermal excitation of vibrational motion, the transition is driven fully coherent and
strong oscillatory features are seen. The linewidth for this spectroscopy method is set by the
inverse pulse duration and the power, such that long spectroscopy pulses at low power are
needed for an accurate determination of the transition frequency. This method is however not
particularly useful as various decoherence effects will set in for pulses of durations beyond the
100 µs range. Furthermore, the transition frequency is affected by ac Stark shifts from the
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Figure 4.23.: Spectroscopy on the collinear Raman transition: Due to the absence of coupling
to the motion, only one line is visible and the transition is driven fully coherent even for
Doppler cooled ions. Spectra for high (black), intermediate (red) and low (blue) power are
shown, where the low power spectrum has been flipped for the sake of visibility. A minimum
linewidth of about 6 kHz is achieved this way, for a more accurate measurement of the
transition frequency a Ramsey spectroscopy method has to be used.

off-resonant light, such that measurements at high power may lead to wrong results. With
a typical Zeeman splitting of 19 MHz and a minimum linewidth of 6 kHz, a spectroscopic
accuracy in the 10−5 range is achieved. On the orthogonal Raman transition, the accuracy
is lower due to the thermal broadening of the Rabi frequency.

Due to the possibility to exclude the coupling to the ionic motion, the collinear Raman
transition is the tool of choice for realizing the single-qubit rotations that are an essential
building block of any quantum information protocol. Fig. 4.24 shows a pulse width scan
on this transition, similar to the one performed for the 729 nm transition in Fig. 4.8. The
striking difference between the two is clearly the absence of thermally induced dephasing for
the Raman transition.

In contrast to direct driving of the qubit transition by the corresponding Radio frequency,
the dynamics is driven by focused laser beams and therefore allows for addressing of individual
ions or small ion groups in the segmented trap. The remaining decoherence effects one has
to deal with are a) magnetic field fluctuations, b) intensity fluctuations along with nonzero
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AC Stark shifts, c) off-resonant scattering and d) intensity fluctuations leading to pulse area
fluctuations. The first three decoherence mechanisms are discussed extensively in Sec. 4.7.
The mechanisms b) and d) stem from the same technical origin, but the mechanisms are
sill fundamentally different, especially in that effect b) can be avoided in most cases. The
off-resonant scattering can be suppressed by detuning the lasers further from resonance, one
therefore faces a tradeoff between Rabi frequency and coherence time. Considering the results
from Sec. 2.1.6, one recognizes that the Rabi frequency divided by the geometric mean is
proportional to the detuning:

ΩRabi√
RbRr

=
3
√

2∆

Γ
. (4.33)

where Rb and Rr denote the scattering rates from the blue and red Raman beams respectively.
This is confirmed for the collinear transition as can be seen in Fig. 4.25. The figure of merit
on the left-hand side of Eq. 4.33 which is plotted on the ordinate of Fig. 4.25 is essentially
the number of π-rotations that could be driven within the timescale at which decoherence by
scattering occurs, if other decoherence sources are neglected. Similar data was taken on the
orthogonal Raman transition, where it can be seen that the data is not described by Eq. 4.33.
The Rabi frequency was measured for Doppler cooled ion, such that it is decreased by thermal
effects. This decrease however is much smaller than the measured one, which can only be
explained by a strong effective frequency modulation due to a residual RF component along
the trap axis. This strong component has indeed been confirmed by a long range spectroscopy
measurement in a much older version of the setup where 270 MHz long-range AOMs have
been used. RF-echoes at the one- and twofold trap drive frequency have been found in the
spectrum which were not significantly weaker than than the carrier peak. This indicates a
large modulation index, consistent with the data in Fig. 4.25. The RF field expected to occur
at the ions position due to the taper electrodes is by far too small to account for that effect,
see Sec. 5.7. It is therefore concluded that unbalanced RF-pickup on the DC-electrodes is
responsible for the strong modulation. However, it will be shown that the basic suitability of
the trap for quantum logic is still given, see especially the measurement results in chapter 8.
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Figure 4.24.: Coherent dynamics on the collinear Raman transition: Single qubit rotations
driven by the collinear R1/CC beam pair. The upper trace shows that 20 consecutive 2π
rotations can be driven while the contrast stays at a considerable level. The lower trace shows
four oscillation periods taken with 200 shots per data point, it is found the noise is within the
projection noise limit and the fidelity of the single qubit rotations is 99.6%, mostly limited
by the preparation and readout(shelving) steps.
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Figure 4.25.: Coherent versus incoherent effects on the Raman transition: The Raman Rabi
frequency divided by the geometric mean of the scattering rates for the two driving beams is
plotted versus the Raman detuning. The red squares are values for the collinear transition,
whereas the black squares are values for the orthogonal transition. The solid black line is the
theoretically expected behavior determined by the excited state lifetime. The dashed line is
introduced to guide the eye, one clearly recognizes that the Rabi frequency for the orthogonal
transition is strongly reduced with respect to the expected one.
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4.6. Sideband Cooling and Phonon Distribution
Measurements

This section describes diagnostics and manipulation of the ion temperature. We give a
detailed account on how the axial mode of vibration can be cooled close to the ground state
and on how temperature diagnostics on the few-phonon level is possible.
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Figure 4.26.: Two different schemes for sideband cooling: a) shows the excitation and decay
pathways for a Raman cooling cycles, whereas the cycle for the quadrupole cooling scheme
is depicted in b). The dashed arrows in a) indicate the alternative quadrupole repumping
pathway. Both schemes have their advantages and drawbacks, see text.

Cooling close to the ground state of at least one vibrational mode is an essential prerequisite
for two-ions gates, as even gate schemes for ’hot’ ions require operation in the Lamb-Dicke
regime η

√
n� 1 [Lei03b]. For cooling close to the ground state one has to resort to a narrow

transition with resolved motional sidebands [Mar94], such that transitions to states with one
less phonon (red sideband, RSB) can be driven preferentially and the n = 0 state acts as a
dark state in which the population is finally trapped. In our system, we have two options to
spectroscopically resolve sidebands, either the R1/R2 Raman transition or the quadrupole
transition. We have successfully carried out sideband cooling on both of these transitions, the
cycling pathways are depicted in Fig. 4.26. For the Raman sideband cooling, the red sideband
of the Raman transition from |↑, n〉 to |↓, n− 1〉 is driven, and the dissipative repumping step
is carried out by employing the circularly polarized laser beam at 397 nm. By contrast, in
the quadrupole pumping scheme, the red sideband of the |↑〉 to |D5/2,mJ = +5/2〉 transition
is driven and the repumping is done by simply quenching the metastable state by irradiation
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Figure 4.27.: Raman spectra with and without Raman sideband cooling: The plot shows
spectra on the orthogonal Raman transition driven by the R1/R2 beam pair. A spectrum
with (red) and without (black) applied sideband cooling is shown, note the almost vanishing
red sideband and the enhanced coherent satellite peaks around the carrier for the cooled case.

at 854 nm.
As the cooling always competes with the heating rate from trap induced electric field noise, a
high cooling rate is essential for a good cooling result. A priori, the Raman transition seems
to be better suited for cooling because of the higher ratio of RSB to carrier Rabi frequency,
which is essentially given by η on the decisive ’bottleneck’ step from n = 1 to n = 0. However,
the main problem arises in the dissipative step of cooling where the ion is repumped to the
initial state to restart the red sideband excitation. In the case of the Raman cooling scheme,
the repumping is accomplished by the circular 397 nm beam which suffers from the spurious
polarization error discussed extensively in Sect. 4.2.4. Therefore the dark state n = 0 is not
completely dark anymore, leading to a competing Doppler re-heating process which limits
the attainable ground state purity.
In contrast, the sideband cooling on the |↑〉 to |D5/2,mJ = +5/2〉 quadrupole transition does
not suffer from this because the repumping is achieved by the quench laser near 854 nm,
which does not interact with the ion anymore once one photon has been spontaneously scat-
tered. The cooling cycle is almost closed, because the decay from the P3/2 state during the
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Figure 4.28.: Coherent dynamics on the R1/R2 BSB after sideband cooling. The graphs show
the population in the |↓〉 level versus pulse duration of a square Raman excitation pulse a)
directly after sideband cooling and b) after a delay of 3 ms. The data were obtained with
a Raman detuning of ∆ ≈ 40 GHz. The solid lines are reconstructed from the extracted
phonon distribution data with inclusion of a coherence decay time of 280 mus. We extract a
mean phonon number of 0.24 for the data set without waiting time.

quench leads preferentially to the |↑〉 level due to the selection rules. Only unlikely decay
events into one of the D-states can lead to population of the |↓〉 level. We utilize a pulsed
sideband cooling scheme, since as for the qubit initialization, the power and frequency of the
quench laser are no longer critical parameters then. The cooling pulse time is set such that
an excitation maximum is reached on the RSB. This time ranges typically between 10 µs and
20 µs, and increases as lower phonon numbers are reached because the RSB Rabi frequency
scales as ηax

√
n with the phonon number n. After the RSB pulse, a quench pulse of typically

2 µs completes the cooling cycle. After ten cooling cycles, about 10% of the population is
accumulated in the wrong ground state spin level, such that a 397 nm repump pulse has to
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Figure 4.29.: Cosine transform of a R1/R2 pulse width scan on the BSB after a 3 ms delay
between cooling and probing. The dashed lines indicate the different flopping frequencies
given by the matrix element for the given transition.

be employed. After eight such sequences, we employ a second cooling stage where the RSB
pulse duration is increased and the 729 nm optical pumping procedure is used instead of the
circular 397 nm pulses. The longer time for repumping has no adverse effect on the cooling
rate because it is used only every ten cycles.
We confirm the sideband cooling result by employing either the quadrupole transition or the
R1/R2 Raman transition. The optimization of the cooling is performed by minimizing the
peak excitation of the RSB of the quadrupole transition, which is essentially given by the
probability of not finding the ion in the ground state. For more accurate determination of the
phonon number distribution we employ Raman Rabi oscillations on the R1/R2 BSB, with the
advantage that no contributions from the radial vibrational modes can influence the result,
and on the other hand the larger Lamb-Dicke factor of the Raman transition leads to a better
separation of the Rabi frequencies for the various n → n + 1 transitions. Excitation data
are acquired until the oscillation contrast of the excitation signal has decreased beyond the
projection noise limit for long pulse widths, see Fig. 4.28. The recorded traces are analyzed
by cosine transform to obtain the frequency components for the different contributing transi-
tions, in full analogy to experiments on the cavity QED realization of the Jaynes-Cummings
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Figure 4.30.: Coherent dynamics on the R1/R2 carrier transition after sideband cooling. The
graph shows the population in the |↓〉 level versus pulse duration of a square Raman excitation
pulse directly after sideband cooling. The mean phonon number of 0.24 inferred from the
BSB Rabi oscillations is used for fitting the data.

model [Bru96] 1.
A resulting spectrum is shown in Fig. 4.29. Upon proper normalization, the peak heights di-
rectly correspond to the occupation probabilities for the different phonon numbers. This data
can then be used to reconstruct the coherent dynamics, allowing for the empirical inclusion
of a coherence decay time [Mee96]. This is done according to

P↓(t) =
∑
n

Pn
2

(A cos (Ωn,n+1 t) e
−γ t + 1), (4.34)

where P↓(t) is the probability for finding the ion in |↓〉, Pn is the phonon number distribu-
tion, Ωn,n+1 is the Rabi frequency pertaining the specific BSB transition, A is the read-out
contrast of 96% and γ is the coherence decay rate. The coherence time 1/γ is found to be
280(20) µs. As Ramsey contrast measurements on the R1/CC transition yielded a much

1Due to the finite data acquisition time, the peaks in the cosine transform pertaining to a given transition
frequency are accompanied by aliases at other frequencies which lead to systematic errors when the phonon
number occupation probability is inferred directly from the peak heights. A deconvolution procedure was
used to remove this effect. The correctness of the method is proven by the fact that the method yields the
correct input phonon number distribution when Monte-Carlo generated data with realistic parameters is
used. The resulting accuracy is then limited by the read-out projection noise of the pulse width scan data.
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Figure 4.31.: Results of the heating rate measurement: a) Occupation probabilities Pn for
the lowest vibrational levels n ≤ 2, extracted from frequency spectra of the BSB pulse width
scans (see Fig. 4.29) after different waiting times. For comparison, the solid lines show the
occupation probabilities given by a thermal distribution p(n) = n̄n/(n̄ + 1)n+1, where n̄(t)
is given by a linear fit through the mean phonon numbers calculated from the data. b)
Mean occupation number n̄ calculated from Pn at different times after cooling. The linear
fit indicates a constant heating rate of ṅ = (0.3± 0.1)/ms.

longer coherence time, the additional decoherence either stems from pulse area fluctuations
or a reduced interferometric stability in the R1/R2 beam setup with respect to the R1/CC
geometry. The phonon distribution is reconstructed for various waiting times after sideband
cooling in order to reveal the trap induced heating dynamics. The time dependent phonon
number distribution is shown in Fig. 4.31, along with the resulting mean phonon number.
This directly gives the heating rate to be 0.3(1) phonons/ms2.
The corresponding Rabi oscillations on the carrier of the R1/R2 Raman transition are shown
in Fig. 4.30. Taking the phonon numbers after sideband cooling inferred from the BSB
Rabi oscillations, we find excellent agreement with the measurements made on the carrier
transition.

The cooling results presented in this chapter were obtained with the quadrupole cooling
scheme, however at a later evolution state of the setup we have also successfully implemented
Raman cooling with comparable and even better final temperatures. The results presented
in chapter 8 were obtained based on Raman sideband cooling. The final temperature could
be reduced such that the ground state purity does not deviate from 100% within the mea-
surement accuracy, any effect of remaining population in e.g. n=1 would be overshadowed
by decoherence effects in the interaction with the lasers driving the blue sideband Rabi os-
cillations when the motional state is read out. The improvement was mainly achieved by

2This is about one order of magnitude better than earlier findings of 2.13 phonons/ms [Sch08], which is
attributed to an improved trap voltage supply.
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Figure 4.32.: Calculated phonon removal times for different red sideband transitions: The
efficiency of the higher order cooling method is illustrated by visualizing the π-times on
the red sidebands (η ≈ 0.21 was assumed here) up to third order, divided by the sideband
number. This gives an estimation of the time it takes on average to remove one phonon, not
even including the time for the repump step which would render the higher order sidebands
even more efficient as one single repump step can remove more than one phonon. Note that
the plot is double-logarithmic. One recognizes that the second-order sideband becomes by
far more efficient for more than 20 phonons, whereas beyond 60 phonon the third sideband
takes over.

careful alignment and power adjustment of the repump beam at 397 nm. According to the
results of Sec. 4.2.4 for the pumping fidelity, a ground state purity of 98.5% is to be expected
if the repump step is the most pronounced bottleneck. To achieve even higher ground state
purities, one could resort to employing the pumping at the quadrupole transition in an ad-
ditional final stage of the cooling, as it is indicated in Fig. 4.26 a). In order to implement
this scheme , one has to take care that the quench laser at 854 nm is π-polarized such that
only the ∆mJ = 0-transition from |D5/2,mJ = +3/2〉 to |P3/2,mJ = +3/2〉 are driven and
only decay back to |↑〉 can take place. If ideal repumping was realized, two processes limit
the attainable ground state purity: a) off-resonant excitation of the carrier transition when
the red sideband is driven with subsequent decay on the blue sideband, and b) off-resonant
excitation of the blue sideband while the red sideband is driven with subsequent decay on
the carrier. These processes both are of higher order and the expected impurities are so
small that they can on the one hand not be measured in our setting, on the other hand our
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experiment does not require complete ground state purity as we do not want to work with
gate schemes as the Cirac-Zoller gate [Cir95],[SK03b]. Furthermore, with the heating rate
of 0.3 phonons/ms, the ion would stay in the ground for only about 300 µs anyway. An
extensive discussion of these limiting effects can be found in Ref. [Sta04].
The main advantage of the Raman cooling scheme is given by the much larger Lamb-Dicke
factor, which is about 3..4 times larger than for the quadrupole transition and allows for driv-
ing the red sideband 2..3 times as fast, depending of course on the available powers and the
used Raman detuning. If one resorts to higher m-th order sideband, the advantage becomes
even more clear: Fig. 4.32 shows the average removal time for a single phonon on the first
three sidebands, i.e.

τ rsb
π

m
=

π

m Mn,n−mΩ0
, (4.35)

versus the phonon number n for an assumed bare Rabi frequency of Ω0=2π·100 kHz. Division
of the π-time by m is done because on the m-th sideband, of course m phonons will be
removed in a single excitation step. In a sequential cooling scheme, one performs cooling on
e.g. the third motional sideband, which becomes ineffective for the assumed parameters if
no population beyond n≈60 is left. One then switches over to the second sideband, which
is more efficient than the first sideband above n≈20. The remaining phonons can then be
removed on the first red sideband. This is especially effective if hot tail from thermal phonon
distributions with large n̄ are to be cooled away, which turned out to be the case for two-ion
crystals, see Sec. 9.3.
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4.7. Coherence and Decoherence of the Spin Qubit
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Figure 4.33.: T∗2 measurement on various transitions: a) Contrast measurement results from
a Ramsey sequence for various transitions. As no unity initial contrast can be achieved in the
quadrupole transitions due to the inability to drive perfect Rabi oscillations, the contrasts
are normalized to the initial one. b) Inverse T∗2 time versus Landé factor of the respective
transition. One can clearly infer a linear scaling, only the decoherence rate for the Raman
transition is slightly increased.

In this section, we investigate the coherence time of the 40Ca+ qubit in our experiment,
i.e. the timescale on which the phase information stored if the qubit is in a superposition
state between |↓〉 and |↑〉 is destroyed by uncontrolled interactions with the environment. We
specify first on the investigation of ’bare’ decoherence, i.e. the loss of phase information when
no additional manipulations on the qubit are performed. The appropriate tool to do this is
a Ramsey-type measurement [Ram86], where a superposition state is created by means of a
resonant π/2-pulse before the qubit is exposed to a fixed waiting time. A second π/2-pulse
then maps the phase φ of the qubit onto the final populations P↓ and P↑. This phase is
comprised of the phase φ0 = δt that was picked up during the free evolution if one is slight
off-resonant by δ and the relative optical phase of the second pulse with respect to the first on
∆φ: φ = φ0+∆φ. Upon repetition of the measurement while ∆φ is scanned, one thus obtains
information about δ, which offers an ultimately precise coherent spectroscopy method used
for atomic clocks, and via the resulting contrast also the magnitude of the diagonal elements
of the density matrix indicating the amount of coherence is revealed. It is straightforward
to determine the resulting populations if we assume the ion was initialized in |↑〉 the density
matrix of the two-level system immediately before the concluding π/2-pulse is given by ρ̂:

P↑ =
1

2
(1 + 2|ρ12| cos(φ)) , (4.36)
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with |ρ12| ≤ 1/2, the resulting contrast of the measurement directly yields the coherence loss.
If now the coherence loss is measured versus the free evolution time, the decoherence process
is made visible. A compilation of such measurement results is shown in Fig. 4.33, where the
measurement was performed on the orthogonal Raman transition and three subtransitions
of the quadrupole transition. The coherence decays with a Gaussian behavior, where the
timescale is called T∗2 time in contrast to the T1 time at which population decay would
occur. As the decoherence rate scales linearly with the Landé factor describing the linear
coefficient of the Zeeman shift for the corresponding transition, it can be concluded that
ambient magnetic field fluctuations are the main decoherence source in this regime.

0 1 2 3 4 5 6 7 8
0,0

0,2

0,4

0,6

0,8

1,0

AC line triggered

 

N
o
rm

a
liz

e
d
 R

a
m

s
e
y
 c

o
n
tr

a
s
t

Delay time [ms]

Raman parallel carrier

Raman orthogonal carrier

Raman orthogonal bsb

729 +1/2 to +5/2

Figure 4.34.: T2 measurement on various transitions: Results for spin-echo contrast measure-
ment on various transitions. Note the strong increase of the coherence times if triggering on
the AC-line is used.

The most tremendous source of the coherence loss is given by the low-frequency components
of the magnetic field fluctuations. This can be understood by the fact that if we consider
an additional magnetic field fluctuating at a period much shorter than the delay time of
the Ramsey experiment, its effect will mostly average out, analogous to phase modulation
where the modulation index scales with the inverse modulation frequency. By contrast, if
the oscillation period is longer than the delay time, the effect can be reverted by means
of the famous spin-echo technique originally conceived for NMR experiments. One simply
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utilizes a π-pulse to swap the spin components in the middle of the delay time, such that
any phase offset due to a static energy shift is simply reverted. This leads to much longer
effective coherence times, corresponding measurement results are shown in Fig. 4.34. The
timescale T2 ≥T∗2 obtained this way is of the key parameter describing the quality of a
quantum memory, of course it is only meaningful in relation to the timescale at which coherent
manipulations can be carried out. We performed this measurement also on different Raman
transitions, namely the collinear, the orthogonal carrier and the orthogonal blue sideband
transitions. The contrast decay on the orthogonal Raman transitions is additionally increased
by the heating rate. Furthermore, data sets were taken where AC-line triggering was used
in addition the spin-echo technique, which leads to an even more pronounced increase in
coherence time. This is due to the fact that upon carrying out the experiment at a definite
phase to the AC mains, the most part of the offset magnetic field behaves in the same way
for each experimental run, leading to a more defined phase pick-up.
Now that the timescales and mechanisms for the bare decoherence have been investigated in
detail, we shall focus our attention to laser induced decoherence processes. If we restrict the
treatment to the interaction with a single off-resonant laser beam, the two processes occurring
are dephasing due to intensity fluctuations in the presence of an unbalanced Stark shift and
off-resonant scattering. The relevant physical parameters thus are the detuning of the laser
from resonance, its polarization and its intensity noise spectrum.

We briefly derive how the spin decoherence due to intensity fluctuations is related to the
power spectrum of the fluctuations. The Hamiltonian for the dispersive interaction of the
effective two-level system with the off-resonant beam is simply given by ĤAC(t) = ~∆AC(t)σ̂z.
The corresponding unitary evolution operator is

ÛAC(t, 0) = eiΦAC(t)σ̂z/2 (4.37)

with the accumulated Stark phase

ΦAC(t) =

∫ t

0
dt′∆AC(t′). (4.38)

The noisy character of ∆ACS(t) is modeled by expanding it in a Fourier series:

∆AC(t) =
+∞∑

n=−∞
∆n
AC(t) =

+∞∑
n=−∞

pn cos(2πnt/T + φn) (4.39)

where T is much larger than the experimental time scale considered and every measurement
result is to be averaged over all randomly distributed phases φn. The quantity of interest is
the spin coherence

C(t) = 〈eiΦAC(t)〉av

=

+∞∏
n=−∞

(
1

2π

∫ 2π

0
dφn

)
exp

(
i

+∞∑
m=−∞

Φ
(m)
AC (t)

)

=

+∞∏
n=−∞

(
1

2π

∫ 2π

0
dφn

) +∞∏
m=−∞

exp
(
iΦ

(m)
AC (t)

)
(4.40)
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Figure 4.35.: Sample results from the spin echo contrast measurement: Resulting Ramsey
fringes from scanning the duration of the shift pulse for the maximum Stark shift of ∆0 ≈ 2π·
620 kHz. The red curve pertains to a measurement without decohering pulse, and the blue
curve pertains to a decohering pulse of 7 µs. The solid curves show the fit result to the model
p↑(t) = ae−γ t sin(∆0t+ φ) + b.

where the solution of the integral from Eq. 4.38 for a single expansion term

Φ
(m)
AC (t) =

pmT

2πm
cos

(
mπt

T
+ φm

)
sin

(
mπt

T

)
(4.41)

is used. With
1

2π

∫ 2π

0
dφn exp(iΦ

(n)
AC(t)) = J0

(
pnπT

nπ
sin

(
mπt

T

))
(4.42)

where
xn =

pn
2πn

, (4.43)

we finally obtain for that the spin contrast is given by a product integral:

C(t) = lim
T→∞
N→∞

N∏
n=1

J0

(
pnπT

nπ
sin

(
mπt

T

))2

(4.44)

The product is evaluated numerically for finite N,T and convergence for sufficiently large
values is assured. It is found that the behavior of C(t) now depends on the scaling of pn.

105



4. Implementation of the Spin Qubit

1/6

S
1/2

D
5/2

P
1/2

D
R

m
J
=+5/2

m
J
=+1/2

m
J
=-1/2

m
J
=+1/2

S
h
e
lv

in
g

1/6 1/3

1/3

 S
1/2

 m
J
=+1/2

a) b)

1

m
J
=-1/2

2

3

 S
1/2

 m
J
=-1/2

Figure 4.36.: a) Illustration of spin diffusion on the equator of the two-level system’s Bloch
sphere. Note that one is not dealing with shot-to-shot fluctuations on slow timescales which
could be undone by employing spin echo techniques. b)Relevant energy levels and transitions
of 40Ca+. All relevant excitation and spontaneous decay pathways are shown for the S1/2

- P1/2 transition. The squared Clebsch-Gordan coefficients are indicated on the different
transitions. The shelving to the metastable D5/2 state is indicated to the right.

Under the assumption of white noise, pn = const., the noise correlation time vanishes and
C(t) displays an exponential coherence decay. Under the more realistic assumption of 1/f
noise, pn = ∆0 p0/n

1/2, the nonvanishing autocorrelation can by modeled by a Gaussian
decay:

C(t) = exp

(
− t2

2τ2

)
(4.45)

with

τ ∝ 1

∆0
(4.46)

This scaling relationship is empirically tested to be invariant against the detailed structure
of the noise spectrum, the only necessary condition for it to hold is that the noise is band
limited.
Additionally to the Gaussian decay caused by the intensity fluctuations, spontaneous photon
scattering from the off-resonant beam also leads to exponential decoherence, see Eq. A.16.
The total coherence decay can then be modeled by

C(t) = exp

(
− t

τ1(∆0)
− t2

2τ2
2 (∆0)

)
(4.47)
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Figure 4.37.: Spin-echo contrast versus decohering pulse time for the various data sets per-
taining to different Stark shifts (black squares). Both spin polarization and contrast are
normalized to the values for zero decohering pulse time. The solid curves are fits to the
model Eq. 4.47. The blue squares are the results of the scattering rate measurements. Note
the different timescales.

Datasets charactering the decoherence process were taken for various differential Stark
shifts. The Stark shift is tuned by adjusting a quarter waveplate in the decohering beam,
which is the R2 beam propagating in parallel to the quantizing field. For each setting of
the waveplate, we measured the magnitude of the Stark shift caused by the imbalance of
the circular polarization components, the Raman spin-flip rate and the coherence decay for
various decohering pulse times. The Stark shift ∆S is measured by employing a spin-echo
sequence, where a phase shift pulse with varying duration is inserted between the first π/2
pulse and the π pulse. The induced phase shift leads to an oscillating spin polarization upon
read-out after the concluding π/2 pulse, where the oscillation frequency directly gives the
differential shift with an accuracy of better than 2%. The spin-flip rate caused by Raman
scattering is then characterized by simply imposing the ion to a scattering pulse of varying
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duration. The fraction of population remaining in the initial |↑〉 state versus the scatter pulse
time then yields the scattering rate by simply considering the slope at t = 0. The spin-flip
behavior is indicated in Figs. 4.37.
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Figure 4.38.: Resulting decoherence rate coefficients for exponential (black squares) and Gaus-
sian (red diamonds) decoherence from Eq. 4.47 and spin depolarization timescale (blue dots)
versus the measured Stark shift.

The coherence decay is measured by means of the following procedure: For various fixed
decohering pulse times, the spin echo sequence for the measurement of the Stark shift is
applied where the phase of the concluding analysis pulse is scanned from 0 to 2π radians.
Without perturbations and assuming ideal preparation and read-out, this resulting spin pop-
ulation signal is given by the cosine of the analysis phase. As the decohering pulses shift the
mean superposition phase by ∆φ = ∆St and the contrast is reduced, the signal is fitted to
a cosine with floating contrast and phase. Due to a possible slightly asymmetric read-out
and preparation fidelity, a floating baseline is taken into account as well. The fringe ampli-
tude directly corresponds to the magnitude of the spin density matrix off-diagonal elements.
Example spin-echo measurements are shown in Fig. 4.35. The resulting contrast versus
decohering pulse time is shown in Fig. 4.37. The crossover from exponential to Gaussian
decoherence behavior can be clearly seen from these curves. In order to quantify this, the
model from Eq. 4.47 is fitted to these curves and the coefficients τ1, τ2 are extracted. In Fig.
4.38, these are plotted versus the corresponding Stark shift. For the data point pertaining to
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the maximum Stark shift, the Gaussian coherence decay is completely dominating such that
no valid linear coefficient could be fitted from the data. As the exponential decoherence is
caused by Raman scattering, it does not vanish at zero Stark shift, as can be seen clearly
from the data. Note the different scaling behavior of the spin depolarization rate and the
exponential decay coefficient. Upon increasing the Raman detuning ∆R and cranking up
the laser power to leave ∆S unaffected, the crossover point between exponential and Gaus-
sian decoherence would be shifted towards smaller Stark shifts, rendering the spin diffusion
mechanism more dominant. It is interesting to compare the exponential decoherence rate
at vanishing Stark shift to the scattering rate: From the data at the lowest Stark shift, the
figure Rdeph/R1→2 = 4.0 ± 0.58 is obtained. Comparing this to Eqs. A.14 and A.16, under
the consideration that |ε+|2 = |ε−|2 = 1/2, the scattering rate

R1→2 =
1

2 · 3
ΓΩ2

4∆2
(4.48)

and the decoherence rate

Rdeph =
1

2 · 3
ΓΩ2

4∆2
(4.49)

are obtained, such that the decoherence rate should the threefold scattering rate. If the ad-
ditional term L23 from Eq. A.19 is additionally considered and the phase shift between the
circular components is such that ε+ε

∗
− = +1/2, the decoherence rate would be exactly the

fourfold scattering rate, which is clearly supported by the experimental data. This would rep-
resent an additional, yet unknown decoherence mechanism which is dependent on the phase
relation between the + and - circular polarization components. For a linearly polarized beam
propagating along the magnetic field axis, this corresponds to a breaking of the cylindrical
symmetry of the physical system. Furthermore, the source of the increase of the exponential
decoherence rate coefficient with the Stark shift is yet unknown: Rdeph from Eq. A.16 is
independent of the balance of the circular components, and the extra term L23 should be of
maximum magnitude for balanced components. A possible explanation is a white noise floor
in the power spectrum of the intensity fluctuations, but as the effect is only manifested in a
single data point, no thorough claim on this can be supported.

Attempts were made to reduce the decoherence due to intensity fluctuations in the presence
of a nonzero Stark shift. This was done by establishing an intensity stabilization by means of
the fast switching EOM, which allows for regulation bandwidths of up to 1 MHz and larger.
However, no effect on the coherence time could be seen between measurements where the
intensity stabilization was switched on or off. Furthermore, a common observation while
measuring either Stark shifts or Rabi oscillations (even with nulled Stark shift) is that for
longer pulse times the oscillatory patterns become distorted and even spiky. This raised the
suspect that not direct laser intensity noise is responsible for the observed strong decoherence,
but rather the localization of the ion in the Raman beams is subject to drifts at a second
timescale. It was therefore checked if the readout values indeed obey to the statistical error
given by Eq. 4.3. This was done by means of a repeated ac stark shift measurement with
only the R2 beam involved to exclude other error sources. The results are shown in Fig. 4.39,
where the measurement was performed for two different ac stark shifts, and each curve was
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Figure 4.39.: Investigation of the intensity-fluctuation induced decoherence process: The fact
that the error bars increase for longer pulse times clearly indicates that the error is due to
pulse area fluctuations. As the error results from the statistics over several runs of the same
measurement, it can be concluded that these fluctuations take place on slow timescales, i.e.
beyond the time for the acquisition of a single data point, which is about 1 s.

measured ten times repeatedly. The error bars from the statistics over these measurements
clearly reveal that the error increases in time, and that it becomes indeed much larger than
the expected projection noise error. The conclusion is that the error arises due to effective
pulse area fluctuations, which occur on longer time scales than the acquisition of a single
data point, otherwise the exponential envelope would be seen in a single measurement run
and the error bars would obey to the statistical limit. If the ac stark shift is divided by the
decay time scale for each setting, similar figures of 60.6(2.5) and 64.0(2.4) result, proving
that the decoherence is indeed given by pulse area fluctuations. The underlying reasoning is
that the ideal signal for the ac stark measurement is given by

P↑(t) = cos2(∆St/2), (4.50)
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4.7. Coherence and Decoherence of the Spin Qubit

the signal deviation due to a small Stark shift offset δS is given by

〈P↑(t)〉 =

∫
dδS

1√
2πσ2

S

e
− δ2S

2σ2
S cos2((∆S(1 + δS)t/2)

=
1

2

(
1 + e−

1
2
σ2
S∆2

St
2

cos(∆St/2)
)

(4.51)

In conclusion, there are only two possible mechanisms giving rise to these observations: Either
the ion moves in the beam on a second timescale, or the beam has pointing instabilities. The
latter possibility could be excluded by focusing the beam on a remotely placed CCD chip,
where no drift could be observed. The first possibility in the strict sense is also unlikely
as a movement in the µm range over longer timescales should be visible on the EMCCD
camera. Therefore, a likely mechanism is the delocalization of the ion in the radial plane
on the trap due to the strong radial heating measured in Sec. 4.3. If the heating was
mediated by micromotion, the delocalization would be influenced by random charging of the
trap electrodes. The suggested mechanism is further supported by the fact that strongly
enhanced decoherence was observed for tightly focused Raman beams.
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5. Trap Characteristics

This chapter presents a characterization of the confinement properties of our microstructured
segmented ion trap. Sec. 5.1 describes how electrostatic simulations are performed and
linked to measurement results and Sec. 5.2 gives a detailed account on the measurement and
compensation of micromotion. For further details on the characterization of our trap, the
reader is referred to Refs. [Sch09] and [Hub10a].

5.1. Electrostatic Potentials

loading zone 
segment width
w1=250 m

processor zone 
segment width
w1=125 m

gap width
s=30 m

loading zone 
trap height
d1=500 m

spacer thickness
g=125 m

segment thickness
a=125 m

processor 

trap height
d1=250 m

zone 

x

y

z

Figure 5.1.: Trap layout for electrostatic field simulation. The relevant trap dimensions are
indicated. Several simplifications are made: The rf electrodes are assumed to be segmented
in the same way as the dc ones, and only a limited amount of segments in the processor
region is taken into account. For the calculation of the axial rf components, the full number
of processor region segments is used, resulting in a geometry containing about 25000 nodes.
The x-axis origin is located 1160µm to the left of the inner edge of the endcap electrode of
the loading region by convention, the y and z origins are located at the symmetry center.
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5. Trap Characteristics

The key feature of our experimental approach towards scalable quantum logic is the fact
that our trap possesses multiple segments in order to store and control a quite large number of
qubits. Furthermore, the electrode structures are small compared to macroscopic standard-
type Paul traps. This has the consequence that the structure of the confining potentials is
more complicated than in a macroscopic setting, where the basic properties of electrostatic
theory guarantee very harmonic potentials. For microstructured ion traps in general, it is
very advantageous to know the electrostatic potentials with a high degree of precision, be it
in the design process to obtain structures that provide the desired confinement properties, be
it for the determination of possible operating voltages at the first attempts to trap with a new
device or be it for the optimization of transport operations in segmented traps. This chapter
is structured as follows: In Sec. 5.1, we briefly explain how we calculate the potentials for
complicated trap structures and then analyze the properties of our trap based on the results
of these simulations. Sec. 5.2 gives a detailed account on residual micromotion, its adverse
effects on our experiments and how it is compensated in our setup.

The calculation of the electrostatic fields and potentials in an arbitrary electrode geom-
etry, i.e. the solution of the Laplace equation for complicated boundary conditions is an
interesting but rather complicated matter on its own, and it was found that a homebuilt
customized software was needed to calculate the potentials with sufficient accuracy and ef-
ficiency. Conventional tools employ the finite-element method (FEM), which was found to
produce resulting potential with additional spurious irregularities, furthermore commercial
tools were found to be difficult to adapt to our custom geometries and calculation require-
ments, e.g. the feature to calculate trajectories can not easily be implemented. We therefore
use a program written by Kilian Singer which employs the boundary element method (BEM)
instead of FEM, which does not not require a 3D collocation of the volume of interest but
rather a 2D one of the electrode surfaces. The basic idea is that each surface in the geometry
is subdivided into small basic elements. The surface charge on each element is then given
by the voltages applied to the electrodes and analytic relations for the mutual capacitance
between each two segments. The surface charges are obtained from the inversion of a inverse
capacitance matrix which has the dimension of the number of surface elements, which can
range in the 105 regime. As the computational effort for matrix inversion scales to the third
power of the number of surface elements N , a simplification which renders the calculation
more effective is needed. The fast multipole method was found to be extremely useful for this,
as it reduces the scaling law to N logN . The underlying idea is that surface elements far
away from the element of interest are bundled in a group, for which a multipolar expansion
of the potential is performed. If the surface charges are known, the potential at a given point
~r is obtained by summing the potential arising from each surface element, which are in turn
calculated by employing Greens functions. A more extensive discussion of all these methods
is found in Ref. [Sin10]. Fig. 5.1 shows the geometry model of our trap used for the calcula-
tion of the electrostatic potentials. For this model, the inverse capacitance matrix inversion
takes only about 20 minutes on a conventional personal computer. Potentials can be directly
computed by application of the appropriate Greens functions, electric fields are obtained by
finite differencing. The resulting potentials and fields are free of numerical artifacts, which

114



5.1. Electrostatic Potentials

1 2 3 4 5 6 7
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

 

E
le

c
tr

o
s
ta

ti
c
 p

o
te

n
ti
a

l 
[V

]

Position along trap axis [mm]

Figure 5.2.: Electrostatic axial confinement potentials: The potentials along the trap axis
(y, z = 0) arising if dc electrode n is set to +1 V and the other ones are grounded. The
potentials for the loading region electrodes are shown in blue, the taper region ones in magenta
and the processor region ones in red. It can be seen that the potential wells overlap each other
such that a strong linear potential, i.e. a force, can be generated at a given trapping state
by setting a neighboring electrode to nonzero voltage, which enables fast and efficient ion
transport in the throughout the trap structure. Furthermore, considerable potential depths
in the 2 V range are readily attained.

allows for a very precise calculation of the potential curvatures which are needed to predict
secular frequencies of trapped ions.

Resulting axial confinement potentials for the individual segments are shown in Fig. 5.2. A
quantitative characterization of the confinement strengths is given in table 5.1, from which the
axial secular frequency and the a and q parameters can be directly inferred by multiplication
with the respective voltages. In contrast to the axial confinement, the radial confinement
is influenced by both dc and rf potentials and is therefore more complicated to analyze
quantitatively. Calculated radial cuts at the trapping site of segment 5 for the rf and dc
potentials are shown in Fig. 5.3. An important result is that the potential ellipsoids around
the origin are aligned differently for the dc and rf fields. The deviation of the dc axes from the
rf ones originates from the fact the rf voltage is applied along the whole trap length, whereas
the neighboring segments of segment 5 are set to ground, which breaks the symmetry between
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Figure 5.3.: Radial potential cuts: a) shows a radial plane cut of the potential arising from
application of +1 V to the dc electrodes of segment 5 while all other segments are grounded.
The asymmetry results from the field penetration of the neighboring grounded dc electrodes.
b) shows the same but with the rf segments set to +1 V and all dc ones to ground. The poten-
tial is more symmetric in this case, the quadrupole symmetry axes are almost aligned along
the yz and the orthogonal ȳz directions. c) shows the potential arising from the application
of a differential voltage of ±1 V to the dc electrodes, one can see that the compensation field
is quite homogeneous in the trapping region and it points along the direction with the largest
curvature of the potential in a). d) shows the sum of the ponderomotive potential at an rf
amplitude of 150 V and a dc level of -5 V. Note that this sum is not a physical potential, but
it still gives an estimation of the minimum trap depth, which is about 500 mV in this case.
For all plots, the x coordinate is always chosen to be the center of electrode 5. See Fig. 5.1
for the dimensions. The main axes of the potential ellipsoids are indicated as dashed lines.
Note that the orientation of the total potential ellipsoid if d) coincides with the dc potential
orientation. The irregularities near the electrodes are merely plotting artifacts. Note that
the color coding is different for the subimages.

dc and rf electrodes which is not directly apparent when one is looking at the yz cuts of Fig.
5.3. The tilt angle between dc and rf axes is about 11°. This raises the question how the
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5.1. Electrostatic Potentials

Parameter Loading zone value Processor zone value

νax/V
1/2
dc [MHz V−1/2] 0.388(3) 0.744(9)

azy/Vdc [V−1
dc ] -0.00194(2) -0.0077(2)

az̄y/Vdc [V−1
dc ] 0.003909(7) 0.01496(5)

q/V1
dc [V−1

rf ] 0.00201(6) 0.0075(4)

Table 5.1.: Operating parameters of the trap: The parameters determining the motional
frequencies for applied unit voltages are given for the loading and processor regions. The
uncertainties indicate the spread of these values over the segment ranges comprising these
zones.

particle dynamics is different from the results of the standard Mathieu equation treatment
where decoupled radial coordinates are assumed. If we consider a general tilt angle of the dc
potential with respect to the rf one, the Mathieu equation Eq. 2.76 reads as:

ẍ = a1 cos2 φ x− a1 cosφ sinφ y + a2 sin2 φ x+ a2 cosφ sinφ y + cos(2τ) qxx

ÿ = a1 sin2 φ y − a1 cosφ sinφ x+ a2 cos2 φ y + a2 cosφ sinφ x− cos(2τ) qyy. (5.1)

A detailed mathematical analysis of these coupled Mathieu equations is beyond the scope
of this thesis, however numerical simulations were performed which indicate that the radial
secular frequencies are the same as for the untilted case, i.e. one can simply employ Eq. 2.78
for a = a1,2. The corresponding main axes are aligned along the dc axes. It is interesting to
note that this holds only for q values below the maximum stability value, for larger q values the
secular frequencies deviate from the untilted ones, which also changes the stability diagram:
due to the coupling of the coordinates, instability in one direction can be compensated by the
stability in the other one, thus the stability at large q and a values even increases with the
tilt angle. For example for q = 0.8, a1 = −0.08 and a2 = 0.04, the untilted trap is unstable
in the direction of the positive (anticonfining) a parameter, whereas a trap with a tilt angle
of 45°is still stable.

It is the essential feature of microstructured multisegmented Paul traps that ions can be
shuttled between different trapping sites. This is accomplished by supplying suitable voltage
waveforms to the dc electrodes, see appendix B for technological details. The set of n voltages
supplied to n different electrodes determines the number and position of the trapping sites
as well as their associated trap frequencies. One way to determine appropriate voltages for a
required operation is a bottom-up approach, where shuttling operations are considered as local
operations for which only a small number of nearby electrodes is used. It is then even possible
to utilize tailored waveforms which are designed such that a minimum amount of energy is
transferred to the ion(s) during shuttling operations, an example is illustrated in [Sch06].
An alternative approach is a top-down approach, where the full set of electrode voltages
for generation of a specific trapping potential is calculated via a regularization approach for
the solution of the underdetermined linear problem, see Ref. [Sin10] for a full mathematical
account. Here, we present a set of measurement results which represents the first exploitation
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Figure 5.4.: Radial confinement strength along the trap axis. The curves show the q param-
eters calculated from the radial rf potential curvature, showing that a drive amplitude of
300 V (red) leading to stable trapping the loading region leads to instability in the processor
region. On the other hand, an amplitude of 75 V, yielding a similar q parameter in the
processor region as lower amplitude yields in the loading region, the secular frequency in the
loading region in turn becomes smaller than the axial secular frequency, also leading to insta-
bility. The arrow indicates that the rf drive amplitude has to be ramped when transferring
ions from the loading to the trapping region and back. Experimentally, no rf amplitude was
found which provided simultaneous trapping in both trap regions, which is clearly a design
flaw of our trap.

of the features of our multisegmented trap: via off-site spectroscopy measurements on the
quadrupole transition (see Sec. 4.2.2), we measure the axial trap frequencies for various
trapping sites along the trap axis. The sequence is as follows: after the qubit preparation,
the ion is shuttled to the destination site within a transport time in the millisecond range. A
spectroscopy pulse at 729 nm with the laser beam readjusted on the destination site transfers
population to the metastable state, then the ion is transported back to the original trap
site before the state is read out. The voltage waveforms for this experiment were calculated
with the regularization approach described above, see [Hub10b] for details. The voltages are
chosen such that the trap frequency is kept mostly constant at about 1.35 MHz, however
residual variations occur which arise from the utilization of other constraints such as limited
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Figure 5.5.: Off-site spectroscopy: a) Shows the deviation of measured axial secular frequen-
cies with respect to the desired one for different positions along the trap axis, see text. b)
Shows the absolute values of the axial frequencies (red) along with measured radial sidebands
(blue), note that the radial confinement changes drastically as the ion approaches the taper
region.

voltage magnitudes, fixed potential offset and of course the trap site position. The expected
trap frequencies for the applied waveforms are shown as the solid line in Fig. 5.5 a), it can
be seen that the measured data fits with sub-percent accuracy besides a small offset from
the oscillatory pattern, which is presumably due to a residual dc electric field along the trap
axis caused by stray charges. This proves on the one hand that the potentials obtained from
our solver are accurate, on the other hand we have shown that transport through the whole
trap structure is possible and that the trap is not impaired by the presence of stray charges
or deviations of the actual structure from the ideal geometry.

5.2. Micromotion Compensation

Driven motion of trapped ions at the trap rf is termed micromotion. It occurs if the ion is
shifted out of the rf node, where it is assumed to reside in all idealized considerations on
Paul trap operation. It has several adverse effects on most conceivable experiments in such
traps: The most prominent one is that any driving laser pointing along an axis with nonzero
micromotion amplitude will be frequency modulated. This impairs Doppler cooling on dipole
transitions and also precision spectroscopy and coherent manipulations on narrow higher
order or Raman transitions. Normally, one will only observe reduced effective intensities of
the beams, i.e. the fluorescence level on a cycling transition will drop and the Rabi frequencies
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for coherently driving a quadrupole or stimulated Raman transition will be reduced. More
severe effects might also be present: the Doppler cooling will be less efficient if the cooling
transition line is effectively broadened by the micromotion echoes, and if these are on the
blue side of the transition they will even counteract the cooling. Furthermore, the power
in the FM sidebands acts as to increase laser-driven decoherence mechanisms when driving
Raman transition, see Sec. 4.7. In the worst case, echo components might even hit other
resonance, e.g. higher order motional sideband or different Zeeman transitions in the case of
a quadrupole transition. It should be also noted that for precision spectroscopy, especially for
designing optical atomic clocks based on trapped ions, the ac Stark shift from uncompensated
micromotion will be the predominant error source. Micromotion can be compensated by
applying dc voltages to a set of compensation electrodes to shift the ion into the node of the
rf field. The difficulty lies in precise measurement of the micromotion amplitude. Throughout
the last decades, several methods for this have been conceived:

� Ion position shift: This technique does not directly measure effects of the micromo-
tion, it rather monitors the change of the ion position upon change of the rf level which
can only occur of dc and ac potential minima are offset with respect to each other, such
that a residual dc field drives the ion out of the rf node. The accuracy of the method
is very limited by the spatial resolution of the imaging optics.

� Coherent echo strength measurement: If a narrow transition is at hand which
can be coherently driven, the strength of micromotion echoes can be directly measured
and minimized.

� Phonon correlations: The fluorescence counting electronics can be set up such that
time resolved measurements of the photon arrival times can be correlated with the
trap rf. Nonvanishing correlation will be found in the presence of micromotion. The
advantage of this method is that its implementation is possible without coherently
driven optical transitions or even without imaging, however it requires a considerable
amount of data acquisition.

� Fluorescence heterodyning: The fluorescence can be heterodyned with a phase-
locked laser offset by about the drive rf. The signal then directly provides information
about the oscillation amplitude [Raa00].

� Coherent Raman effects: Phase coherent modulation of a repump laser with the trap
rf can be used to obtain a modulation of the fluorescence level [All10]. The advantage
of this technique is essentially that the vertical direction, which is inaccessible for the
cooling laser due to stray light issues in surface traps, can be accessed.

� rf modulation: If the rf voltage is fed onto the different electrodes via distinct path-
ways, it is possible to modulate one of these by a secular frequency. It the ion senses the
rf field, its secular motion will be driven by the resulting beat, which strongly affects
the fluorescence level. This method is also especially suited for planar traps [Dan09].
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5.2. Micromotion Compensation

� Fluorescence measurement: The primary effect of micromotion is the alteration of
the line shape on a cooling transition. Due to the broadening, the fluorescence level
will increase due to micromotion for sufficient detunings and appropriate range of rf
frequencies and modulation amplitudes. As this is the technique of our choice due to
its simplicity, it will be discussed in detail below.

The first three techniques are discussed in detail in Ref. [Ber98b]. We have realized both
the echo strength measurement and the correlation measurement, however the first technique
yields high accuracy but accounts only spatial direction, while the latter was found to be
rather impractical. We have found that for the every-day lab routine, it is most useful to
red-detune the Doppler cooling laser at 397 nm by more than one linewidth and to minimize
the fluorescence level at that detuning. The compensation is performed by applying a voltage
difference between the adjacent dc trapping electrodes. The accuracy of this method is to be
assessed in the following. If we assume the ion to be a free particle, which is justified by the
timescale separation ωrad � Ωrf , its motion in a homogeneous rf field is given by

x(t) =
qE

(rf)
x

mΩ2
rf

cos(Ωrft)

v(t) =
qE

(rf)
x

mΩrf
sin(Ωrft), (5.2)

where we consider the motion along a laser beam direction x with wavenumber k and the

corresponding component of the rf electric field E
(rf)
x . The maximum first-order Doppler shift

during one motional cycle is then

δmax = k vmax = k
qE

(rf)
x

mΩrf
. (5.3)

The oscillatory motion then leads to frequency modulation of the laser with a modulation
index of

β =
δmax

Ωrf
= k

qE
(rf)
x

mΩ2
rf

= 2π
xmax

λ
(5.4)

If the beam is detuned from the atomic resonance by δ0, one obtains effective saturation Sn
parameters for the frequency components δn = δ0 + nΩrf with n = −∞..+∞:

Sn = S0J
2
n(β). (5.5)

The total fluorescence level upon neglecting the motional effects due to a changed Doppler
cooling efficiency then is

R =
+∞∑

n=−∞

Γ

2

Sn

1 + S0 + 4 (δ + nΩrf)
2 /Γ2

, (5.6)

where a reasonable parameter regime is of course only given for small enough modulation
indices, such that the summation will include only a few nonvanishing terms around n = 0.
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Figure 5.6.: Micromotion compensation by fluorescence measurement: The plot shows the
fluorescence rate from a single ion versus the differential voltage between the adjacent elec-
trodes of segment 5. Two different data sets are shown for detunings of δ/Γ ≈-2.5 (black)
and δ/Γ ≈-1.9 (red), clearly demonstrating that the compensation voltage and accuracy is
robust against the detuning. The solid curves are fits to a simple theoretical model Eq.
5.6(see text), which reproduces the essential features but fails to quantitatively describe the
complete behavior.

Our setup allows for the compensation of micromotion along one direction aligned per-
pendicular to the trap axis and along one direction given by the propagation direction of
a laser, which is chosen to be the Doppler cooling beam in our case. The compensation is
accomplished by application of a voltage difference across the two electrodes comprising a
segment pair, the corresponding potential is plotted in Fig. 5.3 c), the corresponding electric
field at the ion position is rather homogeneous and the field lines run in the radial trap plane.
The magnitude of the electric field for ±1 V applied at the adjacent electrodes of segment 5

is calculated to be E
(5)
comp ≈1.45 kV/m, and the displacement ∆r is given by

∆r =
qE

(5)
comp

mω2
rad

. (5.7)

The dependence of the rf-field magnitude for 1 V applied rf voltage on the displacement

along the compensation field lines is in turn given by dE
(rf)
comp/∆r ≈8.9·106Vm−2, such that
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we obtain dE
(rf)
comp/dV

(5)
comp. Inserting this into Eq. 5.4 yields

β ≈ keff
q

mΩrf

dE
(rf)
comp

dV
(5)

comp

V (5)
compVrf , (5.8)

which can be inserted into Eq. 5.6 to predict the behavior of the fluorescence on the com-
pensation voltage. A comparison between the model and measured data is shown in Fig. 5.6.
The detunings are inferred from a measurement of the fluorescence rate versus 397 nm wave-
length, and a saturation parameter of S0=5 is assumed. The applied rf voltage amplitude is
Vrf=200 V at Ωrf ≈ 2π·24.8 MHz, resulting in ωrad ≈ 2π·3.5 MHz. A compensation offset
voltage of 50 mV is inferred and a factor for scaling the absolute photon collection rate is in-
troduced. As can be seen, the width and depth of the fluorescence dip is correctly reproduced
by the model for both detunings, however the decrease for large compensation voltage mag-
nitudes is much less pronounced for the measured data. Furthermore, the asymmetry of the
dip is not at all explained by the model. The reason for the first discrepancy might be that
the Zeeman splitting of the two driven transitions |S1/2,mJ = ±1/2〉 → |P1/2,mJ = ±1/2〉
of about 12 MHz is not included, as is the effect of the photon scattering on the motional
state of the ion. The asymmetry might arise from a displacement giving rise to additional
micromotion in the y-direction, which is not directly visible in the 397 nm fluorescence but
might be responsible for an inhomogeneous compensation field. The precision attained by this
compensation method is indicated by the dashed lines in Fig. 5.6, from the voltage window
of about 80 mV, a maximum residual modulation index of |βres| . 0.56, equivalent to 85% of
the laser power acting on the carrier transition. As can be seen from simulations for various
parameter sets, the width of the dip is rather independent of the laser and trap parameters,
however the attainable micromotion suppression is quite poor. However, all methods used for
qubit preparation, manipulation and readout are designed to be resilient against the presence
of a tolerable amount of micromotion, as is explained in detail in chapter 4.

Micromotion aligned along the trap axis can not be directly compensated by means of a
differential voltage. The origin of axial micromotion is on the one hand given by the transla-
tional asymmetry along the trap axis. To make this more clear, we consider an ion placed at
any given site in the loading region. It has a direct line of sight on the rf-electrode surfaces in
the taper region, which is not present in the other direction along the trap axis. The modula-
tion index inferred from the simulation axial rf field strength by the same reasoning as above
is plotted for standard operating parameters in Fig. 5.7. It can be seen that the expected
modulation might be sufficiently small in the processor region. An additional increase of
the modulation will occur if rf pickup is present on the confining dc electrode and the ion is
shifted into a nonzero electric field arising from this electrode by stray charges acting in the
axial direction. An estimation along the same lines of thought as above is readily obtained
by considering the axial potential from the confining electrode can be written as

V (x) =
1

2
mω2

axx
2 = q Vdccdcx

2, (5.9)
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Figure 5.7.: Modulation index along the trap axis: The modulation index for the Doppler
cooling beam is shown versus the ion position along the trap axis. The ion is assumed to be
at the radial rf-node, such that modulation is only due to the residual rf field along the trap
axis arising from the translational asymmetry of the trap. Standard operating parameters
are assumed, note the strong modulation arising from the taper electrodes and the additional
ripple which is due to the segment periodicity.

resulting in the additional modulation index

β(∆x) = keff
ω2

axVrf

Ω2
rfVdc

∆x, (5.10)

where Vrf is the rf pickup amplitude and ∆x is the displacement due to the axial offset field.
Plugging in the operating parameters ωax = 2π·1.35 MHz and a typical measured value of
Vrf =500 mV, we would obtain a modulation index of only 3·10−2, therefore this mechanism
can be neglected.

The difficulties to obtain a stable ion trapping at tight radial confinement mentioned in
chapter 9 can be explained by considering a recent publication [Vah10] where it was shown
experimentally that in a situation with competing Doppler cooling and heating processes,
stable oscillatory motion of ions at the secular frequency can occur. The oscillation amplitude
is fixed such that cooling and heating are balanced throughout one secular motion cycle. This
is a critical phenomenon, i.e. oscillations at finite amplitude set in beyond a threshold of
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Figure 5.8.: Micromotion induced phonon lasing effect: a) The plot shows the average en-
ergy (purple/red) and energy standard deviation (blue/black) versus micromotion induced
modulation index Eq. 5.4 for Ωrf = 2π·24.77 MHz (purple/blue) and Ωrf = 2π·59.54 MHz
(red/black) resulting from semiclassical simulations, see text. One clearly observes the onset
of stable oscillations with a nonthermal phonon distribution beyond a threshold modulation
index. Plotting the curves for different trap drive frequencies within the same plot is justified
by the fact that both β ∝ Ω−1

rf and roughly ωrad ∝ Ω−1
rf , i.e. in order to attain comparable

radial confinement at a higher trap drive frequency, one would have to increase the rf voltage
such that about the same modulation index as for the lower drive frequency is obtained. The
inset demonstrates the bistability of the system, i.e. that the onset of the oscillations is noise
driven and does therefore not occur in every simulation run. b) shows energy probability
distribution function on a double-logarithmic scale for the Ωrf = 2π·24.77 MHz case, at mod-
ulation indices given by the accordingly colored arrows in Fig. a). While the two curves
below the onset threshold pertain the thermal phonon distributions with n̄ ≈ 20 (red) and
n̄ ≈ 500 (blue), the distribution beyond the threshold is clearly nonthermal but pertains to
a state with stable oscillations.

heating power, which led the authors to coin the term phonon lasing to describe this effect.
In this work, a second heating laser was employed additionally to the Doppler cooling beam,
and both beams are aligned along the trap axis of a Paul trap such that only the axial mode
is to be taken into account. Furthermore, the trap was operated at very small axial trap
frequencies of about 50 kHz, in order to be able to stroboscopically observe the motion. We
show here that the same effect can be induced by the presence of micromotion, furthermore
we show that the onset of the oscillations can be driven by a Langevin force which describes
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5. Trap Characteristics

the random recoil kicks from emitted photons during Doppler cooling. Finally, we comment
on the impact of these effects on micro ion trap based quantum information experiments and
point out possible technological improvements.
In the presence of a Doppler cooling laser, the position coordinate xi in direction i with
harmonic confinement ωi obeys to the equation of motion

ẍi +
~ki
m
R(~̇x) + ω2

i xi = χi(t, R(~̇x)), (5.11)

where the second (cooling) term is comprised of the photon recoil ~ki and the photon scat-
tering rate R(v) given by Eq. 2.30. The term on the right-hand side is a Langevin force
arising from photon emission in random direction. In contrast to Ref. [Vah10], this is a
more general approach which does not require small saturation parameters and allows for
the consideration of three spatial dimensions. For the solution of this differential equation
by numerical integration with time step dt, Nph = R(~̇x) · dt photons are scattered within dt
(which is assumed to be smaller than the trap periods). This results in a momentum kick
in direction i which is a random variable with Gaussian distribution with zero mean and a
standard deviation of σ =

√
Nph/3. Micromotion is included by employing Eq. 5.6 for the

scattering rate, where the modulation index β is given by the projection of the micromotion
amplitude vector on the normalized laser wavevector: β = ~β ·~k0. The effect of the micromo-
tion thus is to add ’extra laser beams’ at frequencies ±nΩrf with integer n. Frequencies on
the blue side of the atomic resonance contribute to heating instead of cooling. The net effect
depends on the total saturation, the carrier detuning and the secular and rf frequencies as
well as the beam and micromotion alignment. Due to this rather complex parameter space,
the situation is not easily accessed. To start with, we illustrate the effect by calculating an
atomic trajectory over a long time interval (several ms) for typical trap operating parameters
(S0=2, ∆ = −Γ/2, Ωrf = 2π·24.77 MHz, ωz,y,x = 2π·1.4,3.1,3.6 MHz), but varying micromo-
tion amplitude β. The beam is assumed to be at 45◦ with the z direction and at 60◦ with
the y and x directions. The resulting energy statistics are shown in Fig. 5.8. One can clearly
observe how the Doppler cooling is adversely affected at increasing micromotion amplitudes,
however the energy distribution is still thermal until at the critical micromotion amplitude
the mean energy exceeds the energy variance and classical oscillations set in.
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6. Determination of Atomic Matrix
Elements with Off-Resonant Radiation

This chapter describes a new measurement method for atomic matrix elements for dipole
transitions, i.e. Einstein A coefficients or lifetimes developed as a side-product during the
establishment of the methods for the spin qubit. The basic measurement idea is to com-
pare absorptive and dispersive effects occurring in the interaction of a trapped ion with an
off-resonant laser beam. The chapter is organized as follows: Sec. 6.1 gives a scientific mo-
tivation, while Sec. 6.2 introduces the particular measurement scheme. Sec. 6.3 explains
in detail how the absorptive effect is measured, whereas Sec. 6.5 explains the measurement
procedure for the dispersive effects and 6.4 describes how a calibration of the laser detuning
is carried out. Sec. 6.6 treats the robustness of the method against dominant experimental
imperfections, while Sec. 6.7 describes in detail how the error estimates are obtained. Sec.
6.8 then presents the final results. Sec. 6.9 discusses the relevance of additional error sources,
and Sec. 6.10 concludes with the presentation of an alternative measurement scheme for the
dispersive effects.

6.1. Motivation

6.2. Basic Idea of the Measurement Procedure

Exposure to an off-resonant light beam can cause two different effects in an atomic system:
Spontaneous Raman transitions between atomic levels by off-resonant inelastic scattering and
AC Stark energy shifts of the levels, i.e. absorptive and dispersive effects. Both effects can be
quantitatively measured, and both depend on the intensity and detuning of the off-resonant
beam, whereas only the Raman transition rates depend on the lifetime of the intermediate
excited state. The idea is therefore to measure the AC Stark shift as a calibration of laser
intensity, such that the lifetime can then be inferred from the Raman transition rates.

The inelastic spontaneous Raman transition rates, from now on referred to as spin-flip
scattering rates between the ground state Zeeman sublevels upon exposure to the off-resonant
beam are inferred from Eq. A.14 and Eq. A.15

R↑ = ΓPS
Ω2

4∆2
R

1

9

(
ε2− + ε20

)
R↓ = ΓPS

Ω2

4∆2
R

1

9

(
ε2+ + ε20

)
, (6.1)
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Figure 6.1.: Relevant levels and transitions for the measurement scheme. a) shows the scat-
tering pathways within the S1/2,P1/2, and b) shows the pathways for the P1/2,D3/2 manifold.
The squared coupling coefficients Eq. 6.3 are indicated on the transitions.

when exposure to a single beam with arbitrary polarization is assumed. Ω2 indicates the
dipolar coupling strength given by the laser intensity, ∆R is the detuning from the S1/2 to
P1/2 transition, the ε2i give the relative strength of the polarization components of the laser
beam and ΓPS is the spontaneous transition rate of interest, i.e. the Einstein coefficient of
the transition. Necessary conditions for Eqs. 6.1 to hold are

∆2
R � Γ2

PS

∆2
R � Ω2. (6.2)

Here, there transition rates between the specific Zeeman levels are given by the Wigner 3j
symbols:

cmSmP =

(
JS 1 JP
−mS q mP

)
, (6.3)

where the JS = 1/2 and JP = 1/2 indicate the initial and final total angular momentum
and the mS,P = ±1/2 indicate the initial and final Zeeman sublevels. For the derivation of
Eqs. 6.1, the off-resonant laser excitation rate Ω2/4∆2

R is multiplied with ε2ifc
2
mSmP

to yield
the excitation rate for a specific transition between sublevels. For the subsequent decay, the
excitation rate is multiplied by the normalized coefficient c2

mSmP
/
∑

m′S
c2
m′SmP

= 2 c2
mSmP

.
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6.2. Basic Idea of the Measurement Procedure

The AC Stark shifts of the spin levels are given by Eq. A.13:

∆↑S =
Ω2

4∆R

(
1

3
ε2− +

1

6
ε20

)
∆↓S =

Ω2

4∆R

(
1

3
ε2+ +

1

6
ε20

)
. (6.4)

Together with the condition

ε2− + ε2+ + ε20 = 1, (6.5)

this yields an expression for the transition rate between P1/2 and S1/2 state,

ΓPS = 3 ∆R
R↑ −R↓
∆↑S −∆↓S

, (6.6)

which is entirely independent of the beam intensity and polarization components. Further-
more, only the differential Stark shift is occurring in the denominator, which is easier to
access experimentally.
A complication occurring in our atomic system is the presence of a loss channel to the
metastable D3/2 state. The leakage rates into the D3/2 manifold read

R↑D = ΓPD
Ω2

4∆2
R

(
1

3
ε2− +

1

6
ε20

)
R↓D = ΓPD

Ω2

4∆2
R

(
1

3
ε2+ +

1

6
ε20

)
. (6.7)

The total depletion rate of |↑〉 is now given by

R↑ +R↑D ≡ R↑(1 + b), (6.8)

such that b = R↑D/R↑↓. The leakage factor b can be directly extracted from the measurement
data. Assuming ε20 = 0, we find

ΓPD = b ΓPS/3. (6.9)

The justification of this assumption is given in the error analysis below. For symmetry
reasons, the same result is obtained when the depletion rate of |↓〉 is considered. With the
spin-flip scattering rate Eqs. 6.1 , the dynamics of the populations are given by the following
rate equations:

ċ↑(t) = −R↑(1 + b)c↑(t) +R↓c↓(t) (6.10)

ċ↓(t) = −R↓(1 + b)c↓(t) +R↑c↑(t) (6.11)
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6. Determination of Atomic Matrix Elements with Off-Resonant Radiation

The analytical solution for Eq. 6.10 reads

c↑↑(t) ≡ p↑0(t)

=
1

2 f
e−

1
2

((1+b)(R↑+R↓)+f)t
(

(1 + b)(R↑ −R↓)(1− eft) + f
(

1 + eft
))

c↓↑(t) ≡ p↓0(t)

=
R↓
f

e−
1
2

((1+b)(R↑+R↓)+f)t(eft − 1), (6.12)

where the upper spin label accounts for initialization in spin |↑〉/|↓〉 respectively, with

f ≡
√
−4b(2 + b)R↑R↓ + (1 + b)2(R↑ +R↓)2 (6.13)

6.3. Measurement of the Scattering Rates

The spin-flip scattering rate can be measured by utilizing the techniques for spin initialization
and read-out developed for the spin qubit. The ion is simply prepared in either |↑〉 or |↓〉
by means of optical pumping on the S1/2 to P1/2 transition. It is then exposed to square
pulse of off-resonant light, detuned from the S1/2 to P1/2 transition by several GHz. The
population in |↑〉 is the transferred to the metastable D5/2 state by means of a double Rapid
Adiabatic Passage (RAP) pulse. Then, fluorescence is counted upon irradiation of resonant
light for 3 ms on the S1/2 to P1/2 transition, giving the fraction of population remaining in
the |↓〉 level upon several repetitions of the same sequence. We performed 100 measurement
cycles each for a set of 50 non-uniformly spaced scatter pulse times which were chose to show
the scatter dynamics well. This set is measured this way 8×20 times, yielding 16000 single
interrogations for each scatter pulse time. The block of 20 repetitions for a scattering curve
were interleaved for the two initialization levels. The raw data for one data set measured
with a Raman detuning of ∆R ≈13 GHz is shown in Fig. 6.2.

For each scatter pulse time, the mean values and standard deviations for the dark count
numbers are calculated from the 160 data points pertaining to 100 interrogations each. A post
selection is then performed, where all of the 160 data points are removed from data which are
off the mean value by more than three standard deviations. This way, measurements where
the ion was heating up or the shelving laser was lock to the right wavelength are sorted
out. It is important to mention that the error is not artificially reduced this way, as the
total number of valid interrogations is decreased upon removal of a data point, see Sec. 6.7.
The mean values and standard deviations are recalculated from the cleaned data, and the
standard deviations are compared to the ones to be expected by simple statistics, the results
are shown in Fig. 6.3 for all data set taken. The agreement between actual and theoretical
standard deviations is a key result, as it demonstrates that the measurement is indeed limited
by statistical noise and no drift effects have occurred. However, even data with a significant
increase of the actual errors can be used to infer valid scattering rates, as long as the actual
errors are used for the error estimation procedure, Sec. 6.7.
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Figure 6.2.: Raw data from the scattering rate measurement. Each point corresponds to 100
interrogations. Curve a) results from initialization in |↑〉, b) is for initialization in |↓〉. Note
the different vertical scales.

6.4. Measurement of the Raman Detuning

The remaining quantity to be measured is the Raman detuning ∆R occurring in Eq. 6.6. The
laser frequency is simply read off an High Finesse WSU wavemeter which has 10 MHz relative
accuracy. As the detuning is relative to the atomic resonance, its position has to be measured
as well. This can be done in two ways: First, the scattering laser can be simply tuned to
resonance as the laser frequency for which the maximum fluorescence occurs is identified as
the atomic resonance. The results are shown in Fig. 6.5.

The second method is to perform additional Stark shift measurements for different detun-
ings. According to Eq. 6.4, 1/∆S should depend linearly on the detuning, such that the
zero of a line fitted through several measured Stark shifts also gives the resonance frequency.
However, it is found that the deviation of the measured data from the fit exceeds the expected
error. This is attributed to optical elements in the beam which might change the intensity
and polarization of the laser at the location of the ion depending on the frequency. Further-
more, for small detunings the Stark shift deviates from Eq. 6.4, and for large detunings the
Stark shift arising from the P3/2 also plays a role.

6.5. Measurement of the AC Stark Shift

The differential Stark shift measurement is accomplished in entirely the same way as already
described in Sec. 4.7: A pulse from the off-resonant laser beam at variable duration is inserted
between two Ramsey pulses, the resulting oscillatory pattern with respect to the shift pulse
duration reveals the Stark shift ∆S according to

S(t) = a e−γ t sin(∆S t+ φ) + b, (6.14)
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Figure 6.3.: Comparison between the actual spreads of the raw data point (red dots) and the
statistical expectation (solid curve). Curves a) and b) pertain to the 15 GHz datasets, c) and
d) to the 14 GHz ones. a) and c) are for initialization in |↑〉, b) and d) for initialization in
|↓〉. The horizontal axis gives the data index instead of the scatter pulse time.

where amplitude a, baseline b, dephasing rate γ and offset phase φ are floating. Due to the
fact that the oscillation frequency can be extracted from the data with high precision, this
measurement takes much less effort in data acquisition and evaluation as the scattering rate
measurement. Furthermore, as only the frequency of the oscillation pattern is relevant, the
precision does not rely on stable readout and preparation, such that the stability of the laser
intensity and polarization can also be evaluated. An example data set is shown in Fig. 6.6.

Measurements of the Stark shift were performed several times for each data set pertaining
to a fixed Raman detuning. From the spread of the obtained values, the long-term stability
limiting the total accuracy is calculated, which is used in the final evaluation to determine the
total accuracy. The measured values for the shift are shown in Fig. 6.7, note that the total
spread in the 0.25% range is much larger the uncertainty of a single measurement, which is
in the sub-per mil range.
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Figure 6.4.: Final result of the spin-flip measurement: a) Average over the scattering raw
data after post processing and the corresponding fits to the model Eqs. 6.20. b) and c) show
the deviation of the data points with respect to the fit model along with the error bars.

The quite high measurement precision in principle allows for a precise calibration of the
Raman detuning ∆R: By taking a set of Stark shift measurements for various Raman detun-
ings, a fit to Eq. 6.4 will reveal which frequency read-off exactly corresponds to the atomic
resonance. Upon inverting both sides, a linear function can be fit through the data whose
zero crossing is located at the resonance frequency. Corresponding data is shown in Fig.
6.8, one can see that the deviation of the individual data point clearly exceeds the expected
uncertainty and leads to a large inaccuracy of the Raman detuning in the range of several
100 MHz. The reason for the bad quality of this data is improper air current shielding
and thermal insulation of the setup at the time when this data was taken, especially the
λ/4 waveplate in the R2 beam was found to cause strong Stark shift deviations upon small
temperature changes despite being of zero order type.
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Figure 6.5.: Calibration of the wavemeter by means of fluorescence measurement. The Loren-
zian fits give an accuracy of 20 MHz. The lower curve is recorded with very low beam intensity,
therefore additional broadening due to bad Doppler cooling occurs, however the resonance is
shifted more into the blue side as Doppler heating is suppressed as well.

6.6. Robustness against Experimental Imperfections

Assuming ideal spin initialization, ideal state transfer to the metastable D5/2 state and ideal
fluorescence state discrimination, the probabilities for finding the ion in the metastable state
are

p↑dark(t) = p↑0(t)

p↓dark(t) = p↓0(t) (6.15)

Considering imperfect spin initialization, the probabilities for finding the ion in spin up after
a scatter pulse of time t are

p↑(t) = a↑↑p
↑
0(t) + a↑↓p

↓
0(t)

p↓(t) = a↓↑p
↑
0(t) + a↓↓p

↓
0(t) (6.16)

where the upper index of the p’s and a’s account for the intended initialization spin level
and the lower index of te a’s accounts for the actual population remaining in the respective
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Figure 6.6.: Example Stark shift measurement. The dots show the dark count signal (sym-
metrized) for varying exposure time to the phase shift pulse within the Ramsey sequence.
The dephasing is mainly due to intensity fluctuations of the laser. The fit to Eq. 6.14 is
indicated by the solid curve.

levels after initialization. The a’s fulfill a↑↑, a
↓
↓ . 1 and a↑↓, a

↓
↑ & 0. Imperfect shelving to the

metastable state is accounted for by the transfer probabilities r↑,↓, where r↑ . 1 and r↓ & 0:

p↑D(t) = r↑p
↑(t) + r↓(1− p↑(t))

p↓D(t) = r↑p
↓(t) + r↓(1− p↓(t)). (6.17)

Errors in the fluorescence discrimination are incorporated by considering dark count proba-
bilities pS,Ddark:

p↑dark(t) = pDdarkp
↑
D(t) + pSdark(1− p↑D(t))

p↓dark(t) = pDdarkp
↓
D(t) + pSdark(1− p↓D(t)). (6.18)

In total, this leads to

p↑d(t) = ∆pd ∆r (a↑↑p
↑
0(t) + a↑↓p

↓
0(t)) + ∆pd r↓ + pSd

p↓d(t) = ∆pd ∆r (a↓↑p
↑
0(t) + a↓↓p

↓
0(t)) + ∆pd r↓ + pSd . (6.19)

Here, ∆pd = pDdark − pSdark and ∆r = r↑ − r↓. Therefore, the model

p↑d(t) ≡ ϑ↑(R↑, R↓, b, α↑, β↑, γ, t) = α↑ p
↑
0(t) + β↑ p

↓
0(t) + γ

p↓d(t) ≡ ϑ↓(R↑, R↓, b, α↓, β↓, γ, t) = α↓ p
↓
0(t) + β↓ p

↑
0(t) + γ. (6.20)
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Figure 6.7.: Drift of the measured AC Stark shift throughout the measurement. a) shows the
data for the 15 GHz measurement and b) the data for the 13 GHz one. The errors bars are
the confidence intervals obtained from the fit. It can be seen that the accuracy of the AC
Stark shift measurement is limited by long term drifts, see Sec. 4.7.

is reproducing the complete physics of the measurement. Hence, all static imperfections
are included into the model and therefore do not spoil the accuracy of the figures of interest,
which are the dynamic parameters of the curve. However, a necessary requirement is that the
initialization, transfer and read-out have to be kept constant during the whole measurement.

6.7. Extraction of the Scattering Parameters and Error
Analysis

For the sake of notation, the parameter sets describing the two measured curves are labeled

X↑ = {R↑, R↓, b, α↑, β↑, γ}
X↓ = {R↑, R↓, b, α↓, β↓, γ}
X = X↑ ∪X↓ (6.21)

The parameter sets Eqs. 6.21 are extracted from the post processed data by means of a
conventional least-squares minimization using the NMinimize function of Mathematica. The
crucial point is to fit both scattering curves at once, as then the requirement of consistency
leads to an enhancement of accuracy. The accuracy of the values obtained from the fit
are then calculated by checking how likely the measurement data could be reproduced be
deviating parameter sets. The probabilities p̂↑i ,p̂

↓
i that the test parameter sets X↑,X↓ could
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Figure 6.8.: Calibration by means of the Stark shift: The plot shows values of the inverse ac
Stark shift measured at various detunings along along with a linear fit. One can clearly see
that the linear behavior is well reproduced, the accuracy is however not good enough for a
precise enough calibration of the Raman detuning. This insufficient precision is attributed to
drifts of the laser polarization due to imperfect shielding of the setup from air currents when
the data was taken.

yield the measurement dark count value P ↑i ,P ↓i for scatter times ti are given by

p̂↑i (X↑) = p̃(ϑ↑(X↑, ti), P
↑
i , N

↑
i )

p̂↓i (X↓) = p̃(ϑ↓(X↓, ti), P
↓
i , N

↓
i ), (6.22)

where p̃(ϑ(X, t), P,N) describes the statistical occurrence probability of P dark counts in N
measurements given the physical dark count probability ϑ(X, ti), which is given by a Binomial
distribution:

p̃(ϑ(X, t), P,N) =

(
N

P

)
ϑ(X, t)P (1− ϑ(X, t))N−P (6.23)

which is replaced by a Gaussian PDF with mean ϑ(X, t) N and standard deviation√
ϑ(X, t) (1− ϑ(X, t)) N for the sake of easier computation. The total likelihood of a given

unified parameter set to yield the two measured curves is then the product of the probabilities
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6. Determination of Atomic Matrix Elements with Off-Resonant Radiation

for all measured values:

p̂tot(X) =

(
N∏
i=1

p̂↑i (X↑)

)(
N∏
i=1

p̂↓i (X↓)

)
(6.24)
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Figure 6.9.: Error ellipsoid resulting from the calculation of the parameter set probabilities
Eq. 6.24 within a 3D parameter cube around the optimum values determined from the fit in
Fig. 6.4, see text. The axes are normalized to the optimum values.

The parameter likelihood Eq. 6.24 is calculated on grid in {R↑, R↓, b}-space around the
values found from the fit. The points where p̂tot has dropped to 1/

√
e of the maximum

likelihood constitute the error ellipsoid. As the difference of the scattering rates Eqs. 6.1
is needed, the ellipsoid is transformed to the {R↑ − R↓, R↑ + R↓, b} coordinate set. The
extremal points along the R↑−R↓ then determine the accuracy of the scattering rate difference
including all parameter correlations, the same holding for the branching parameter b.

6.8. Final Results

Table 6.1 shows the figures from the evaluation from the two datasets at different Raman
detunings. It can be seen that the measurements of the Stark shifts and scattering rates are
quite accurate with respect to their statistical errors and should therefore provide results for
the lifetimes with an accuracy below 1%. The deviation of the two obtained values for the
lifetimes however clearly lies outside the statisitcal confidence interval, such that an unknown
error source must have been present. An error source which might be responsible for this was

138



6.9. Additional Error Sources

Data Set 1 2

∆R/2π [GHz] 13.06±0.02 15.90±0.02

∆S/2π [MHz] 1.423±0.004 1.1623±0.0009

R↑
[
s−1
]

10060 6601

R↓
[
s−1
]

5054 3360

∆R
[
s−1
]

5006±34 3242±24

b 0.209 0.201

α↑ 0.921 0.918

α↓ 0.940 0.914

β↑ 0.035 0.013

β↓ 0.040 0.035

γ 0 0

τS [ns] 7.26±0.05 7.52±0.06

τD [ns] 109±0.8 113±0.9

Table 6.1.: Fit results for the parameter sets Eqs. 6.21 for two individual measurements

found later on: The switching EOM for the off-resonant beam was always switched on for a
duration given by the maximum pulse length. During that timespan, if the R2 AOM is not
switched on, remaining light from the 0th order still impinges onto the ion where it causes
scattering, which causes a systematic error in the scattering rate measurement. Further data
will be taken where the EOM is directly switched off after the scattering pulse, such that this
error source is avoided.

6.9. Additional Error Sources

Lorenzian lineshape and power broadening: The assumed dependence of the scattering
rates on the Raman detuning R ∝ ∆−2

R is only valid for ∆R � Γ′, where Γ′ = Γ
√

1− S is the
saturation broadened effective linewidth, see Sec. 2.1.1. Under consideration of saturation
broadening, Eqs. 6.1 have to be replaced by:

R↑ = ΓPS
Ω2

Γ2
PS + 2

3Ω2 + 4∆2
R

1

9

(
ε2− + ε20

)
R↓ = ΓPS

Ω2

Γ2
PS + 2

3Ω2 + 4∆2
R

1

9

(
ε2+ + ε20

)
. (6.25)

For the parameter set in the left column of Table 6.1, the error given by the relative difference
of the scattering rates with and without consideration of saturation broadening is estimated
to be about 5·10−4, which is sufficiently small. A similar estimation still has to be carried
out for the Stark shift. In a more sophisticated treatment, saturation broadening can be
incorporated in the final result Eq. 6.6 to increase the accuracy.
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6. Determination of Atomic Matrix Elements with Off-Resonant Radiation

Scattering curve offset: One might be surprised by the fact that the values for γ in the
scattering parameters Eq. 6.21 are found to be zero, however an analysis of the underlying
physics leads to a justification the γ is indeed negligible. According to Eq. 6.20, the defining
quantities for γ are the false transfer probability from |↓〉, r↓, and the probability the fluo-
rescence below discrimination threshold is detected albeit the ion is in the bright S1/2,D3/2

manifold, pSd . The false transfer probability is below 1%, which is shown in Fig. 4.21. This
translates into a much smaller error in the scattering parameters, because the offset is only a
static parameter. pSd can be calculated from the fluorescence rates, which were 25 kHz bright
counts and 4 kHz dark counts for 3 ms detection time. The result is pSd ' 10−7,see Ref.
[Roo00], pp. 119.
Resonant beam components: The laser source for the off-resonant beam is derived from
an amplified system with an ASE background spanning several nm, such that sum frequency
generation (SFG) with a laser photon and an ASE photon could in principle lead to near
resonant components in the doubled beam which might strongly enhance the scattering rate.
The conditions for this process would be that the Raman detuning is an integer multiple
of two times the SHG cavity FSR of about 500 MHz, furthermore phase matching condi-
tions for SFG have to be fulfilled. To assert that this effect plays no role, a measurement
was performed where a scattering pulse of fixed power and duration such that roughly 20%
of population of the initially populated |↑〉 level is removed, while the laser wavelength is
scanned sufficiently slow over four SHG cavity FSRs. No resonant features were observed,
such we can claim that the SFG effect does not contribute to scattering.
Presence of the P3/2 state: The P3/2 state also contributes to the Stark shift and scat-
tering rates, however the fine-structure splitting of about 6.8 THz is large compared to the
typical Raman detuning, leading to errors in the per mil range for the Stark shift and in the
10−6 range for the scattering rates. However, the P3/2 contributions can be included in the
treatment leading to the result Eq. 6.6.
Zeeman splitting: The Zeeman splitting of roughly 18 MHz within the S1/2 manifold and
roughly 6 MHz in the P1/2 manifold is small compared to the Raman detuning, the errors
are of similar magnitudes as for the reasoning for the P3/2 state above. Also in this case, the
model can be extended to include the Zeeman splitting.

6.10. Complete Measurement by Measuring Absolute Stark
Shifts

In this section we briefly present an extension of the measurement scheme which allows for a
complete determination of the parameters characterizing the interaction between an atomic
system and a classical laser beam. In the final result for the lifetime of the excited state,
Eq. 6.6, the Rabi frequency Ω and the polarization components εi drop out. However, if
the Stark shifts of the levels |↑〉 and |↓〉 can be measured individually, one obtains sufficient
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Figure 6.10.: Level scheme for absolute Stark shift measurement: The two red arrows indicate
the transitions on which the absolute Stark shifts of the |↑〉 and |↓〉 are probed.

information to determine all unknown parameters. We obtain the Rabi frequency

Ω2 = 12 ∆R

(
∆↑S + ∆↓S

)
, (6.26)

and the polarization components:

ε2+ =
R↓∆

↓
S +R↓∆

↑
S − 2 R↑∆

↓
S(

∆↑S + ∆↓S

)
(R↑ −R↓)

ε2− =
2 R↓∆

↑
S −R↑∆

↓
S −R↑∆

↑
S(

∆↑S + ∆↓S

)
(R↑ −R↓)

ε20 = −2
R↓∆

↑
S −R↑∆

↓
S(

∆↑S + ∆↓S

)
(R↑ −R↓)

. (6.27)

In the case of the 40Ca+ ion, the quadrupole transition at 729 nm can be utilized to measure
the absolute Stark shifts. Fig. 6.10 shows the relevant transitions: The Stark shift of the
|↑〉 levels is probed on the |↑〉 → |D5/2,mJ = +5/2〉 transition and the shift of the |↓〉 levels
is probed on the |↓〉 → |D5/2,mJ = +3/2〉 transition. The same basic Ramsey sequence
as in Sec. 6.5 is used, only that the 729 nm laser is employed for the Ramsey pulses, the
measurement sequences are depicted in Fig. 6.11 d). The precision of these measurements
is mostly impaired by the drift of the PDH cavity of the 729 nm laser stabilization. For a
Ramsey delay time of 20 µs and an absolute shift 2π·2 MHz, a resonance drift of 25 kHz would
lead to an additional phase slip by π throughout the data acquisition, leading to a difference
of one fringe compared 40 expected ones, which amounts to an error of 2.5%. At typical drift
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Figure 6.11.: Measurement scheme for the absolute Stark shift: a) and b) show resulting
Ramsey fringes for the two measurement sequences indicated in e). The difference signal is
shown in c) along with the capture range of the resonance tracking (dashed box). d) shows
the measurement sequence for the absolute Stark shift measurement.

rates of about 10 kHz per hour and data acquisition times of up to 20 minutes, this can lead
to considerable measurement errors. The solution for this problem is an automatic tracking of
the resonance performed during the actual measurement. To keep the measurement effort for
this at a minimum, a single measurement providing a value (instead of a curve from which
the resonance locations can be derived as a fit parameter) from which the location of the
resonance can be inferred is required. Such a measurement scheme was demonstrated in Ref.
[Let04]: Two Ramsey measurements (without shift pulse) are performed where in one case the
concluding pulse has a +π/4 phase shift with respect to the first pulse, and the in the other
case the phase shift is −π/4. The sequences are depicted in Fig. 6.11 e). Measurement results
for the two sequences are shown in a) and b), and the difference between the two signals is
shown in c). The signal within the dashed box has a zero crossing at resonance, this represents
the capture range for which a correction frequency can be calculated to calculate the new
resonance frequency. The extra phase shift from an off-resonance of δ for a Ramsey delay τ
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Figure 6.12.: Drift compensated Stark shift measurement: a) shows the signals from the
measurement sequences from Fig. 6.11 e) (red and blue curves) performed during a Stark
shift measurement run on the |↑〉 → |D5/2,mJ = +5/2〉 transition. The difference signal
(black) along with a 5th order polynomial fit (black solid curve) is indicating the drift of the
resonance. b) shows the corresponding Stark shift measurement data (black) along with a
simple fit to Eq. 6.14 (blue) and a fit including the drift measurement data (red).

is given by φδ = δτ , and the difference signal is calculated using Eq. 2.12 to be

∆X = − 1√
2

sin(δτ), (6.28)

which leads to
φδ = arcsin(−

√
2∆X) (6.29)

Fig. 6.12 shows data from an absolute Stark shift measurement with resonance tracking. The
tracking data was taken only at every second data point. A polynomial fit to the difference
signal from the sequences with the two different analysis phases is of 5h order is performed,
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6. Determination of Atomic Matrix Elements with Off-Resonant Radiation

giving a smooth approximate time-dependent extra phase shift ∆X(t), which is incorporated
into Eq. 6.14:

S(t) = a e−γ t sin(∆S t− φδ(t) + φ) + b. (6.30)

Fits to the simple model and the corrected model are shown in Fig. 6.12 b), where on can
see a considerable difference between the results. In this specific case, the relative difference
of the resulting shift is about 1.8%, which is clearly beyond the accuracy of the fit result
of 0.18%. We therefore conclude that the accuracy of the measurement can be increased by
about one order of magnitude by utilizing the resonance tracking method, which only doubles
the data acquisition effort.
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7. Motional State Tomography

This chapter deals with the experimental reconstruction of the density matrix describing
the quantum state of the axial mode of vibration of a single trapped atom. The techniques
established for coherent qubit manipulation are now extended by Raman sideband cooling,
which represents a necessary ingredient for the investigation of the quantized harmonic motion
of the ion. The measurement presented in this chapter is to be seen as a demonstration of
quantum state tomography. The precise control and measurement of the ion’s motional
state which is accomplished serves as a basis for many experiments, some of which have
been performed within the scope of this thesis such as the ones presented in Sec. 8.3, while
envisaged experiments in the field of quantum thermodynamics heavily rely on the techniques
demonstrated here, see [Hub08],[Hub10a]. Rabi oscillations on the blue motional sideband
of the stimulated Raman transition between the qubit levels |↑〉 and |↓〉 provide information
about the motional state, as it was demonstrated in Sec. 4.6. As can be seen from Eq.
2.56, only the phonon occupation probabilities, i.e. the diagonal elements of the density
matrix can be extracted from a single scan, no information about the off-diagonal elements is
obtained. Thus, one has to resort to a measurement protocol where phonon distributions are
acquired for various conditions, and from this data the density matrix can be reconstructed.
Because of the analogy to experiments utilizing photons, where integrals of phase space
distribution functions are measured from which these distribution can be obtained by means
of the inverse Radon transform, these measurement methods are summarized as quantum state
tomography. A pioneering experiment on the generation and characterization of nonclassical
states has been performed in [Mee96], which was extended to a tomographic reconstruction
of the density matrix characterizing the quantum state of the system in [Lei96].

7.1. The Method

The tomography method of our choice consists in the acquisition of blue sideband Rabi
oscillations after an arbitrary additional displacement of the motional mode. The general
expression for the probability Qk(α, ρ) the find k phonons after a displacement operation
U(α) on the initial state described by the density matrix ρ is

Qk(α, ρ) = 〈k|U †(α) ρ̂ U(α)|k〉. (7.1)
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In order to find an expression which can be evaluated in terms of α, k and the matrix elements
ρnm, this can be rewritten as

Qk(α, ρ) =
∑
nm

ρnm〈k|U †(α)|n〉〈m|U(α)|k〉

=
∑
nm

ρnm〈n|U(α)|k〉∗〈m|U(α)|k〉, (7.2)

with the matrix element

〈k|U(α)|n〉 =


√

n!
k!e
− |α|

2

2 αk−nLk−nn

(
|α|2

)
for k > n,√

k!
n!e
− |α|

2

2 (−α)n−kLn−kk

(
|α|2

)
for n ≤ k,

(7.3)

from Ref. [El-99]. It was found that the matrix elements Eq. 7.3 do not correctly account for
imaginary α’s, which inevitably occur in the measurement scheme as the orientation of the
frame of reference is fixed by possible initial displacement. An alternative derivation along
the lines of Ref. [Lei96] is as follows:

Qk(α, ρ) = 〈0|akU †(α) ρ̂ U(α)a†k|0〉

=
1

k!
〈α|U(α)akU †(α) ρ̂ U(α)a†kU †(α)|α〉

=
1

k!
〈α|(a− α)k ρ̂ a† − α∗)k|α〉

=
1

k!

∑
nm

ρnm〈α|(a− α)k|n〉〈m|(a† − α∗)k|α〉. (7.4)

The matrix elements herein are found to be

〈α|(a− α)k|n〉> =

k∑
j=0

(
k

j

)
(−1)jαj〈α|ak−j |n〉

=

k∑
j=0

(
k

j

)
(−1)jαj

√
n!

(n− k + j)!
〈α|n− k + j〉

= e−
|α|2

2

k∑
j=0

(
k

j

)
(−1)jαj

√
n!

(n− k + j)!
α∗(n−k+j). (7.5)

Equivalently, one finds

〈m|a† − α∗)k|α〉 = e−
|α|2

2

k∑
j=0

(
k

j

)
(−1)jα∗j

√
∠m!

(m− k + j)!
α(m−k+j). (7.6)
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This finally yields

Qk(α, ρ) =
e−|α|

2

k!

∑
nm

ρnm

k∑
j1,j2=0

(
k

j1

)(
k

j2

)
(−1)j1+j2αj1α∗j2

×
√
n!m!

(n− k + j1)!(m− k + j2)!
α∗(n−k+j1)α(m−k+j2). (7.7)

This is exactly the required implicit expression for the matrix elements ρnm, where quantities
extracted from the measurement data are on the lhs of the equation. This allows for finding
a density matrix leading to the measurement results by means of a maximum likelihood
method.

In order find the density matrix pertaining to the phonon distributions found from the
measured data, a parametrization in terms of a set real number has to be used that keeps
the matrix in the space of matrices with the required properties, i.e. a) Hermiticity ρij = ρ∗ji
and b) trace normalization Trρ = 1 and c) ρ has to be positive definite 〈Ψ|ρ|Ψ〉 > 0 and real
for any |Ψ〉 . Such a representation is given by [Jam01]

ρ =
T †T

TrT †T
(7.8)

with

T =


t0 0 0 · · ·
t01 t1 0 · · ·
t02 t12 t2 · · ·
...

...
...

. . .

 (7.9)

The quantity to be minimized is then sum of the squares of the measured phonon occupation
probabilities and the ones predicted by a trial ρT :

F =

kmax∑
k=0

N∑
p=0

(Pk(αp)−Qk(αp, ρT ))2 , (7.10)

where the minimization is carried out in the space of the nmax + 1 + nmax(nmax + 1)/2 real
parameters from Eq. 7.9.

7.2. The Measurement Scheme

Displacement operations are carried out by connecting two phase-locked rf-synthesizers (termed
in the following as the preparation and the analysis synthesizers) to the two different elec-
trodes making up the endcap electrode of the loading region. These electrodes are located
far enough from the ion that the arising electric fields at the ion position (segment 5) can
be considered as homogeneous and pointing along the trap axis. If the synthesizer frequency
corresponds to the axial vibrational frequency, a displacement operation of the axial mode is
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Figure 7.1.: The complete tomography measurement: For each analysis displacement, the
resulting Rabi oscillations are shown along with the fitted phonon distributions.
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achieved, where the resulting displacement is proportional to the pulse time if one is exactly
at resonance. The displacements achieved this way are analyzed by performing a pulse width
scan on the bsb of the stimulated Raman transition. The bsb Rabi oscillation data is fitted
to a slightly modified version of Eq. 2.56:

pe(t) =
1

2

(
b− a0

∑
n

eγntpn cos(Ωn,n+1t)

)

≈ 1

2

(
b− a0e

γeff t
∑
n

pn cos(Ω0Mn,n+1t)

)
, (7.11)

which takes several experimental imperfections into account. Readout errors are accounted
for by the contrast parameter a0 and the baseline b. Decoherence effects manifest themselves
through the motion dependent rate γn, which can hardly be individually resolved, thus an
effective rate γeff depending on the overall motional state is used. The fitting method is
explained in detail in Appendix C.
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Figure 7.2.: Resulting phonon distributions: The diagram shows the measured phonon dis-
tributions as shown in the small insets in Fig. 7.1 versus the analysis phase. Not that the
data point for 180◦ was not included in Fig. 7.1. One clearly recognizes the narrowing of the
distributions as the analysis pulse drives the wavefunction back to the origin of phase space.

In order to make a reconstruction of the quantum state of the ion motion possible, the
resulting displacements from the rf drive have to be gauged versus the synthesizer amplitude.
This is done by taking bsb Rabi oscillation scans for four pulse amplitudes of the analysis
synthesizer, which drives the ion for 10 µs prior to the bsb pulse. The resulting signal is fitted
to Eq.7.11 by means of the method described in appendix C. The result is a linear relation
between the analysis displacement and the analysis rf amplitude of α = 0.104(1) mV−1. The
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Figure 7.3.: Resulting density matrix: The density matrix obtained from the measurement
data shown in Fig. 7.1 by means of a maximum-likelihood reconstruction is shown. The left
diagram shows the real parts and the right diagram shows the imaginary parts. The density
matrix pertains to a coherent state with a displacement of α ≈ 0.295 + i 0.195, where the
imaginary part is presumably due to slight off-resonance of the displacement drive from the
vibrational frequency.

tomography itself is then carried out by preparing a coherent state by displacing the motion
by means of a pulse of fixed amplitude, duration and phase from the preparation synthesizer,
and then exerting a second displacement pulse with fixed duration and amplitude but varying
phase with the analysis synthesizer. The preparation amplitude is 70 mV, and the analysis
amplitude is chosen to be 100 mV. The resulting signal then depends on the difference vector
of the two displacement operations. Fig. 7.1 shows the resulting data for the different
analysis displacement phases in detail. For the resulting phonon distributions establish the
lhs of Eq. 7.7, while the calibration data determines the rhs. The data is then fed into a
genetic algorithm which builds test density matrices out of initially random number according
to the recipe given by Eq. 7.9. The fitness of each each test density matrix is then evaluated
by comparing the expected phonon distributions from the test matrix to the measured data
according to the fidelity function Eq. 7.10. After several iterations of the algorithm, a valid
density matrix optimally reproducing the measurement data is found. The real and imaginary
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parts of the retrieved matrix are shown in Fig. 7.3. This matrix pertains to a coherent state
with a displacement of α ≈ 0.295 + i 0.195. The nonvanishing imaginary part is presumably
due to a detuning of the drive rf from the motional mode. This is due to the fact that the
spectroscopic determination of the motional frequency is always obscured by Stark shifts from
the off-resonant light and from the off-resonant driving of carrier Rabi oscillations.
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8. Preparation and Characterization of
Schrödinger Cat States

This chapter gives a detailed account on the preparation and characterization of states with
entanglement between spin and motion. The basic mechanism for the generation of these
states is the usage of spin-dependent light forces, which is explained in detail in Sec. 8.1. In
sec. 8.2, the influence of the preparation of the initial state on the evolution under these forces
is investigated, and in Sec. 8.3, the dynamics of the phonon distribution during this kind of
dynamics is presented. Finally, in Sec. 8.4, results from measurements where spin-dependent
forces are used to establish a general, precise and efficient state tomography scheme are
shown.

8.1. Preparation of a Schrödinger Cat State of a Single Ion

In order to express his objections against quantum theory, Erwin Schrödinger devised a
famous Gedankenexperiment where a quantum superposition state of a microscopic object is
mapped to a superposition state of a macroscopic object, which was exemplified by a cat being
dead and alive at the same time. It is known today that quantum interference phenomena
of macroscopic objects are not observed in every day life because unavoidable interaction of
such objects with their surroundings leads to a loss of their quantum coherence on extremely
fast timescales determined by the distinguishability. This process is termed decoherence, and
it is the reason why most experiments demonstrating pure quantum behavior are carried
out on either microscopic objects which are isolated from other objects with a tremendous
experimental effort, or on particles that are interacting weakly with the environment, e.g.
photons. It is however still an open question how far the transfer of quantum coherence from
smaller to larger scale, which is termed the von-Neumann chain, can be principally pushed,
i.e. if there is a yet unknown fundamental limit leading to the impossibility of observing
quantum superpositions in the macroscopic world. This is one of the main motivations for
creating large-scale entanglement of many qubits in devices like our segmented ion trap.

Schrödinger cat states could be successfully prepared in ion traps by utilizing state depen-
dent light forces [Mon96]. Their decoherence behavior in engineered reservoirs was exten-
sively studied in [Mya00]. In these experiments, the state of an internal (electronic) degree
of freedom determines the motional behavior upon exposure to a tailored laser field. There-
fore, an internal state superposition leads to a nonclassical superposition of motional states,
which could in principle be made arbitrarily large under perfect conditions. The resulting
joint quantum states exhibit entanglement between internal and external degrees of freedom,
which suggests the usage of spin dependent forces for two-qubit entangling gates. How two-
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a)

b)

c)

d)

 

! 

Figure 8.1.: Illustration of the spin-dependent light force: a) shows an ion in the internal state
|↑〉 in two counterpropagating laser fields with a relative detuning δ. The solid sinusoidal lines
indicate the Stark shift arising from the beat pattern for the corresponding spin state. The
purple arrows indicate the movement of the beat pattern due to the relative detuning, and
the arrow on the ion shows the force arising due to the inhomogeneous Stark shift. b) shows
the same situation with the ion being in the |↓〉 state, experiencing the opposite force. c)
shows a two-ion crystal with both ions in the |↑〉 state, aligned along the standing wave such
that their distance matches half the wavelength, such that the stretch mode of the crystal
is excited by the moving beat pattern. d) shows the trajectories for different states in the
phase space of a motional mode, where the relative laser detuning slightly mismatches the
vibrational frequency by δε. For the |↑↓〉 and |↓↑〉 states, the force cancels and the mode is
not displaced throughout the exposure to the light field. The geometric phase Φ accumulated
during one closed cycle in phase space is indicated in the circles.

ion gates can be realized via the creation Schrödinger cat state is explained in detail in Sec.
9.5.

We consider a situation where a single ion is placed into a beat pattern of the Raman
beams R2 and CC, see Sec. 3.2.5, which is aligned along the trap axis. The effective k-vector
thus reads

~∆k ≈ 2π

λ
sin θ~ex, (8.1)

where θ ≈ π/2 is the relative angle of the two beams and the small frequency difference has
been neglected. The CC beam is blue detuned by δR relative to the R2 one. It is assumed
that the Raman detuning is much larger than the Zeeman splitting |∆R| � µBgS1/2

and
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8.1. Preparation of a Schrödinger Cat State of a Single Ion

the atomic linewidth |∆R| � Γ. As we do not want to drive stimulated Raman processes
between |↑〉 and |↓〉 but rather to give rise to Stark shifts, we chose the beam geometry such
that only circular components are present. We can now invoke Eq. A.16 to obtain the Stark
shift exerted by the two beams:

∆S =
1

12∆R

(
Ω2
b

(
ε2b− − ε2b+

)
+ Ω2

r

(
ε2r− − ε2r+

))
+ ΩrΩb

(
εr−ε

∗
b−e

i(∆kx−δRt+∆φ) − εr+ε∗b+ei(∆kx−δRt+∆φ) + c.c.
)
. (8.2)

Considering that the − components act only on the |↑〉 state and the + components act only
on the |↓〉 state, we can write down a corresponding Hamiltonian operator

HS =
~

12∆R

(
Ω2
bε

2
b− + Ω2

rε
2
r− + ΩrΩbεr−ε

∗
b−e

i(∆kx−δRt+∆φ)
)
|↑〉 〈↑|

+
~

12∆R

(
Ω2
bε

2
b+ + Ω2

rε
2
r+ + ΩrΩbεr+ε

∗
b+e

i(∆kx−δRt+∆φ)
)
|↓〉 〈↓| . (8.3)

The CC beam is vertically polarized, such that Eqs. 2.26 yield εb− = εb+ = i/
√

2. R2 is
assumed to propagate exactly in parallel to the quantizing magnetic field, only the rotation
angle φr can be freely adjusted, which leads to εr± = (i sinφr ± cosφr)/

√
2. Inserting these

polarizations into Eq. 8.3 yields

HS =
~ΩrΩb

12∆R
(sinφr cos(∆kx̂− δRt+ ∆φ)− cosφr sin(∆kx̂− δRt+ ∆φ)) |↑〉 〈↑|

+
~ΩrΩb

12∆R
(sinφr cos(∆kx̂− δRt+ ∆φ) + cosφr sin(∆kx̂− δRt+ ∆φ)) |↓〉 〈↓| .

(8.4)

From the cosφr factor, it can be seen that a pure differential shift only arises for φr = 0, i.e.
if the R2 beam polarization is horizontally aligned. We then obtain

HS = ~∆S sin(∆kx̂− δRt+ ∆φ)σ̂z. (8.5)

with the dynamical Stark shift amplitude

∆S =
ΩrΩb

12∆R
, (8.6)

which is not to be confused with the static Stark shift

Ĥ
(0)
S =

1

12∆R

(
(ε2r+ − ε2r−)Ω2

r + (ε2b+ − ε2b−)Ω2
b

)
σ̂z, (8.7)

which is set to zero by appropriate choice of the polarizations. The Hamiltonian contains
products of the position and spin operators, it therefore becomes immediately clear that it
can be used to entangle spin and motion. Eq. 8.5 can be rearranged to

ĤS = ~∆S(sin(∆kx̂) cos(δRt−∆φ)− cos(∆kx̂) sin(δRt−∆φ))σ̂z. (8.8)
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Upon Taylor expansion of the spatial parts this yields

ĤS ≈ ~∆S(∆kx̂ cos(δRt−∆φ)− sin(δRt−∆φ))σ̂z +O(∆k2x̂2). (8.9)

This holds in the Lamb-Dicke regime, where ∆kx� 1. The sin(δt−∆φ) term simply gives
rise to an oscillating phase:

φosc =
∆S

δR
(cos(δRt−∆φ)− cos(∆φ))σ̂z, (8.10)

which vanishes for t = 2πn/δR. The Hamiltonian therefore reduces to

ĤS = ~∆S∆kx̂ cos(δRt−∆φ)σ̂z. (8.11)

We can now write x̂ in terms of ladder operators, x̂ = x0(â+ â†), and replace these by their
interaction picture versions âI = eiH0t/~âe−iH0t/~ = eiωtâ, with H0 = ~ω(â†â+ 1/2) where ω
is the motional frequency of the harmonic oscillator. We finally obtain the Hamiltonian in
the interaction picture:

Ĥ
(I)
S = ~∆S∆k x0(âe−iωt + â†eiωt) cos(δRt−∆φ))σ̂z

≈ ~
η ∆S

2
(âei(δt+∆φ) + â†e−i(δt−∆φ))σ̂z, (8.12)

where η = ∆kx0 is the Lamb-Dicke factor and the detuning from the motional frequency,
δ = δR − ω was introduced. The terms rotating at δR + ω were dropped. The dynamics
governed by this Hamiltonian can be easily understood by considering that according the
Hellmann-Feynman theorem, the quantum mechanical analogue of a force is given by

〈F〉 = 〈Ψ|dĤ
dx̂
|Ψ〉, (8.13)

such that the part proportional to x̂ can be written as a spin-dependent oscillating force:

〈F〉S = ~∆S∆k cos(δRt−∆φ)σ̂z. (8.14)

Ignoring the dependence on the spin for the moment, this is the quantum version of the forced
harmonic oscillator: If the initial state is a coherent state, the dynamics can be described
semiclassically. The center-of-mass motion obeys the classical equation of motion with the
force given by Eq. 8.14 and the wavefunction always retains its shape. Additionally, a non-
classical geometric phase is picked up.
The propagator pertaining to the interaction picture Hamiltonian Eq. 8.12 is given by the
following expression:

Û
H

(I)
S

(t) = eiφosc(t)σ̂zeiΦ(t)D̂(α(t)), (8.15)

with the displacement operator

D̂(α) = eαâ
†−α∗â. (8.16)
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The parameters α(t) and Φ(t) can by analytically found by writing down the general solution
of the time-dependent Schrödinger equation as a Magnus expansion up to second order:

Û
H

(I)
S

(t) = exp

(
− i
~

(∫ t

0
Ĥ

(I)
S (t′)dt′ − i

2~

∫ t

0

∫ t′

0
[Ĥ

(I)
S (t′), Ĥ

(I)
S (t′′)]dt′dt′′ + ...

))
. (8.17)

Keeping only the first term of the Magnus expansion, inserting Eq. 8.12 and comparing with
Eq. 8.16, we obtain the time-dependent displacement α(t)

α(t) = −iη∆S

2

∫ t

0
e−i(δt

′−∆φ)dt′

=
η∆S

2δ
ei∆φ(e−iδt − 1)

= −iη∆S

δ
ei∆φe−i

δt
2 sin

δt

2
. (8.18)

The geometric phase results from the second order contribution from the Magnus expansion
Eq. 8.17. With the commutator evaluated to be

[ĤS(t′), ĤS(t′′)] = i
~2η2∆2

S

2
sin(δ(t′ − t′′)), (8.19)

we can evaluate the double integral,∫ t

0

∫ t′

0
[ĤS(t′), ĤS(t′′)]dt′dt′′ = −i

~2η2∆2
S

2

sin δt− δt
δ2

(8.20)

such that we finally obtain for the geometric phase

Φ(t) =
η2∆2

S

4

sin δt− δt
δ2

. (8.21)

As can be directly seen in the derivation, the geometric phase is a consequence of the non-
commutativity of the Hamiltonian at different intermediate times, i.e. the final state of the
system depends on intermediate steps in the time evolution, such that different classical
trajectories ending up at the same displacement can still yield different geometric phases.
The geometric phase can also be expressed by the area encircled by the trajectory, which is
given by

Φ(t) =
1

~

∫ t

0
〈x(t′)〉d〈p(t′)〉 − 〈p(t′)〉d〈x(t′)〉

=

∫ t

0
α(t′)dα∗(t′)− α∗(t′)dα(t′)

=

∫ t

0
(α(t′)α̇∗(t′)− α∗(t′)α̇(t′))dt

= −
η2∆2

S

4δ

∫ t

0
sin2

(
δt

2

)
dt

=
η2∆2

S

4δ2
(sin(δt)− δt) (8.22)
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a) b)

c)
A

B

Figure 8.2.: Analogy between the Schrödinger cat experiment and a Mach-Zehnder interfer-
ometer: a) shows the state evolution during the Ramsey sequence as described in the text,
superposition of the four possible paths clearly leads to interference fringes. In case b), the
additional displacement leads to cancellation of exactly this interference. c) illustrates the
Mach-Zehnder interferometer, where a light beam is split into two separate branches which
each have an adjustable phase delay. Resuperposition leads to interference fringes, which
would be not the case if which-path-information can be additionally obtained. The displace-
ment from case b) represents such an information, as the motional state can be read out
independently of the spin.

which is identical to Eq. 8.21. Eq. 8.18 has been invoked in the second-last line. If δ = 0,
the oscillator is resonantly driven, which would continuously increase the displacement until
higher order terms take effect. For a finite δ however, the drive counteracts the oscillation
after time t = π/δ, such that we end up at the origin at t = 2π/δ. The circular trajectories
occurring in this case are depicted in Fig. 8.1. The resulting geometric phase is then

Φ(tf ) = 2π
η2∆2

S

4δ2
. (8.23)

This geometric phase cannot be observed in the described experimental situation, as both
spin components pick up the same phase for balanced driving. However, it plays the crucial
role for realizing a quantum gate with two ions, as is pointed out in detail in Chap. 9.
How a single-ion Schrödinger cat state is measured by means of an interferometric scheme
is illustrated in Fig. 8.2, where the geometric phase is omitted for the sake of simplicity.
The interferometer in this case consists of a sequence of two π/2 pulses, between which
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Figure 8.3.: Entanglement-induced contrast loss for the Schrödinger cat state: The curve
shows the measured Ramsey contrast versus displacement pulse time, along with a fit to the
model Eq. 8.26. After a rapid initial decay due to the displacement, the curve displays a
contrast revival after t = 2π/δ when the trajectory goes back to the starting point, such that
spin and motion are disentangled again. The maximum size of the cat is reached after half
this time, and is found to be 2|α|max ≈ 1.55.

the displacement force is applied. The final spin state depends on the phase of the second
π/2 pulse, similar to the decoherence measurements of Sec. 4.7. In analogy to a Mach-
Zehnder interferometer, the displacement caused by the light force, which is conditional on
the spin state, gives a which-path information which leads to the collapse of the Ramsey
fringe contrast. As the motional state after application of the force depends on the spin,
which is in a coherent superposition of |↑〉 and |↓〉 after the first π/2 pulse, the force leads to
entanglement between the spin and motional degree of freedom. This beautifully illustrates
how entanglement between a small initial system under observation (the spin) and degrees of
freedom of a larger Hilbert space (the motion) obscures the observation of coherence of the
initial system.
For the displaced ion, the probabilities to find the ion in either |↑〉 or |↓〉 after the analysis
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π/2-pulse are given by

P↑ =
1

2
(1− cosφ〈−α|α〉) =

1

2
(1− cosφ e−2|α|2)

P↓ =
1

2
(1 + cosφ〈−α|α〉) =

1

2
(1 + cosφ e−2|α|2). (8.24)

The fringe contrast obtained when measuring P↑ while scanning the phase φ, C = Pmax
↑ −Pmin

↑ ,
is then given by

C = e−2|α|2 . (8.25)

If we now perform the contrast measurement for varying duration t of the displacement pulse,
we can insert the time-dependent displacement from Eq. 8.18 into Eq. 8.25:

C(t) = e−
η2∆2

S
δ2

sin2(δt/2) (8.26)

Measurement results are shown in Fig. 8.3, where a spin-echo sequence was used instead of
the simple Ramsey sequence in order to reduce decoherence effects, which does not change the
result Eq. 8.26. For each data point corresponding to a fixed displacement pulse duration,
the phase of the analysis pulse was scanned from 0 to 2π in steps of π/10. The resulting
signal is fitted to a single sine period with floating phase shift, offset and amplitude, and the
amplitude gives the Ramsey contrast C(t). Eq. 8.26 is then fitted to the measured contrast
curve, where the detuning from the vibrational frequency, δ, and the displacement amplitude
|α|max = η∆S/2δ are floating and an additional decoherence induced contrast decay factor
e−γt with floating γ is included.

160



8.2. Temperature Dependence and Quantum Effects

8.2. Temperature Dependence and Quantum Effects

For Schrödinger cat experiments under imperfect ground state cooling conditions, as they are
discussed later on in Sec. 9.4, it is important to consider the influence of an initial thermal
phonon distribution on the observed signal. This has been done in Refs. [Hom06a, Hal05],
Sec. 7.4.1., with the result that one simply has to perform a thermal average in Eq. 8.24:

〈−α|α〉 →
∑
n

n̄n

(n̄+ 1)(n+1)
〈−α, n|α, n〉 (8.27)

with the matrix elements
〈−α, n|α, n〉 = 〈−α|α〉L0

n(2α2). (8.28)
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Figure 8.4.: Groundstate versus thermal signals: a) shows phase measurements performed
under same conditions on a ground state cooled ion (blue line) and a Doppler cooled ion
where n̄ = 20 is assumed (black line). The data for the thermal measurement is shifted
upwards by 0.2 for clearness. The additional lines are data from the simulation, see text. b)
shows similar measurement results for a thermal state (black) along with comparisons to the
model Eq. 8.29 (blue) and simulation data according to Eq. 8.30 (red), clearly demonstrating
that Eq. 8.29 does not reproduce the data.

The average can be performed analytically, such that the simple result

C(t) = e−(2n̄+1)|α(t)|2 (8.29)

is obtained. However, we performed phase contrast measurements for a thermal as well as
for a ground state cooled ion and found a significant disagreement between the measurement
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results and Eq. 8.29, where a mean phonon number of about 20 would produce revival peaks
which are by far more narrow than the measured ones. The reason for this is that the strength
of the driving light force itself is dependent on the initial state of the ion, such that α in Eq.
8.27 is dependent on n. Thus, Eq. 8.24 has to be replaced by the thermal average

P↑(t) =
1

2

(
1 +

∑
n

n̄n

(n̄+ 1)n+1
L0
n(2 |α(t)|2)e−2 |α(t)|2

)
. (8.30)

Fig. 8.4 shows measurement results for Schrödinger cat experiments with a thermal ion.
One can clearly see that Eq. 8.29 does not reproduce the experimental data, whereas Eq.
8.30 recovers the widths of the revival peaks and the dips originating from negative signs
of the Laguerre polynomials. The input for the thermal averaging is data from a numeri-
cal solution of the underlying 1D time-dependent Schrödinger equation, where a Chebyshev
propagator in conjunction with a Fourier grid has been used. The propagation was performed
with 80000 steps and the initial states were taken to be the n-th eigenstates of the harmonic
oscillator with n ranging between 0 and 40. The final results after averaging were corrected
by a normalization factor 1/

∑40
n=0 pn. Moreover, a coherence decay factor of exp(−γt) with

γ=4 ms−1 was multiplied on all simulation curves to take decoherence effects into account.
The fact that the revival features in the thermal case are more narrow despite the fact that
the driving force is weaker for higher excited states has a simple intuitive explanation: Be-
cause the more highly excited states possess faster oscillatory structures, the mutual overlap
of the spin components upon resuperposition is more sensitive to the displacement.

In the remainder of this section, we will shed light on the question how important genuine
quantum effects are for the dynamics arising from the Hamiltonian Eq. 8.12. With ’genuine
quantum’ we refer to effects beyond the semiclassical evolution that can be intuitively un-
derstood in the framework given by the application of the Hellman-Feynman theorem, Eq.
8.14, and the resulting classical dynamics. The Hellman-Feynman theorem of course always
holds, however, many physicists have fundamental misconception about its meaning: It is
often thought that in a given time-dependent quantum system, the center-of-mass of a par-
ticle always follows its classical trajectory, and quantum effects will manifest in statistical
measurements of higher order moments of distribution functions, e.g. asymmetric position
and momentum variances for squeezed states. But if the shape of the wavefunction in the
center-of-mass system is altered throughout the dynamics, the expectation value of the force
will deviate from the classical value and the trajectory will fundamentally deviate from the
classical one. We have carried out classical and quantum dynamical simulations for the same
parameters, for varying driving strengths and two different Lamb-Dicke factors, i.e. axial
vibrational frequencies. The resulting trajectories are shown in Fig. 8.5. The predominant
effect seen for both classical and quantum mechanical trajectories is the distortion of the
trajectory for strong driving and large displacements which is due to the spatial inhomogene-
ity of the force and an entirely classical effect. For extremely strong driving, the quantum
mechanical trajectory is indeed seen to roll off of the classical one. Interestingly, the quan-
tum mechanical effects seem to occur more strongly for larger Lamb-Dicke factors, where in
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Figure 8.5.: Classical and quantum mechanical trajectories: a) Classical (red) and quantum
mechanical (blue) trajectories resulting from the displacement drive at a motional frequency
of ωax=2π·1 MHz. b) the same for ωax=2π·1.4 MHz. The black arrow indicates that the
outer trajectories result from driving with larger Stark shift ∆S , see Eq. 8.12. The maximum
Stark shift for the outermost trajectories is ∆S=2π·200 kHz, changed in steps of π·10 kHz.
The detuning from the motional mode is δ=2π·5 kHz. Note the additional microoscillations
resulting from the mismatch between drive and oscillation frequency.

turn the anharmonic distortion effect is less pronounced. It can be concluded that genuine
quantum effects are not significant in the regime where quantum gates are usually driven,
but one might have to take them into account. If a strong enough driving can be realized,
it might be of interest to perform a proof-of-principle experiment where the occurrence of
nonclassical trajectories of a single ion is unambiguously demonstrated.

8.3. Phonon Distribution Dynamics

A detailed analysis of the effect of the light force on the motional state is performed by recon-
struction of the phonon distributions on the axial vibrational mode, with a method similar to
the one presented in Chap. 7. Instead of a phase coherence measurement as it was performed
in the Schrödinger cat experiment described above, we recorded Rabi oscillations on the blue
motional sideband and used this information for a maximum-likelihood reconstruction of the
phonon distribution function p(n). For preceding displacement pulses of times of up to 64 µs,
changed in steps of 4 µs, Rabi oscillations of a duration of 200 µs, including approximately
5.5 oscillation periods were recorded. The reconstruction of the phonon distribution is per-
formed in entirely the same way as in Chap. 7, where the phonon distributions are obtained
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Figure 8.6.: Reconstructed phonon distributions. The plot shows the occupation probabilities
of the phonon number states versus the displacement pulse duration.

from fitting of the Rabi oscillation data to Eq. 7.11. The resulting distributions are shown
in Figs. 8.6 and 8.7. They are fitted to distributions pertaining to coherent states:

p(n) = e−
|α|2

2
α2

√
n!
. (8.31)

The displacement parameters inferred from the fits are shown in Fig. 8.8 a), along with
a fit to Eq. 8.18, from which a detuning from the motional frequency of δ ≈ 2π·28.4 kHz
is obtained. This data is used to reproduce the data from an independent phase contrast
measurement similar to the type of Fig. 8.3, which is shown in Fig. 8.7 b). For this
reconstruction, the fitted displacement curve is simply plugged into Eq. 8.25. Note that this
is not a fit, only an empirical phase decoherence factor of e−γt with γ ≈7 ms−1 has been
included.
The well-controlled displacement allows for a study on how the decoherence depends on the
motional state, in extension of the decoherence studies presented in Sec. 4.7. In a similar
study, Ref. [Mee96] empirically determined a relation between vibrational quantum number
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Figure 8.7.: Reconstructed phonon distributions with fits to coherent state distributions (red
solid lines). Note the close to perfect agreement between the theoretical and the reconstructed
probability distributions.

and decoherence rate of

γn ≈ γ0(n+ 1)χ, (8.32)

with χ ≈0.7. The motion-dependent decoherence was attributed to technical imperfections
like fluctuating trap parameters. Theoretical investigations were performed in Ref. [Fid00]
and [Bud02], where quantum jumps due to off-resonant light scattering were found to be
responsible for the effect. However, in Ref. [Fid00], no dependence of the dephasing rate
on the initial motional state was found. Ref. [Bud02] partially recovers this dependence by
additionally considering the heating rate caused by fluctuating electric fields, but the heating
rate required to cause a noticeable contribution to the dephasing would be way larger than
the one found in our experiments, where it takes place on a slower timescale (about 3 ms per
phonon in contrast to the 200 µs maximum BSB pulse time). Fig. 8.10 shows the different
types of quantum jumps which contribute to the dephasing. The scattering within the |↑, n〉
and |↓, n〉 manifolds is not contained in Eqs. A.14 and A.15 as the scattering from and to
the states is a balance of the last two terms in Eq. 2.68, where the motion is not taken
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Figure 8.8.: Results from the phonon distribution measurements: a) Displacement parameter
versus pulse time along with a fit to Eq. 8.18. b) Data of the phase coherence measurement
(black curve) along with the reconstructed data from the phonon distribution analysis (red
curve). This measurement is similar to the one of Fig. 8.3, except that for each data point, an
analysis phase of zero degrees is used rather than recording an entire interference fringe. This
relies on a properly balanced static AC Stark shift for both spin and motion manipulation
laser pulses.

into account. The ratio of non-spin-flip to spin-flip jumps can be at least 1:1 in a situation
with balanced Stark shifts. The dephasing from to the non-spin-flips jumps is caused by the
fact that the Rabi frequency after the jump is changed if the motional quantum number is
altered. For larger quantum numbers, the probability of jumps between different motional
state increases due to the larger matrix elements. Furthermore, the dephasing rate will be
larger due to the increased sideband Rabi frequencies. However, this reasoning leads to the
result that the total dephasing rate can be increased by not more than a factor of about two.
This extremal case would require large Rabi frequency changes upon non spin flip scattering
events, which is clearly not the case in our regime of motional excitation. The data in Fig.
8.9 shows the tendency of even larger dephasing rates, however, the error bars are too large
to make this effect significant.
The decoherence process investigated here is not be be confused with the one investigated in
Ref [Tur00], where the decay of the motional coherence, due to electrical field noise during
a wait time in the absence of light-matter interaction, is measured for different cat sizes. In
this case, a universal decay rate proportional to the cat size |α|2 is found. It remains to be
stated that the source of the enhancement is still unclear, possible mechanisms are i) decay on
higher order sidebands for highly excited states, ii) anharmonicities of the trap potential or
iii) sampling of the inhomogeneous spatial beam profile or magnetic field gradients. Further
dephasing sources could be trap voltage or drive intensity fluctuations which are fast on the
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Figure 8.9.: Decoherence rate versus displacement: The plot shows the empirically introduced
contrast decay rate γ from Eq. 7.11 against the extracted displacement parameters for the
BSB scans pertaining to Fig. 8.7. Despite the large error bars, an increase of the decoherence
rate for the maximum attained displacements by more than a factor of two is clearly observed.

BSB pulse timescale, leading to increased dephasing for excited motional states as their asso-
ciated BSB Rabi frequencies are larger. This mechanism can also be excluded as the required
fluctuations are quite large, furthermore enhanced dephasing rates for excited motional states
were also observed on the carrier transition, were the Rabi frequencies become smaller with
increasing excitation. As a conclusion, the source of the strong increase of the BSB oscilla-
tion dephasing with the motional excitation is yet unclear, and more data of better quality
is required to compare the results to e.g. quantum-jump Monte Carlo simulations.
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Figure 8.10.: Quantum jumps during sideband Rabi oscillations: We consider Rabi oscillations
driven from |↑, 0〉 to |↓, 1〉. a indicates quantum jumps caused by a σ− beam component,
while b) shows the jumps for a π component. Similar pathways have to be taken into account
for scattering from |↑〉 by a π component and from |↑〉 by a σ+ component. The wavy arrows
indicate the different types of jumps that can occur: The dashed arrow does not at all
change the state and does therefore not contribute to dephasing. The vertical wavy arrows
indicate changes of the motional state only and therefore contribute to the dephasing rate.
The diagonal wavy arrows pertain to spin-flip transitions and therefore correspond to fast
dephasing, the one ending at |↓, 0〉 even removes population from the Rabi cycling as this
state does not couple to the blue sideband.
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Figure 8.11.: Schematic of the wavepacket beating experiment: a) A resonant π/2 pulse
creates an initial spin superposition (resonant driving of the spin transition is indicated by
dashed arrows). b) The displacement force acting only on |↓〉 gives rise to a displacement α
of only the |↓〉-part of the wavefunction. c) A π pulse is used to swap the populations. d) A
second displacement pulse now displaces the part of the wavefunction which was previously
not affected by the force. e) A concluding π/2 pulse gives rise to the final populations in |↑〉
and |↓〉 which are to be measured.

Two modifications of the measurement scheme presented above can be used to measure the
trajectory of the ion in phase space: First, the R2 beam has to be circularly polarized such
that the light force acts on one spin component only. Furthermore, a second displacement
pulse of the same strength and duration but with variable phase is employed in the second
branch of the spin echo sequence. Physically, one is now subsequentially displacing two
different portions of the wavepacket, which yields interference if the parts are displaced such
that they have a substantial overlap in the end. The scheme is illustrated in Fig. 8.11
and described in detail in the following. It has been used in Ref. [Mon96] for the first
demonstration of the generation of Schrödinger cat states, however it has not been realized
there that the scheme is capable of ultraprecise trajectory measurements. In contrast to Ref.
[Mon96], we assume resonant driving of the spin-flip transition, such that no extra phases
are accumulated during the π/2 and π pulses, but we account for off-resonant driving of the
motion. The frequency difference of the driving beams during the displacement pulses is
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Figure 8.12.: Measurement results for the wavepacket beating scheme: The probability for
finding the ion in |↑〉 is plotted versus the displacement pulse time and the phase of the
second displacement pulse. Red pixels indicate probabilities greater than 0.5, whereas blue
pixels indicate probabilities smaller than 0.5.

given by

∆ω = ωax + δ (8.33)

After initializing to the state |↑〉, the first π/2 pulse creates the state

|Ψ〉 = | ↑, 0〉 − i| ↓, 0〉. (8.34)

The first displacement pulse gives rise to displacement of the |↓〉 component:

|Ψ〉 = | ↑, 0〉 − i| ↓, αe−i
δt
2 〉. (8.35)

The π pulse simply swaps the spin components:

|Ψ〉 = | ↓, 0〉 − i| ↑, αe−i
δt
2 〉. (8.36)

The second displacement pulse now acts on the part of the wavefunction which was previously
not affected:

|Ψ〉 = | ↓, αe−i
δt
2 eiφ

′〉 − i| ↑, αe−i
δt
2 〉, (8.37)
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8.4. The Wavepacket Beating Scheme

where the extra phase φ′ = φ + δT is comprised of the preset phase offset φ and a con-
stant phase offset accumulated during the waiting time between the two displacement pulses.
Resuperposition of the components by means of the concluding π/2 pulse creates the final
state:

|Ψ〉 = | ↑〉
(
|αe−i

δt
2 〉 − |αe−i

δt
2 eiφ

′〉
)
− i| ↓〉

(
|αe−i

δt
2 〉+ |αe−i

δt
2 eiφ

′〉
)
. (8.38)

As one can directly see, superposition states of the atomic motion are created within the
individual spin components, such that the wavepacket beating scheme makes it possible to
create genuine Schrödinger cat states. Computing the probability to find the ion in |↑〉, we
find

P↑ =
1

2

(
1−

(
〈αe−i

δt
2 |αe−i

δt
2 eiφ

′〉+ c.c.
))

. (8.39)

With 〈α|β〉 = e−
1
2

(|α|2+|β|2−2β∗α), we find for the overlap integral:

〈αe−i
δt
2 |αe−i

δt
2 eiφ

′〉 = e|α|
2(−1+(cos δt

2
+i sin δt

2
)(cos( δt2 +φ′)−i sin( δt2 +φ′))

= e|α|
2(−1+cos(δt+φ′)−i sinφ′). (8.40)

We finally find

P↑ =
1

2

(
1− e−|α|2(cos(δt+φ′)−1) cos

(
|α|2 sinφ′

))
. (8.41)
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Figure 8.13.: Measured signal from the wavepacket beating scheme: The curves show the
shelving probability versus the phase of the second displacement pulse relative to the first
one. Each data point corresponds to 200 interrogations. The three displayed datasets pertain
to displacement pulse times of 12, 36 and 60 µs.

Fig. 8.15 shows a sample of three measurements of P↑ versus the second displacement
phase offset φ, along with fits to Eq. 8.41. The curves are taken for different durations of
the displacement pulse. As one can clearly see, the model perfectly reproduces the measured
data, except for the decreasing contrast of the interference pattern for longer displacement
pulse durations. The decreasing contrast originates from the fact that one of the displacement

171



8. Preparation and Characterization of Schrödinger Cat States

beams is circularly polarized and therefore exerts a strong AC Stark shift, which leads to the
loss of spin coherence by intensity fluctuations, see Sec. 4.7. The contrast versus displacement
time is shown in Fig. 8.14. It is also found that the accuracy of the fits to the measured
data could be improved by considering a slight detuning from the spin-flip carrier transition.
According to Ref. [Mon96], Eq. 8.41 only has to be modified to

P↑ =
1

2

(
1− e−γte−|α|2(cos(δt+φ′)−1) cos

(
ψ + |α|2 sinφ′

))
, (8.42)

where γ describes the contrast decay and ψ = δcart describes the detuning from the carrier.
The phase ψ is picked up because the experimental sequence is set up such that gaps of the
spin echo sequence become longer for increasing displacement pulse durations. The AC Stark
shift does not lead to an extra phase pick-up as both components of the wavefunction are
subjected to same displacement pulse area. The results for the determination of δcar are also
shown in Fig. 8.14.
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Figure 8.14.: a) Contrast decay due to intensity fluctuations. The 1/e time is found to be
73.2 µs.b) Correction for a slight carrier off-resonance. The detuning is determined to be
δcar ≈2.3 kHz.

The maximum displacement values around α ≈ 3 are already large enough for the finite
Lamb-Dicke factor, i.e. the spatial inhomogeneity, to be seen in the dynamics. According to
Ref. [Hom06a], this can be accounted for by replacing Eq. 8.18 by

α(t) = −η∆S

2δ

δ

δeff
ei∆φei

δt
2 sin

δefft

2
. (8.43)

where δeff > δ, i.e. the particle returns to the origin in phase space before the phase of the
force is back to its original value. As the phase of the driving force has not completed a full
cycle then, further driving will lead to a cycloid-shaped trajectory, as is indicated in Fig.
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8.4. The Wavepacket Beating Scheme

8.15. Furthermore, the maximum displacement attained is reduced by a factor δ/δeff , which
means that when attempting to drive ultrafast gates within a few cycles of the trap motion,
the efficiency of the light force will be seriously impaired. δeff depends on δ, the Lamb-Dicke
factor and the strength of the driving field. Empirical formulae are given in Ref. [Hom06a].
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Figure 8.15.: Measured particle trajectory: a) The real and imaginary parts of the displace-
ments inferred from the measured curves are shown along with the theoretical curve Eq. 8.18.
For comparison with the error bars, the 1/e radius of the harmonic oscillator ground state
wavefunction is also indicated. The red dashed line indicates how the trajectory would pro-
cess beyond the measured data range. The blue curve indicates the trajectory which would
be observed in the case of a spatially homogeneous force.b) shows a fit of the absolute values
of the displacements as the are extracted from the experimental data to Eq. 8.43, from which
δeff is inferred. The dashed curve shows the values that would be expected in the case of a
homogeneous force. c) shows the motional phase φ where the constant phase offset δT was
already removed.

As a result, the wavepacket beating scheme allows for an extremely precise measurement
of the motion of the ion, where the error bars along both quadrature directions are much
smaller than the corresponding scale of the ground state wavefunction. Of course this does
not mean that the uncertainty principle is violated; the nature of the measurement is sta-
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8. Preparation and Characterization of Schrödinger Cat States

tistical and relies on the fact that exactly the same experimental procedure can be repeated
a large number of times. However, it is a clear demonstration of entanglement as a tool for
ultraprecise measurements, quite in the spirit of the emerging field of quantum metrology.
Furthermore, it shall be elucidated that a precise measurement of the trap frequency is pro-
vided, as can be seen from Fig. 8.15 c), the trap frequency is determined with an accuracy
of 27 Hz, corresponding to 0.002%. In a conventional Ramsey spectroscopy measurement, a
delay time of about 40 ms would be necessary to achieve the same accuracy, which clearly
lies far beyond the measured coherence time on the blue side band, see Fig. 4.34.
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Figure 8.16.: Cat states with varying parity: The probability for finding the ion in |↑〉 is
plotted versus the phase of the concluding π/2 pulse and the phase of the second displace-
ment pulse. Red pixels indicate probabilities greater than 0.5, whereas blue pixels indicate
probabilities smaller than 0.5.

An interesting variation of the experiment demonstrates the full control over the final
Schrödinger cat state by additionally varying the phase of the concluding π/2 pulse in the
sequence. If this phase offset ψ is taken into account, the final state Eq. 8.38 is modified to
be

|Ψ〉 = | ↑〉
(
|αe−i

δt
2 〉 − eiψ|αe−i

δt
2 eiφ

′〉
)
− i| ↓〉

(
|αe−i

δt
2 〉+ eiψ|αe−i

δt
2 eiφ

′〉
)
. (8.44)

For the measured population in |↑〉, we thus obtain

P↑ =
1

2

(
1− e−|α|2(cos(δt+φ′)−1) cos

(
ψ + |α|2 sinφ′

))
. (8.45)
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The results of a corresponding measurement at a fixed displacement pulse time of 65µs are
shown in Fig. 8.16. It is interesting to note that the measurement principle is quite analogous
to 2D spectroscopy methods in molecular science. This offers the possibility to make use of
this scheme for exploring nonlinear cross-couplings between distinct vibrational modes. The
basic idea would be to perform the experiment on a two ion crystal, where the ions are
placed such that the COM as well as the STR mode can be excited. The modes will then be
excited in a sandwich-like manner, such that the influence of an initial COM excitation on
the STR mode dynamics can be investigated and vice versa. This would be analogous to the
experiment performed in Ref. [Roo08], only the controlled excitation of single vibrational
quanta is replaced by the controlled excitation of semiclassical vibrations. It is important to
note that the wavepacket beating scheme represents a very simple method for quantum state
tomography of a vibrational mode, see chapter 7. The mathematical details and possible
future extensions are worked out in appendix D.
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9. Measurements with Two-Ion Crystals

This chapter deals with the extension of the techniques for qubit handling developed through-
out the chapters 4 and 8 to two-ion crystals, which represent the fundamental building block
for our envisaged scheme for scalable quantum computing. Sec. 9.1 explains general issues
on the crystal stability and shows how the read-out of two ions is performed. Measurement
results on the precise alignment of crystals in the driving Raman laser field are presented
in Sec. 9.2. Results from spectroscopy measurements and sideband cooling of crystals are
shown in Sec. 9.3. Sec 9.4 treats the coherent manipulation of two ions and demonstrates an
advanced technique for simultaneous readout, while the concluding Sec. 9.5 presents results
on the generation of Schrödinger cat states with two ions, which is a crucial step towards
entangling quantum gates.

9.1. Stability and Read-out

Two ion crystals represent the intended basic building block for scalable quantum informa-
tion experiments in our microtrap. Two-ion crystals are only loaded in the loading region of
our trap for rf-levels below 300 V peak-to-peak, corresponding to radial modes in the range
between 2 MHz and 3 MHz. Sufficient stability is attained at 250 V peak-to-peak and below.
This behavior is counterintuitive as normally a high aspect ratio of the trap potential is favor-
able for loading crystals, see Sec. 2.2. The reasons for this behavior are not entirely clear, but
the following facts are known: First, parametric instabilities can occur in Paul traps if secular
frequencies correspond to fractions of the rf frequency with small integer numbers in nomi-
nator and denominator, which is a well known phenomenon in classical nonlinear dynamics
and is related to the Komolgoroff-Arnold-Moser (KAM) theorem. ’Canyons’ of instability
for such values β = n/m, n,m ∈ N were measured with high resolution in Ref. [Alh96]. The
reason for these instabilities, which are not predicted by the (harmonic) Mathieu equations
are anharmonicities, i.e. higher-order terms in the equations of motion Eqs. 2.76. These can
either arise because of the trap potentials themselves or from the highly nonlinear Coulomb
interaction in the case of several ions, i.e. effects beyond the linearization in Eq. 2.81. This
effect was treated theoretically in [Mar03] and measurements of the energy transfer rate be-
tween different motional modes were carried out in [Roo08]. The fact that the instability of
the crystal increases for higher rf-levels despite the trap parameters are still deep inside the
region of stability suggests that micromotion also contributes to the instability.

However, it was found that at an rf-level of 250 Vpp and an axial trap frequency of
2π·950 kHz, a sufficient stability to perform measurements on a two-ion crystal was at-
tained. The stability substantially decreased at axial trap frequencies below 2π·900 kHz and
above 2π·1000 kHz. A fluorescence histogram of a two-ion crystal is shown in Fig. 9.1. In
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Figure 9.1.: Fluorescence histogram of two ions. In contrast to the one-ion case, the possible
states can not be distinguished by means of the 866 nm repump laser. Instead, the 729 nm
laser is tuned to the mJ = +1/2 → mJ = +5/2 transition and irradiated onto the ions
at maximum power, such that the excitation probability for each ion is about 50% and the
excitation is not correlated. The peak in the middle now corresponds to the indistinguishable
states |SD〉 and |DS〉 and is twice as strong as the ones for |DD〉 (left) and |SS〉 (right).

contrast to the single ion case, the possible states can not be distinguished by switching the
repump laser on and off. Instead, one can make use of the quadrupole transition and transfer
each of the ions with a 50% probability to the dark metastable state by strong resonant
irradiation with the 729 nm beam before the fluorescence counting. One can clearly distin-
guish the state with no, one or two bright ions, the states |SD〉 and |DS〉, corresponding to
|↓↑〉 and |↑↓〉 before shelving, therefore remain indistinguishable in the readout scheme. The
drawback of working at low rf-levels is that the shelving performance is reduced because of
a larger spread in the phonon distributions of the radial modes after Doppler cooling and
larger Lamb-Dicke factors, both leading to a higher spread in Rabi frequencies. The adverse
effect on the readout is shown in Fig. 9.2, which has to be compared to Fig. 4.19. Fig. 9.6
shows a Raman spectrum of two ions taken with the noncopropagating beam pair R1/R2.
Besides the center-of-mass (COM) mode at ωCOM ≈ 2π·950 kHz, one finds the stretch (STR)
mode at ωSTR =

√
3 ωCOM ≈1645 kHz. The equilibrium distance of the two ions according

to Eqs. 2.80 is given by

d = 3

√
e2

4πε0

2

mω2
, (9.1)
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Figure 9.2.: a) RAP amplitude scan for a two ion crystal, where the |S1/2,mJ = +1/2〉 →
|D5/2,mJ = +5/2〉 transition is used. The blue curves shows the probability for finding two
bright ions, the black curve depicts the probability for finding one of the ions bright, and the
red curve shows the probability for finding two dark ions. Note the emergence of a nonzero
probability for only one ion being in the dark state for insufficient RAP amplitudes. b) shows
a set of shelving runs with a double RAP at optimum amplitudes.

which is about about 4.6 µm for the conditions described above.
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9. Measurements with Two-Ion Crystals

9.2. Localization and Alignment in a Standing Wave

The two-ion crystal is intended to be the basic building block in our future scalable quantum
information processor, and one of the most advanced ingredients for its realization is the
ability to perform quantum logic gates between two spin qubits comprising such a crystal.
The essential prerequisites for conducting the most suitable gate for our setting, which is the
geometric phase gate as is was realized in Rf. [Lei03b], are on the one hand that the spatial
localization of the ions on a scale much below the wavelength of the driving laser field, which
is nothing else than the statement that the ions have to be in the Lamb-Dicke regime. Effects
occurring if the ions are outside this regime are discussed in Sec. 8.2 for a single ion. On
the other hand, the crystal has to be aligned to the running standing wave in such a way
that the relative phase of the driving field at the two different ion locations is such that the
’gate’ mode on which the operation is driven couples to the field whereas the other does not.
This requirement is not a strict one, however the performance of the gate deteriorates as the
coupling to the gate mode becomes weaker and the off-resonant excitation of the spectator
mode increases when the alignment deviates from the optimum one.

In principle, if the Lamb-Dicke factor was known with sufficient precision, the alignment
of the crystal could be adjusted simply via the trap frequency. However, the angles at
which the Raman beams intersect the trap axis cannot be precisely determined, and also
the measurement of the Lamb-Dicke factor from the Fourier decomposition of sideband Rabi
oscillations, see Sec. 4.6, is subject to a relatively high uncertainty. A measurement scheme
used in Ref. [Hom06a] for the alignment quantifies the coupling strengths to the COM and
STR modes with respect to the trap frequency by exerting a displacement pulse and probing
the motional state. This approach is rather tedious and requires ground state cooling of
both modes. We have devised a method for measuring both localization and alignment by
fluorescence observation, where the alignment can be performed in real-time. The underlying
idea is simple: If the frequency of the running standing wave from the R1 and R2 beams
(which are necessarily vertically polarized for this measurement) is tuned close to the cycling
resonance and the normal Doppler cooling laser is turned off, both cooling and fluorescence
emission will be provided by the running standing wave. Therefore, the frequency component
pertaining to the relative detuning δ of the beams will be visible in each ion’s fluorescence
level. The relative phase between these fluorescence oscillations of the two ions will be
determined by the ion distance set by the trap frequency, Eq. 9.1, and information about
the localization of the ions is contained in the total signal levels.
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0 10 20 30 40 50

2200

2300

2400

2500

2600

2700

2800

2900

 

F
lu

o
re

s
c
e

n
c
e

 [
c
o

u
n

ts
/5

0
m

s
]

Time [s]

10 20 30 40 50

 

Time [s]

0 1 2 3 4
0

200

400

600

800

1000

1200

1400

1600

F
o

u
ri

e
r 

c
o

m
p

o
n

e
n

t 
[a

.u
.]

Frequency [Hz]

1 2 3 4

Frequency [Hz]

0

50

100

150

200

250

300

 

S
ig

n
a
l 
a

m
p

lit
u

d
e
 [

a
.u

.]

0 10 20 30 40 50

-3

-2

-1

0

1

2

3

 

S
ig

n
a
l 
p

h
a

s
e

 [
ra

d
]

Time [s]

0 10 20 30 40 50

 

Time [s]

a)

b)

c)

d)

Figure 9.3.: Localization measurement samples: a) Measured two-ion fluorescence traces after
preprocessing. b) Fast Fourier transform results with the Gaussian filter functions for σ=2 Hz
(red), 4 Hz (blue) and 6 Hz (green). c) and d) show the resulting amplitude and phase curves
after frequency shift and backward transform for the three different filter widths. The data
in the left column is taken at an axial trap frequency of 1.36(1) MHz, whereas the data in
the right column pertains to a trap frequency of 1.22(1) MHz
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Figure 9.4.: Result of the localization measurement: The integrated signal amplitude is plot-
ted versus the ion distance inferred from the spectroscopically measured trap frequency, along
with a fit to Eq. 9.8.

The probability to find a thermal ion at position x is given by the thermal average

p(x) =
∑
n

pn|ψn(x)|2, (9.2)

which is a Gaussian distribution if the pn from Eq. 2.33 are used:

p(x) =
1√

2πσ2
e−

x2

2σ2 , (9.3)

with

σ =

√
2n̄+ 1

2
σ0, (9.4)

where σ0 is the spatial extension of the ground state wavefunction σ0 =
√
~/2mω. If the

trap frequency is lowered, the localization is decreased not only due to a larger σ0, but also
that n̄ increases if a constant Doppler cooling temperature is assumed:

n̄ =
kBT

~ω
. (9.5)

182



9.2. Localization and Alignment in a Standing Wave

0 5 10 15 20 25
-1,0

-0,5

0,0

0,5

1,0

 

 

A
u

to
c
o

rr
e

la
ti
o

n
 a

m
p

lit
u

d
e

 [
a

.u
.]

Time [s]

Figure 9.5.: Fluorescence autocorrelation: The autocorrelation function for the data set in
the left column of Fig. 9.3 is shown. From the correlation decay it can be inferred that the
timescale on which the R1/R2 interferometer drifts by a relative phase of π is in the range
of 10 s.

For small saturation, the fluorescence rate of a single ion located at position x in the inter-
ference pattern will be

R =
Γ

2(1 + 4∆2/Γ2)

(
S2

1 + S2
2 + 2

√
S1S2 cos(δkx− δt+ ∆φ)

)
, (9.6)

where S1,2 are the saturation parameters of the R1 and R2 beams, δk is the difference wavevec-
tor pointing along the trap axis, ∆φ is the relative optical phase and ∆� δ is the common
red-detuning from resonance. If the saturation parameters are not exactly matched or the
polarization if imperfectly aligned, a fluorescence baseline occurs in the interference which
decreases the signal-to-noise ratio. As we are interested only in the frequency component at
δ, the baseline will be ignored in the following. For two ions, we thus obtain

R(x) ∝ (cos (δk(x0 − l/2)− δt) + cos (δk(x0 + l/2)− δt)) . (9.7)

We now consider the case of two ions located at the sites x0 + x′ ± (l0 + l′)/2. x0 = 0 and l0
are the center positions of the COM and STR wavefunctions, and x′ and l′ are the quantum
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9. Measurements with Two-Ion Crystals

statistical deviations, which are to be averaged over. This yields

Rtot ∝
∫
dx′p(x′)

∫
dl′p(l′)

(
ei∆k(x′−(l0+l′/2)) + ei∆k(x′+(l0+l′)/2)

)
∝ cos (δkl0/2) e−δk

2(σ2
x/2+σ2

l /2), (9.8)

where already only the frequency component at δ is considered and the thermal delocalization
widths σx and σl for the COM and STR motion from Eq. 9.4 are used.
The experiment is carried out as follows: A two ion crystal is trapped at various axial
confinement frequencies, i.e. the trapping voltage at segment #5 is changed. For each
trapping voltage, spectroscopy on the quadrupole transition is performed to determine the
position of the carrier and the red axial sideband. The crystal is then placed in the vertically
polarized standing wave of the R1 and R2 beams, where the R2 beam is detuned from the R1
beam by exactly 2 Hz. Fluorescence is then recorded on the PMT for 50 seconds, with 50 ms
binning. The resulting fluorescence displays 2 Hz oscillation if the ions are spaced exactly by
an integer number of nodal distances. This 2 Hz signal component is strongly affected by shot
noise, interferometer drift and spontaneous melting of the ion crystal, thus great care must
be taken to obtain a valid figure of the signal strength. Two sample data sets are shown in
Fig. 9.3. The data set is preprocessed to remove melting effects which would spuriously affect
the resulting signal amplitude, also very large fluorescence values are present which possibly
stem from cosmic ray events. The data is cleaned in such a way that fluorescence values lying
outside the interval given by ±3 standard deviations from the mean fluorescence are set to
zero, the resulting corrected mean of the cleaned data then provides a valid normalization
reference for the final result. The values set to zero are then set to this mean value in order
to avoid artifacts in the frequency spectrum. The processed data set is Fourier transformed,
the spectrum is the filtered by applying a Gaussian filer function of fixed width around 2 Hz.
The filtered spectrum is then shifted such that the 2 Hz component becomes the dc one, then
the backward transform is carried out, giving a smoothed information of signal amplitude
and phase versus time. The amplitude is then integrated to give the final value, which is
normalized on the mean of the valid fluorescence counts. For each trap voltage, 5 individual
traces are taken to obtain an error estimation. Fig. 9.3 shows sample measurement results
for two different trap frequencies, where also the dependence of the result on the width of the
Gaussian filter function is demonstrated. For broader filter widths, the integral amplitude,
which is the final quantity of interest, seems to be quite independent of this parameter.
Fig. 9.4 shows the final result, together with a fit to the model Eq. 9.8, where the data
for the 6 Hz filter window was used. The floating parameters are the effective wavenumber
along the trap axis, the temperature T and an amplitude scaling factor A. The effective
wavelength of the beat pattern can be accurately determined due to the oscillatory structure,
its value is found to be λeff=267.8(2) nm. The temperature can not be accurately determined
as it is mainly given by the slope of the maxima, which is strongly correlated to A. Values
around 1.5 mK, equivalent to n̄COM ≈23 and n̄STR ≈13 at ωax = 2π · 1.35 MHz are found,
which is entirely consistent with the expected Doppler cooling result, which is also found
in the thermal Schrödinger cat measurement in Sec. 8.2. In conclusion, this method is to
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9.2. Localization and Alignment in a Standing Wave

our knowledge to only method the determine the Lamb-Dicke factor with permil accuracy
in a setting where no two-mode ground state purity of a two ion crystal, nor long enough
coherence times for observing Rabi oscillations on a blue motional sideband can be attained.
It provides an easy method for alignment of a two ion crystal in a standing wave and might
therefore be part of the every-day routine in the future operation of the setup after beam
realignment. Furthermore, it provides an easy verification that the Doppler cooling performs
as expected for future traps, and is also a benchmark for the interferometic stability. Fig.
9.5 shows the autocorrelation function as it is calculated by employing the Wiener-Khinchine
theorem: The power spectrum of the signal is calculated by taking the absolute squared
values of an FFT of the fluorescence data, followed by the inverse transform. The resulting
autocorrelation function

C(τ) = 〈S(t)S(t+ τ)〉t (9.9)

is of course only an approximation as the Wiener-Khinchine theorem holds only strictly for
an infinitely long acquisition period, however the correlation decay timescale is still clearly
visible. 1

1The finding of a 10 s timescale is consistent with a measurement where a ’mixed’ Ramsey experiment is
performed, where the R1/CC beam pair is used for the first π/2 pulse, and the R1/R2 beam pair for
the second one. If the interferometers were perfectly stable, the fringe pattern would reveal the relative
optical phase of the R2 beam with respect to the CC one. Upon scanning the concluding π/2 pulse phase,
data points deviating significantly from 0.5 were measured, indicating nonvanishing correlation during the
acquisition time of one data point, but no clear and reproducible fringe pattern could be observed.
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9.3. Spectroscopy and Cooling
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Figure 9.6.: Raman spectrum of a two ion crystal, taken with the beam pair R1/R2. The
stretch mode of the ions occurs at

√
3νCOM as expected. Note the emergence of higher order

mixed sidebands.

Fig. 9.6 shows a Raman spectrum with the orthogonal beam pair similar to Fig. 4.22. In
addition to the COM mode, the stretch mode at νSTR =

√
3νCOM occurs along with several

higher order intercombination sidebands. In order to realize quantum gates, both modes
have to be sufficiently cooled close to their respective ground states, as only then the ions
can be sufficiently localized in the driving standing wave, irrespective of the mode on which
the gate interaction is driven. We therefore employ an interleaved Raman sideband cooling
scheme based on the one used in Sec. 4.6. A remarkable and yet puzzling fact is that the
initial temperature of the COM mode is significantly higher in the case of two ions compared
to the storage of only one ion at similar trap and laser parameters. Pulse width scans reveal
mean quantum numbers in the range of n̄COM ≈40..60. The reason for this effect is still
unknown, it could originate from a cooperative effect involving Coulomb nonlinearities, trap
anharmonicities and micromotion.

186



9.3. Spectroscopy and Cooling

Removal of these large phonon numbers requires a sequential cooling scheme involving
higher order sidebands making use of the fact that the average Rabi frequencies on higher
order sidebands is larger for higher initial temperatures and excitation on higher order side-
bands leads to simultaneous removal of multiple phonons, see Fig. 4.32. The cooling sequence
used in our experiments is indicated in table 9.1. From the pulse times, the cycles numbers
and the repump time of 2 µs, a total cooling time of 1.66 ms results. During this time,
significant radial heating of the ions takes place and also the stability of the crystal during
the measurement is adversely affected.

No. Sideband Cooling cycles π-time

1 3rd COM 20 6.0

2 2nd COM 30 10.0

3 1st STR 50 7.0

4 1st COM 50 11.0

5 1st STR 5 7.0

Table 9.1.: Sideband cooling sequence for two ions.

The radial temperature degrades the efficiency of both the RAP pulses and the fluorescence
readout, therefore the state discrimination of |↑↑〉 , |↑↓〉 and |↓↓〉 deviates strongly from the
ideal one. The readout has to be described by the conditional probabilities to find the
ions dark or bright (d/b) depending on their actual state before the readout. The following
conditional probabilities were found when fitting the pulse width scans in Fig. 9.7:

p(dd| ↑↑) ≈ 0.885 p(dd| ↑↓) ≈ 0.100 p(dd| ↓↓) ≈ 0.015

p(db| ↑↑) ≈ 0.250 p(db| ↑↓) ≈ 0.525 p(db| ↓↓) ≈ 0.050

p(bb| ↑↑) ≈ 0.015 p(bb| ↑↓) ≈ 0.225 p(bb| ↓↓) ≈ 0.800 (9.10)

(9.11)

Note the low probability p(db| |↑↓〉) that one ion in |↑〉 actually leads to measurement of a
db event. This indicates that the fluorescence rates are subject to additional fluctuations,
i.e. the count statistics is strongly affected by the probabilistic heating of the ions. We
extend the model for a coherently driven ion with coupling to one motional mode Eq. 4.34 to
simultaneous coupling to two motional modes. The probability to find a single ion initialized
in |↑〉 in the |↓〉 state after irradiation of a pulse of duration t is given by:

P
(∆nC ,∆nS)
↓ (t) = 1

2

∑
nC

∑
nS

P (C)
nC

P (S)
nS

(cos (M
(C)
n,n+∆nC

M
(S)
n,n+∆nS

Ω0 t) e
−γ t + 1), (9.12)

describing Rabi oscillations on the ∆nC-th, ∆nS-th sideband obtained by summation over

the COM (C) and STR (S) modes with the respective phonon distributions P
(C)
nC ,P

(S)
nS in-

cluding the matrix elements M
(C)
n,n+∆nC

and M
(S)
n,n+∆nS

. From this, the probabilities for two
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9. Measurements with Two-Ion Crystals

homogeneously driven ions are straightforwardly found to be

P
(∆nC ,∆nS)
↓↓ (t) = P

(∆nC ,∆nS)
↓ (t)2

P
(∆nC ,∆nS)
↓↑ (t) = 2P

(∆nC ,∆nS)
↓ (t)

(
1− P (∆nC ,∆nS)

↓ (t)
)

P
(∆nC ,∆nS)
↑↑ (t) = 1− P (∆nC ,∆nS)

↓↑ (t)− P (∆nC ,∆nS)
↓↓ (t). (9.13)

(9.14)

The factor of 2 in the second line is due to the indistinguishably of |↑↓〉 and |↓↑〉. Finally,
the readout signals are a linear combination of these probabilities using Eq. 9.11:

P
(∆nC ,∆nS)
dd (t) = p(dd| ↑↑)P (∆nC ,∆nS)

↓↓ (t) + p(dd| ↑↓)P (∆nC ,∆nS)
↑↓ (t) + p(dd| ↑↑)P (∆nC ,∆nS)

↑↑ (t),
(9.15)

and similarly for the other two signals. The fit parameters, obtained under the assumption of
thermal phonon distributions on both modes, are n̄C ≈ 5.0, n̄S ≈ 0.25, ηC ≈ 0.25, ηS ≈ 0.21,
Ω0 ≈ 2π·212 kHz and γ ≈10 ms−1. The assumption of a thermal phonon distribution on the
COM mode represents a rather questionable assumption, as the sideband cooling starting at
a large average phonon number will supposedly transfer a considerable amount of population
to the ground state while an extended hot tail is remaining in excited states. This might
explain the deviations of the initial slope for the sideband scans on the COM mode in Fig.
9.7. As a conclusion, the cooling results from Fig. 9.7 were the best that could be achieved
with the present apparatus, bought at a serious impairment of the readout fidelities. In order
to work with ground state cooled ion strings, several technological improvements have to be
made, see Chap. 10.
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Figure 9.7.: Results for two-mode sideband cooling of two ions: The plots show pulse width
scans on the R1/R2 Raman transition for two ions on the carrier and the respective red and
blue sidebands of the COM and STR modes, along with fits to the model Eq. 9.15. The dd
signal is depicted in red, the db signal is depicted in black and the bb one in blue. Note the
strong difference between the rsb scans for the COM and STR mode.
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9.4. Coherent Manipulations
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Figure 9.8.: Carrier Rabi oscillations of two ions, taken with the beam pair R1/CC, where
the illumination of the two ions is inhomogeneous. The red curves shows the probability for
finding the spins in |↑↑〉, and the black curve shows the probability for |↓↑〉 or |↑↓〉.

Coherent manipulations on the crystal are performed in the same way as with a single
ion, namely with the copropagating beam pair R1/CC. The two-ion version of the unitary
propagator Eq. 2.12 corresponding to a resonant square pulse with both beams is given by

Û (2)(t) = Û
(1)
1 (t)⊗ Û (1)

2 (t)

=

 x1x2 −ieiφ2x1y2 −ieiφ1x2y1 −ei(φ1+φ2)y1y2

−ie−iφ2x1y2 x1x2 −ei(φ1−φ2)y1y2 −ieiφ1x2y1

−ie−iφ1x2y1 −ei(−φ1+φ2)y1y2 x1x2 −ieiφ2x1y2

−ei(−φ1−φ2)y1y2 −ie−iφ1x2y1 −ie−iφ2x1y2 x1x2


(9.16)

with

x1 = cos
θ1

2
, x2 = cos

θ2

2
,

y1 = sin
θ1

2
, y2 = sin

θ2

2
, (9.17)

and the pulse areas θ1,2 = Ω1,2t. Different Rabi frequencies Ω1 6= Ω2 are found if the ions are
not homogeneously illuminated by the beams, especially if the foci are of the same order of
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Figure 9.9.: Carrier Rabi oscillations of two ions, taken with the beam pair R1/CC, with
homogeneous illumination of the two ions. The red curves shows the probability for finding
the spins in |↑↑〉, and the black curve shows the probability for |↓↑〉 or |↑↓〉

magnitude or even smaller than the ion separation. The phases φ1,2 might be different for
two reasons: First, in any case the phase fronts of the beams are in-plane with the ion crystal,
such that the optical phase at one ion is delayed with respect to the other one. Second, an
inhomogeneous illumination together with an imperfectly compensated Stark shift will lead
to a slight off-resonance, such that the ions accumulate different phases φ1,2 ∝ t throughout a
pulse. The first phase difference does not lead to errors, as the optical phase at each ion will
always stay synchronized with the first pulse. Only when attempting single ion read-out after
splitting crystals, one will have to keep in mind that an addressing phase will occur. With
the ion crystal initialized in |↑↑〉, the signals for the three distinguishable cases are found to
be

S↑↑ = cos2 θ1

2
cos2 θ2

2

S↓↑,↑↓ = cos2 θ1

2
sin2 θ2

2
+ sin2 θ1

2
cos2 θ2

2

S↓↓ = 1− S↑↑ − S↓↑,↑↓ = sin2 θ1

2
sin2 θ2

2
(9.18)

When Rabi oscillations are driven under inhomogeneous illumination, are beat at the differ-
ence frequency Ω1 −Ω2 occurs, which is shown in Fig. 9.8. Inhomogeneous Rabi frequencies
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9. Measurements with Two-Ion Crystals

Figure 9.10.: Camera-based read-out of a two ion crystal: The four pictures show the four
possible readout results of a two-ion crystal for an exposure time of 20 ms. The states can
be distinguished with the bare eye. The red areas are the regions of interest from which the
count level is integrated.
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Figure 9.11.: Histograms resulting from the two-ion readout:.

were actually used to selectively address ions to produce the first deterministic entanglement
of massive particles in Ref. [Tur98]. In our case, homogeneous Rabi frequencies are most of-
ten required, the corresponding signals after precise adjustment are shown in Fig. 9.9. On the
long run, it is desirable to realize inhomogeneous Rabi frequencies like e.g. Ω1 = 2Ω2, as this
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Figure 9.12.: Independent readout of two-ion Rabi oscillations: Rabi oscillations of two ions
driven by R1/CC are shown, where the EMCCD camera was used for readout such that the
dynamics of each individual ion can be seen. The red dots are the readout values for the left
ion, the black dots are for the right one. The solid lines are fit results revealing the individual
Rabi frequencies. The dashed blue line marks the pulse time for which the state |↑↓〉 can be
deterministically prepared.

would allow for selective preparation of the computational basis states |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉
of two ions.

This goes along with the advantageous feature to independently read out the spin of two
ions. Of course the segmentation of our trap allows for splitting of and merging of ion crystals,
which is a possible approach for both independent preparation and read-out, but it requires
a lot of additional overhead and is still technologically challenging, see chapter B. The second
possibility for the independent readout is to use the EMCCD camera as a spatially resolving
detector, which is bought at the price of less favorable signal-to-noise ratios as upon readout
with the PMT [Bur10]. The realization of this independent readout scheme then allows for
precise adjustment of the individual Rabi frequencies, which in turn makes the variable state
preparation possible. Fig. 9.10 shows pictures for the four different bright/dark configuration
of two ions. The exposure time was 20 ms in this case, which is rather long compared to the
typical 2 ms for PMT readout, however it should still be possible to achieve much shorter
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Figure 9.13.: PMT data of two-ion Rabi oscillations: PMT read-out of two-ion Rabi oscilla-
tions under the same conditions as in Fig. 9.12 are shown. a) shows the two-ion shelving
probability S↑↑, b) shows the single-ion shelving probability S↑↓,↓↑ from Eq. 9.18. The solid
lines are no fits, they are reconstructed with the Rabi frequencies obtained from the fits to
the individual Rabi oscillations read out with camera. A slight frequency mismatch at longer
pulse times is attributed to the drift of the Rabi frequency.

times upon several technical improvements like camera parameter optimization, stray light
suppression and smart image processing. Fig. 9.11 shows the histograms obtained from
integrating the count numbers over the regions indicated in Fig. 9.10. The count number
distributions are clearly non-Poissonian, which is attributed to the nonlinear processes in
the EMCCD chip. As not enough data was collected to be able to find a specific model
distribution, no error estimation for the discrimination can be found, however, it can be
safely stated that a clear discrimination is already possible. Fig. 9.12 shows measured Rabi
oscillations driven with the R1/CC beams and read out with the camera. Rabi oscillations
of the two ions at different Rabi frequencies seen, which are determined by fitting to be
2π·189 kHz for the right ion and 2π·175 kHz for the left ion. Knowing the Rabi frequencies, we
can use these to predict the data obtained upon conventional PMT-based readout, according
to Eqs. 9.18. The predicted curves are shown in Fig. 9.13 along with the measured data.
They are found to match, although the Rabi frequencies slightly deviate for longer pulses.
This can be attributed to the fact that the laser generating the Raman beams was not
intensity stabilized the day the data was taken. As the structure of the curves still matches,
it can be concluded that reliable readout based on the camera is possible.
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9.5. A Two-Ion Schrödinger Cat

Figure 9.14.: Schrödinger cat state creation with two ions. From the rightmost column, the
measured signals S0(t, φ),S1(t, φ) and S2(t, φ) can be straightforwardly inferred by calculating
the probabilities.

A possible mechanism for the entanglement of two spin qubits is the utilization of spin-
dependent light forces as demonstrated for a single ion in chapter 8. The basic idea is to use
a motional mode of the ion crystal for the creation of entanglement of the internal states of
two ions analogously to the Cirac-Zoller proposal [Cir95]. The physical realization however is
very different and was proposed in a more general context in [Mil09],[Sor00]. The remarkable
feature of these gate schemes is that in contrast to the Cirac-Zoller scheme, no ground state
cooling is strictly required, which makes the gates much more robust and easier to realize.
The first experimental demonstration took place in 2003 [Lei03a] and an almost complete
tomography of two spins subjected to an entangling gate operation based on this scheme was
shown in [Hom06c]. Recently, a realization of a similar gate was shown even for Doppler
cooled thermal ions [Kir09]. Entangling gates based on spin-dependent forces can be realized
as follows: A two-ion crystal is placed in a driving Raman laser field such that only states of
a given parity, i.e. either |↑↑〉 and |↓↓〉 or |↑↓〉 and |↓↑〉 are affected by the displacement force,
see Fig. 8.1 for an illustration. Therefore, the geometric phase picked up during the evolution
Eq. 8.21 depends on the joint spin state of the ion crystal, such that a controlled-phase gate
is performed if the displacement is restored to zero after a complete motional cycle. The
spins are then entangled, with the amount of entanglement given by the geometric phase.
This phase gate can be extended to a controlled NOT gate by single qubit rotations, such
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Figure 9.15.: Schrödinger cat state creation with two ions. The upper plot shows the readout
signals S↑↑ (red), S↑↓,↓↑ (black) and S↓↓ (blue) states versus drive pulse durations for a
detuning from the STR mode of δ ≈ 2π·84 kHz. The lower plots show scans of the analysis
pulse phase for fixed displacement pulse times indicated by the arrows to the upper plot.

that an essential building block for quantum information protocols is realized. A pictorial
representation of the state manipulation is shown in Fig. 9.14: A two-ion crystal initialized
in |↑↑〉 is rotated into a balanced superposition of |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉. A vibrational mode
of the ion crystal is displaced conditionally on the total spin state. The driving laser field is
slightly detuned from the vibration frequency, such that the displacement is undone at the
return time tret. If now tret and the driving amplitude are chosen such that the geometric
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phase Φ = π/2, the resulting state is can be unitarily rotated to

|Ψ〉 = 2−1/2 (| ↑↑〉+ i| ↓↓〉) , (9.19)

which is a maximally entangled state. The creation of entanglement can be easily deduced
from the suppression of the signals pertaining to the |↑↓〉 , |↓↑〉 signals. The ultimate proof
of entanglement and measurement of the fidelity of the operation is performed by a parity
oscillation measurement, see Ref. [Lei03b]. The constraint that only the spin states pertaining
to a given parity are to be displaced can be relaxed to the requirement that the displacement
for the different parities has to be substantially different, such that a differential geometric
phase is picked up. Imperfect alignment will only degrade the efficiency of the gate with
respect to the exploitation of the driving laser power. The important implication of this is
that the gate scheme can be straightforwardly extended to a larger number of ions, most
importantly to the case of four ions comprising a pair of a pair of logical qubits, encoded in a
decoherence free subspace (DFS). Such a gate would have the advantage that the logical qubits
would never leave the DFS at any point during the gate operation, as we have investigated
in [Iva09].
The choice of the right drive amplitude is performed simply by minimizing the S↑↓,↓↑ signal
at a drive time of tret, and the placement of the ions by choice of the trap frequency is
not crucial, i.e. a spin-dependent geometric phase can be picked up as long as the coupling
strength to the laser field is substantially different for |↑↓〉 , |↓↑〉 and |↓↓〉 , |↓↓〉. However,
near-perfect ground state cooling of both motional modes of the two-ion crystal is a critical
prerequisite, as a finite temperature has several detrimental effects on the gate performance:
i) Due to the temperature-induced delocalization, the coupling strength difference between
|↑↓〉 , |↓↑〉 and |↓↓〉 , |↓↓〉 is diminished, ii) the overall coupling strength is diminished and iii)
the geometric phase picked up is fluctuating, leading to a loss of phase coherence.
We have created Schrödinger cat states of two Doppler cooled ions by near resonant excitation
of the STR mode. The results are shown in Fig. 9.15, where the results of a scan of the
displacement pulse time at fixed analysis pulse phase are shown, along with scans of the
analysis pulse phase for a set of fixed displacement pulse times. As can be seen, no signature
of a geometric phase, i.e. a nonzero S↓↓ signal and suppression of the S↑↓,↓↑ signal at the
return times is visible, despite the fact that a clear decay and revival of the contrast is present.
The reason is the increased sensitivity of motionally excited states to displacement, see the
measurements for a thermal single ion shown in Fig. 8.4 for comparison. The data from the
scans of the analysis pulse phase can be used for a detailed characterization of the quantum
dynamics of the two ions. We first need to generalize the simplified dynamics illustrated in
Fig. 9.14 to account for imperfections: First, we include a possible displacement of the even
states |↑↑〉 and |↓↓〉 by the value β, and therefore include a geometric phase Φ̄ for these states.
Furthermore, we include a possible residual Stark shift, leading to an additional spin phase
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θ(t) with respect to the pulse time t. The readout signals are then given by

S↑↑ = 1
8

(
2 + e−2|β|2

)
+ 1

8e
−2|α|2 cos 2φ′

+ 1
4 cosφ′

(
e−|α||β| cosχ cos(∆Φ + |α||β| cosχ) + e|α||β| cosχ cos(∆Φ− |α||β| cosχ)

)
S↓↓ = 1

8

(
2 + e−2|β|2

)
+ 1

8e
−2|α|2 cos 2φ′

− 1
4 cosφ′

(
e−|α||β| cosχ cos(∆Φ + |α||β| cosχ) + e|α||β| cosχ cos(∆Φ− |α||β| cosχ)

)
S↑↓ = 1

8

(
2− e−2|β|2

)
− 1

8e
−2|α|2 cos 2φ′

− 1
4 cosφ′

(
e−|α||β| cosχ cos(∆Φ + |α||β| cosχ)− e|α||β| cosχ cos(∆Φ− |α||β| cosχ)

)
S↓↑ = 1

8

(
2− e−2|β|2

)
+ 1

8e
−2|α|2 cos 2φ′

− 1
4 cosφ′

(
e−|α||β| cosχ cos(∆Φ + |α||β| cosχ)− e|α||β| cosχ cos(∆Φ− |α||β| cosχ)

)
,

(9.20)

where ∆Φ = Φ − Φ̄ and φ′ = φ + θ(t). χ is the angle in phase space between the complex
displacements α and β. The signals are now modeled by

S↑↑ = a2 cos 2φ′ + a1 cosφ′ + b+ 1
4

S↓↓ = a2 cos 2φ′ − a1 cosφ′ + b+ 1
4

S↑↓,↓↑ = −2 a2 cos 2φ′ − 2 b+ 1
2 , (9.21)

with

b(t) = b(0) 1
8e
−2|β|2e−γβt

a2(t) = a
(0)
2

1
8e
−2|α|2e−γα2t

a1(t) = a
(0)
1

1
4e
−1

2(|α|2+|β|2)e−γα1t

·
(
e−|α||β| cosχ cos(χΦ + |α||β| cosχ) + e|α||β| cosχ cos(χΦ− |α||β| cosχ)

)
.

(9.22)

The empirical dephasing rates γβ, γα1 and γα2 account mostly for the contrast loss due
to the spreads of the displacements and geometric phases picked up resulting from thermal

ensemble averaging. The scaling parameters a
(0)
1 , a

(0)
2 and b(0) account for readout imperfec-

tions. The remarkable feature arising here is that the odd and even state displacements α and
β can be read off independently from the fit results, which provides a possibility to directly
align the ion in the driving laser field. Other alignment procedures as the one presented in
Sec. 9.2 or the method in [Hom06a], where the sideband Rabi frequencies are measured,
yield a higher experimental effort and measure the alignment in a different beat pattern than
the one which is actually driving the displacement force. The parameters a1(t) and a2(t),
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Figure 9.16.: Parameters describing the quantum dynamics of two ions: The plots show the
parameters describing the state of the two ion crystal according to Eqs. 9.21, along with
fits to the model Eqs. 9.22. The parameters a) a2 and b) b can be extracted from both
S↑↑(φ) (red fit) and S↑↓,↓↑(φ) (black fit), it can be seen that the fit results are consistent.
The behavior of the c) a1 parameter extracted from the S↑↑(φ) can be explained by pure
dephasing (black fit) or by the occurrence of a nonzero geometric phase (red fit), see text.
The fitted offset phase θ(a) is shown in d), which reveals a residual static Stark shift of

∆
(0)
S ≈ 2π·2.4 kHz.

describing the strength of the signal oscillations with respect to φ′ and 2φ′, respectively, along
with the time-dependent baseline b and the Stark phase offset θ are obtained by fitting the
S↑↑ and S↑↓,↓↑ signals to the model Eqs. 9.22 for the various displacement pulse times. The
results are shown in Fig. 9.16.
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Taking into account the time-dependent displacements according to Eq. 8.18:

|α(t)| = Fα sin

(
δt

2

)
|β(t)| = Fβ sin

(
δt

2

)
, (9.23)

we obtain the dimensionless driving strengths Fα and Fβ for the odd/even states from fitting
a1(t), a2(t) and b(t) to Eqs. 9.22 with Eqs. 9.23. The results are shown in Table 9.2, where
it can be seen that both signals yield consistent results. A significant difference between Fα
and Fβ cannot be claimed.

Parameter a2/S↑↑ a2 from S↑↓,↓↑ b from S↑↑ b/S↑↓,↓↑

Fα 0.41(2) 0.43(2) - -

Fβ - - 0.44(1) 0.45(1)

δ/2π [kHz] 80.1(8) 80.5(8) 80.4(5) 80.4(6)

γα2 [µs−1] 0.014(4) 0.012(4) - -

γβ [µs−1] - - 0.017(5) 0.021(3)

Table 9.2.: Fit results for the parameter sets Eqs. 9.22. In order to demonstrate consistency,
results from individual fits to the S↑↑ and S↑↓,↓↑ signals are compared.

For the explanation of the behavior of the a1 values with respect to the displacement pulse
time, we first assume that the differential driving strength of the odd and even states is zero,
such that no differential geometric phase occurs. The result for the dephasing parameter is
then γα1 ≈0.008(1)µs−1, which is significantly smaller than the dephasing rates γα2 and γβ.
An alternative parameter set is obtained if we assume ∆F2=0.011(1), consistent with the fit
results for a2(t) and b(t). The differential geometric phase is then given by

∆Φ(t) = ∆F2 (sin δt− δt) . (9.24)

This leads to a more reduced dephasing rate of γα1 ≈0.002(1)µs−1, , meaning that neither
of the models entirely reproduces the data as can be seen in Fig. 9.16 c). As a conclusion,
the data is consistent with nonzero differential geometric phase, which would amount to
∆Φ ≈0.16 rad, but not enough precision is attained to discern between the appearance of a
nonzero ∆Φ and pure dephasing.
Cooling of both COM and STR modes close to the ground state was achieved as shown in Fig.
9.7, with the axial cooling bought at the price of a strong radial heating with a significant
deterioration of the readout fidelity. A successful combination of the two-mode cooling with
a displacement drive has not been possible, as the displacement drive would have required
a large part of the off-resonant laser power in the CC beam, which in turn would have even
increased the required total cooling time. We are however confident that improvement of the
trap supply electronics and establishment of fast near-resonant cooling schemes will enable
us to successfully perform geometric phase gates.
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Figure 9.17.: Beat between displacement and squeezing: The plot show the signals S↑↑ (black)
and S↑↓,↓↑ (red) for detuning from STR mode of about a) 166 kHz and b) 140 kHz. Beating
between the displacement dynamics on STR and the squeezing dynamics on COM is clearly
observed. In case a), the return time on the STR mode is about 6 µs, whereas the return
time on the COM mode is about 12 µs, leading to a suppression of every second revival peak
as the squeezed COM mode reduces the phase space overlap.

As a conclusion for this chapter, results on the generation of exotic multi-mode Schrödinger
cat states are presented. Here, the frequency of the driving force was tuned sufficiently far
to the blue side of the STR mode, such that considerable interaction on the second COM
sideband occurs. This interaction is a parametric excitation at 2ωCOM, i.e. squeezing. The
squeezing is possible as the measurement is performed with a thermal ion crystal, where the
matrix elements pertaining to the second blue sideband are sufficiently strong, or intuitively
stated: large wavefunctions are much easier to squeeze as small ones. The total state of the
two ion crystal after the displacment/squeezing pulse would then be:

|Ψ〉 =
∑
n

pth(n)
∑
m

pth(m)| ↑↑〉|m,αm(t)〉|n, χn(t)〉 − i| ↑↓〉|m,βm(t)〉|nξn(t)〉

− i| ↓↑〉|m,−βm(t)〉|n,−ξn(t)〉 − | ↓↓〉|m,−αm(t)〉|n,−χn(t)〉. (9.25)

With pulse-time dependent displacement parameters as in Eq. 9.23 and similar squeezing
paramters χ(t) and ξ(t) for the even and odd spin states, respectively. n denotes the number
states of the COM mode and m denotes the number states of the STR mode. The final ket
for each part of the state denotes the squeezed state of the COM mode. The results of these
measurements are shown in Fig.9.17, where one can clearly observe a phase-space beating of
the two motional modes.
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10. Conclusion and Outlook

10.1. Conclusion

The introduction of this thesis stated that robustness and fidelity of all required qubit op-
erations are essential foundations of any approach to achieve an experimental realization
of scalable quantum information. The high fidelity is needed to attain the quantum error
correction threshold and robustness is needed because the scalability inevitably implies a
technological approach which will offer a less favorable environment for individual qubits. In
the course of this thesis, every required operation for single qubits could be successfully real-
ized at high fidelities, and the bottleneck limiting the fidelity could be identified in every case
such that future technological improvements can be devised in order to achieve even higher
fidelities. It also became clear that the robust implementations of the individual operating
steps is indeed necessary, as can be seen from the measurements of the extremely high radial
and intermediately high axial heating rates, see sections 4.3 and 4.6. Detailed studies of the
qubit coherence were performed both in the absence and under the influence of external laser
fields, with the results that the decoherence rates at the present stage allow for quantum
information experiments from basic up to intermediate complexity, see Sec. 4.7. The tech-
nical and physical sources of the decoherence processes were almost completely understood,
such that it is clear what the required technological improvements are. An extensive char-
acterization and testing of the trap was performed, with the main results that ion transport
throughout the whole trap structure is possible and that the actual electrostatic potential
match the predicted ones with great accuracy. For the latter achievement, the microchip
trap provided the testbed for our potential calculation software and for potential shaping
techniques.
The methods established for single qubit operation were used for various demonstrations
that complex experiments at the quantum level are indeed possible in microstructured ion
traps. These experiments were of course not just carried out for demonstration purposes:
The successful reconstruction of a density matrix of the state of the axial vibrational mode
is the basis for future experiments on the emerging field of quantum thermodynamics. The
coherent measurement method developed for the determination of atomic matrix elements is
side product of the decoherence studies. It addresses a contemporary problem from atomic
physics. The extensive experiments carried out on the action of spin-dependent light forces on
a single ion provide the basis for future robust entangling gate operations. Furthermore, the
two-ion crystal as the more complex basic building block of our experimental scheme was in-
vestigated, where individual readout and manipulation were successfully demonstrated. The
stability and initial temperature of the two-ion crystal however remains to be improved.
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10.2. Open Questions

This section briefly addresses the questions arising from measurement data acquired through-
out this thesis which could not be entirely understood, which is done for the sake of docu-
mentation and completeness.
Stability of ion crystals: The predominant questions are associated with the rather bad
stability of two-ion crystals, which is also of fundamental importance because it represents
a crucial bottleneck for future progress. The bistable behavior of the crystals implies that
nonlinearities are involved. In Sec. 5.2, a bistability originating from the nonlinear nature
of Doppler cooling was explained, which can also be mediated by micromotion and would
therefore explain the decreased stability at large trap drive rf amplitudes. However, it is not
clear why two ions should be unstable at parameters where a single ion is completely stable.
Furthermore, the drastically impaired Doppler cooling result of the COM mode of a two ion
crystal cannot be straightforwardly explained by this mechanism. If the additional Coulomb
nonlinearity present for the crystal would give rise to these effects, one would intuitively
expect that the STR mode should be affected instead of the COM one.
Parasitic shelving: The incoherent excitation of population from the |↓〉 level occurring
during the shelving pulses could not be explained by off-resonant excitation or laser phase
fluctuations. It therefore must be associated with an incoherent spectral background of the
729 nm laser. The width, strength and origin of this background remain unclear.
Enhanced laser-driven decoherence: The ratio of photon-scattering induced spin qubit
decoherence and scattering rate determined experimentally in Sec. 4.7 is supported by the
theoretical derivation given in Appendix A, which also predicts a set of counterintuitive ef-
fects. Future measurements are supposed to yield more precise figures for the decoherence
rate and will test more sophisticated theoretical predictions.
Laser coupling fluctuations: The measurements of the Stark-shift induced decoherence
rates presented at the end of Sec. 4.7 show that slow but large fluctuations of the atom-laser
coupling strength are present in our system, which are not consistent with the expected beam
pointing fluctuations or intensity fluctuations. A possible source of this effect might be an
unstable radial behavior of the ions, which could be improved by better voltage supply elec-
tronics and better Doppler cooling.
Radial heating rates: Measurements of the fluorescence rate decrease after waiting times
in the millisecond range presented in Sec. 4.3 show that the heating rates in the radial direc-
tions are tremendously larger than the one measured for the axial direction. The source of
this behavior is still unknown, it can hopefully be counteracted with improved trap supply
electronics.
Lower bound of the heating rates: Axial heating rate measurement have shown that the
heating rate is strongly dependent on the voltage supply electronics (see Fig. B.4), it is yet
unclear how low the heating can be suppressed by improvement of the circuitry.
Line broadening: Measurements of the fluorescence rates at 397 nm are inconsistent with
the linewidth of about 22 MHz of that transition, see Figs. 4.4 and 5.6. Possible sources of
this additional broadening are residual micromotion along the 397 nm beam or broadening
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due to a large radial temperature.

10.3. Outlook

The future tasks to be solved for the demonstration of our scalable quantum information
concept break down into two basic fields: First, entangling gate operations between two ions
have to be accomplished, which requires a better stability of these crystals at larger trap fre-
quencies. One therefore has to find ways to suppress noise on the DC electrodes even further
and investigate the stability and noise characteristics of the trap drive RF. It might also be of
great interest to investigate theoretically why the stability and initial temperature of the two
ion crystal is so much different compared to the single ion case, despite the trap operation pa-
rameters are deep in the stability region. The other basic direction is the further development
of the scalable voltage supply that will allow for shuttling operations much faster than qubit
coherence time. This development is currently underway, however, due to the technological
complexity, it might require a certain number of development iterations before the required
specifications are met. If these two hurdles are taken, the methods can be combined to realize
basic quantum computing tasks based on shuttling qubits in a segmented trap. For example,
locally created entanglement between two qubits can be distributed by splitting the crystal
and moving the ions far apart, which would allow for the realization of the largest distance
ever achieved between deterministically entangled massive particles. The ability to handle
three or more qubits would open the door to a rich plethora of quantum physics, addressing
questions such as quantum state estimation and the characterization of higher dimensional
Hilbert spaces, along with the decoherence properties of complex quantum states. In fact,
the number of apparatuses worldwide which allow for deterministic operations with three or
more ion-based qubits is to our knowledge limited to two at the time this thesis is written,
indicating the vast unknown territory which is still open to explore.
It remains to be stated that up to now no fundamentally unsolvable problem with our ex-
perimental approach has been found, we therefore conclude with the statement that the way
towards scalable quantum information still seems to be an adventurous path full of expected
and unexpected obstacles, but also with many beautiful treasures at its sides and a mysterious
end(?) that is yet not known.
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A. Adiabatic Elimination on the Master
Equation

Starting from Eq. 2.68, we make the following simplifying assumptions:

� The detuning ∆ from the S1/2 →P1/2 transition is to much smaller than the fine struc-
ture splitting between the P1/2 and P3/2 states: |∆| � ∆FS , such that only the P1/2

state is to be taken into account.

� We additionally assume that |∆| � Γ.

� We neglect the magnetic field term in Eq. 2.68 as it produces a mere energy shift which
can be accounted for later on.

We can then represent the master equation Eq. 2.68 by a Liouvillian superoperator

L(ρ̂gg) ≈
(
i

∆
− Γ

2∆2

)
ρ̂ggĤiP̂eĤi + h.c.

+ 2
Γ

2∆2

∑
σ

Â1/2,σĤiρ̂ggĤiÂ
†
1/2,σ (A.1)

If we arrange the elements of the density matrix in the form a vector,

ρ = (ρ11, ρ12, ρ21, ρ22)T , (A.2)

the Liouvillian superoperator can be given in the form of a 4x4 matrix with elements con-
taining ∆,Γ, the Clebsch-Gordon factors and the properties of the laser beams, i.e. their
relative detuning, their dipolar Rabi frequencies and their polarization components.

The master equation Eq. 2.68 can be written as

ρ̇ =
(
Lrabi + L†rabi + Lstark + L1→2

sc + L2→1
sc + Ldeph

)
ρ, (A.3)

where the Lrabi gives rise to coherent population transfer:

Lrabi = i
Ω

2


0 0 −1 0
1 0 0 −1
0 0 0 0
0 0 1 0

 , (A.4)

207



A. Adiabatic Elimination on the Master Equation

Lstark describes light-induced energy shifts:

Lstark = i
∆S

2


0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

 , (A.5)

the Li→jsc account for the population redistribution due to off-resonant scattering:

L1→2
sc = R1→2


−1 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 L2→1
sc = R2→1


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 −1

 , (A.6)

and finally Ldeph causes dephasing, i.e. decay of the off-diagonal elements:

Ldeph = Rdeph


0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0

 . (A.7)

We now denote the ’bare’ Liouvillian matrices without the prefactors as L̃a. They are mutu-
ally orthogonal and normalized such that:

Tr
(
L̃aL̃†b

)
= Caδab, (A.8)

with Crabi = 1 and Ca = 2 otherwise. Thus the physical quantities of interest, which are
the Rabi frequencies, Stark shift and the scattering and dephasing rates can be inferred by
projecting them out of the total Liouvillian:

Ω = Tr
(
L̃†rabiL

)
Ω∗ = Tr

(
L̃rabiL

)
∆S = Tr

(
L̃starkL

)
/2

R1→2 = Tr
(
L̃1→2†

sc L
)
/2

R2→1 = Tr
(
L̃2→1†

sc L
)
/2

Rdeph = Tr
(
L̃dephL

)
/2 (A.9)

If we now consider two laser beams r and b, with polarization components ~εq,i with q = r, b
and i = +, 0,−, the dipolar Rabi frequencies Ωr,b and a relative detuning of δ = ωb − ωr, the
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quantities describing the dynamics of the effective two-level system can be given in terms of
the quantities

M bb
ij = Ω2

bcicjεbiε
∗
bj

M rr
ij = Ω2

rcicjεriε
∗
rj

M br
ij = ΩbΩ

∗
rcicjεbiε

∗
rje

i(∆k−δt)

M qp
ij = (M ij

qp)
∗ (A.10)

where the Clebsch-Gordan factors have been taken into account:

c+ = c− = 1/
√

3

c0 = 1/
√

6. (A.11)

Upon using this recipe on the total Liouvillian obtained from the adiabatic elimination pro-
cedure Eq. 2.68, we finally obtain

Ω =
1

2∆

(
M bb

0− +M bb
+0 +M rb

0− +M br
+0 +M br

0− +M rr
0− +M rb

+0 +M rr
+0

)
(A.12)

∆S =
1

4∆

(
M bb
−− −M bb

++ +M rb
−− +M br

−− +M rr
−− −M rb

++ −M br
++ −M rr

++

)
(A.13)

R1→2 =
Γ

4∆2

1

3

(
M bb

++ +M rb
++ +M br

++ +M rr
++

)
+

Γ

4∆2

2

3

(
M bb

00 +M rb
00 +M br

00 +M rr
00

)
(A.14)

R2→1 =
Γ

4∆2

1

3

(
M bb
−− +M rb

−− +M br
−− +M rr

−−

)
+

Γ

4∆2

2

3

(
M bb

00 +M rb
00 +M br

00 +M rr
00

)
(A.15)

Rdeph =
Γ

4∆2

1

2

(
M bb

++ +M rb
++ +M br

++ +M rr
++ +M bb

−− +M rb
−− +M br

−− +M rr
−−

)
+

Γ

4∆

2

3

(
M bb

00 +M rb
00 +M br

00 +M rr
00

)
. (A.16)

In the following we give a brief interpretation of the various term occurring in the above
expressions. Contributions to the Rabi frequency are only given by terms with π and a σ po-
larization component such as M rb

0−. Resonant Rabi oscillations are only driven if the relative
detuning δ of the two beams matches the energy splitting between |↑〉 and |↓〉. Terms arising
from one beam only such as M bb

0− would be resonant for zero Zeeman splitting, however the
treatment then breaks down as the polarization components are not defined anymore. At a
two-beam resonance, they lead to superimposed off-resonant Rabi oscillations. In the expres-
sion for the Stark shift, only terms corresponding to one polarization component occur. These
can be either static homogeneous Stark shifts such as M bb

−− or spatiotemporally oscillating
shifts arising from the beat between the two lasers such as M rb

−−. For the scattering rates, only
the terms arising from one beam, e.g. M bb

++, play a role as the mixed terms M rb
++ +M br

++ are
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A. Adiabatic Elimination on the Master Equation

real valued and oscillating around zero, such that they average out on the relevant timescales.
The same statement holds for the contributions to the dephasing rate. It is important to
state that these terms might still lead to enhanced decoherence effects if intensity or phase
fluctuations at δ are present in the laser beams. Direct comparison between the scattering
and decoherence rates reveal that the dephasing rate is not just given by half the scattering
rate as it would be the case for a simple two-level system. Furthermore, an asymmetry in the
ratio of dephasing to scattering rates from π and a σ polarization components arises, which is
related to the amount of information about the final state carried away by the photon upon
a scattering process.
If we subtract the Liouvillians pertaining to the mentioned dynamic processes, we obtain the
residual Liouvillian

L′ = L − Lrabi − Lstark − L1→2
sc − L2→1

sc − Ldeph, (A.17)

which has the structure

L′ =


0 L12 + L̃12 L∗12 + L̃∗12 0

−L∗12 + 3L̃∗12 0 L23 −3L∗12 + L̃∗12

−L12 + 3L̃12 L∗23 0 −3L12 + L̃12

0 −L12 − L̃12 −L∗12 − L̃∗12 0

 , (A.18)

with

L12 =
Γ

4∆2

1

6

(
M bb

0+ +M br
0+ +M rb

0+ +M rr
0+

)
L̃12 = − Γ

4∆2

1

6

(
M bb
−0 +M br

−0 +M rb
−0 +M rr

−0

)
L23 = − Γ

4∆2

1

3

(
M bb

+− +M br
+− +M rb

−+ +M rr
+−

)
(A.19)

It is unclear yet whether this remainder describes actual physical effects or if it is an artifact
from the mathematical procedure. The measurement results presented in Fig. 4.38 however
support an enhanced decoherence rate described by the term L23. With the experimental
capability for precise decoherence measurements, this will hopefully resolved in the future by
performing these measurements for various beam configurations.
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B. Trap Voltage Supply Electronics

The supply electronics for dc trap voltages represents the crucial technological cornerstone
for scalable quantum information experiments in segmented ion traps. In conventional ion
trap experiments, noise reduction is accomplished by massive low-pass filtering of the supply
voltages, this approach is not viable for our scheme as the ions are supposed to be moved
within the trap structure on short timescales, such that voltages in the frequency range of up
to 1 MHz or even more need to be admitted. Instead of relying on filtering, the development
of suitable low-noise electronics is necessary. The voltage noise present on the electrodes
is responsible for the heating of the ions, while the heating rate determines the suitability
of a given trap for quantum information experiments. This heating process is investigated
theoretically in Ref. [Lam97]. A detailed experimental study where the heating rate was
investigated with respect to the ion-trap surface distance and the surface temperature resulted
in heating rates that were y orders of magnitude larger than the theoretically expected ones
[Des06], the reason for which remains unclear as of today. It is argued the insulting ’dirt’
patches on the trap surfaces with thermally fluctuating charges give rise to the observed
strong noise components, another possibility would be that residual uncompensated RF-
fields lead to energy transfer to secular modes of vibrations via anharmonicities. However,
that heating rate will be even larger if additional noise from the supply electronics is present.
We summarize the required specifications for the required supply electronics:

� Individual supply for 64 channels.

� Voltages in the range between +10 V and -10 V.

� Extremely low noise.

� Possibility to supply individual arbitrary voltage waveforms containing frequencies in
the MHz range.

� Suppression of rf pickup fed back to the output stage, or even the possibility to regulate
rf-pickup on the electrodes away.

The required low noise level can only be accomplished with the use of well-shielded, battery-
powered equipment. In an early stage of the experiment, we have seen tremendous improve-
ments in the observation of coherent dynamics on the quadrupole transition upon changing
the voltage supply from computer controlled analog output boards via a 9 V battery block,
a battery driven buffer based on an operational amplifier to a transistor-based output stage
that was finally used. This hand-made supply electronics provides only voltage supply for
a single electrode pair, for this reason most experiments were conducted at a single site.
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B. Trap Voltage Supply Electronics

However it was used to obtain the basic knowledge on how to build a scalable voltage source,
which is described later in this appendix. Figs. B.1,B.2 and B.3 show the circuit diagrams for
the supply electronics that lead to the lowest observed heating rate. The trap and differential
voltage are derived from a ± voltage reference and buffered, where the differential voltage is
split into an inverted an a noninverted branch Vdiff− and Vdiff+. These are then added to the
trap voltage to yield the voltages

V1 = −Vtrap − Vdiff+ = −Vtrap − Vdiff

V2 = −Vtrap − Vdiff− = −Vtrap + Vdiff . (B.1)

These resulting voltages are finally buffered by a push-pull transistor stage with is feed-back
linearized with a fast AD817 operational amplifier.
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Figure B.1.: Voltage generation stage: A REF01 and two OP27 provide ±10 V reference
leads, from which the trap offset voltage and the differential voltage are derived via 10 kΩ
potentiometers. Each of theses voltages is buffered by another OP27, where the difference
voltage is split into an inverted a noninverted branch.

Upon performing a pulse with scan on the axial red sideband of the quadrupole transition,
in the thermal regime the saturation level of the excitation probability provides information
on the population residing in the ground state, from which the mean phonon number of the
axial mode of vibration can be inferred under assumption of a thermal phonon distribution
Eq. 2.33:

p0 = 1− 2P sat
D =

1

n̄+ 1
, (B.2)

which can be rearranged to yield

n̄ =
1

1− 2P sat
D

− 1. (B.3)
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Figure B.2.: Buffer and adding stage: The trap offset voltage is added to the inverted and to
the noninverted difference voltage on OP27 adding stages.
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Figure B.3.: Transistor buffer stage: A fast AD817 opamp serves as the linearizing feedback
resistor for a transistor push-pull output stage.

Mean phonon numbers with respect to a delay time after ground state cooling resulting
from the measurement procedures are shown in Fig. B.4. The data was taken for two dif-
ferent voltage supply circuits, one with an operational amplifier OP27 as output stage, the
other with a transistor-based push-pull buffer stage. The output impedance of these stage
were measured to be 20 Ω and 2 Ω, respectively. The data sets were taken subsequentially
under the same conditions. One can clearly see that the transistor stage leads to a much
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Figure B.4.: Heating rate measurements for different buffer stages: The mean phonon number
obtained from Eq. B.3 are shown versus the delay between sideband cooling and probe pulse.
The black dots are the values for the OP27 buffer state, and the red circles are for the
transistor buffer stage. The insets shows that not even the heating rate is reduced for the
transistor stage, also a smaller total temperature is attained.

better heating behavior, where the ion resides in the Lamb-Dicke regime even after a delay
time of 50 ms. However it remains a puzzle why the heating behavior is not linear in time,
as it was measured with a more direct method in Sec. 4.6. We argue that due to the strong
radial heating rate, the laser coupling might be substantially reduced by strong radial exci-
tations, such that the saturation timescale is much longer than the measurement time. Even
if the mean phonon numbers obtained this way are not particularly trustworthy, the superi-
ority of the transistor amplifier stage is beyond any serious doubt. Furthermore, the about
0.2 mean phonon number minimum temperature are fully consistent with the value obtained
shortly after this measurement by the phonon distribution measurement presented in Sec. 4.6.

Fig. B.5 depicts the components of the present version of the computer-controlled scal-
able voltage supply. The work of K. Singer, G. Huber and M. Bürzele for the design and
development of this complex hard- and software system is gratefully acknowledged here.
The signal flow is as follows: Software routines embedded in the recent experiment control
software framework MCP developed by Kilian Singer generate binary data from the set of
analog voltage values which is to be applied to the trap electrodes. This data is sent to a
Xilinx Virtex V FPGA via a Gigabit Ethernet transmission channel. This FPGA, which has
an on-chip hardware PowerPC processor core, sends the data sequentially to a DAC board
where the final analog output voltages are generated. As the analog electronic subsystem
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Figure B.5.: Design of the scalable trap voltage supply: The FPGA is supplied with the
waveform data via Gigabit Ethernet from the control computer. The FPGA output is buffered
and supplied to the DAC board via optocouplers to achieve galvanic separation. The output
of the DACs is buffered by OP4277 opamps.

is to be isolated galvanically from FPGA digital electronics to suppress digital clock noise
and power line frequencies, all digital signals supplied to the DAC board are buffered by
optocouplers. The quad-channel DACs 8814 are addressed by chip-select lines and serially
obtain their 4x16-bit samples via a single serial data line connected to all DACs. One data
sample consists of a 2-bit information selecting one of the four DACs on the chip, and the
actual 16 bit voltage sample. When all DACs are supplied with their samples, an enable
line (LDAC) causes them to update their output voltages simultaneously. The analog output
signals are in the range between 0 V and +10 V, with respect to a +10 V precision reference
supplied to all DACs. This range is mapped onto the required -10 V to +10 V range by means
of two operational amplifiers, which also serve as output buffers. These OP4277 operational
amplifiers come in quad packages, such that one chip can drive two analog output lines and
two OP4277 chips per DAC chip are needed. The signals run via individual SMA cables
to an additional output printed circuit board where they are bundled on four 25-pin Sub-D
connectors. From there the voltages are supplied to the vacuum flange via shielded printer
cables 1. The power supply for the DAC board is realized with a shielded battery system

1LEUNIG GmbH, Sigburg, Germany
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Figure B.6.: Data flow within the FPGA subsystem:.

comprised of two 12V lead-gel accumulators. The power drawn from the batteries is strongly
increased due to the requirement of a +5 V supply voltage for the optocouplers, which is
generated by a 7805 voltage regulator. The following problems were present with the latest
version of this voltage supply:

� Strong trap-rf pickup on the dc lines of about several hundreds of mV cause transmission
errors in the data supply chain, most likely on the optocoupler stage. This lead to bit-
flip errors resulting in clearly visible jumps of a single trapped ion’s position upon
updating the electrode voltages with the same data set as was already applied before.

� Due to the large quiescent current, the lead accumulator are empty in a comparatively
short time of about one hour. If the batteries are permanently connected to loading
devices with switching power supplies, the motional state of trapped ions is adversely
affected.

� The operational amplifier output buffer stage is not adapted to the findings from above
where it was shown that a subsequent transistor stage yields a much better performance

� If damage on one specific channel occurs, it is extremely tedious to replace components,
the whole DAC board will most likely have to be replaced.
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The data flow on the FPGA board is depicted in Fig. B.6. The data transmitted via the
ethernet line is read directly by the FPGA by means of a suitable IP (intellectual property)
core. This core is controlled by a software running on the on-chip PowerPC of the Virtex
IV, which transfers the data directly into an onboard 64 MB DDR RAM via DMA (direct
memory access). For the output, a custom IP core utilizing a FIFO (first in, first out) buffer
IP recovers data from the RAM via the PowerPC and puts the data to the output pins. For
an update of all voltages, the required amount of data is 64x 18 bit for the DAC samples and
16x 1bit for the chipselect line, furthermore the clock line has to updated 32 times and finally
the LDAC has to be changed. Several improvements of the protocol are envisaged, in general
it will be advantageous to devise a ’smart’ system instead of the passive data transfer one. As
almost all the experiments are performed such that exactly the same experimental sequence is
carried out a couple of hundreds of times, therefore a looping capability of the system would
yield a tremendous reduction of the amount of data to be transferred. Moreover, typically
only a set of electrodes is actually to be updated, therefore a protocol should be devised which
contains information about the subset of channels to be updated in one step. This is possible
as there is a single chip select line for each individual DAC chip, which is in principle not
needed for the present protocol. An additional bottleneck is given by the fact that the data
transfer from the RAM back to the FPGA is not accomplished via DMA, which represents a
considerable speed reduction.
It remains as a concluding statement that the trap voltage supply represent a key technology
for scalable quantum information experiments in segmented microtraps, and the challenges
range over the complete data supply chain up to the final supply of the generated voltages
to the electrodes.
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C. Advanced Reconstruction Technique
for Phonon Number Distributions

Rabi oscillations on a blue sideband are an important measurement tool to determine phonon
number distributions, i.e. to characterize the (quantum) state of a given vibrational mode of
trapped ions. This technique is employed in Sec. 4.6 for a precise heating rate measurement,
in chapter 7 for a complete quantum state tomography and in Sec. 8.3 for monitoring the
action of a light-induced displacement force. As the reconstructed occupation probabilities pn
represent physical quantities characterizing the quantum state, it is of fundamental interest
to find the most accurate way to extract them from the bsb Rabi oscillation data. This task
is hindered by experimental imperfections, i.e. shot noise on the data and drifting parameters
as the Rabi frequency and the spin and motional preparation imperfections. The starting
point is the bsb oscillation signal

P↓(t) =
1

2

∑
n

pn(a e−γ t cos (Ωn,n+1 t) + b), (C.1)

with the Rabi frequency Ωn,n+1 = Ω0Mn,n+1(η), the contrast a, baseline b and the decoher-
ence rate γ. The base Rabi frequency Ω0 is not exactly known and might be subject to drifts,
the Lamb-Dicke factor η depends on the beam angles which are also not exactly known, the
baseline and contrast factors depend on the spin preparation and readout, which are also
subject to drifts. The decoherence rate γ depends on the impinging light intensity and also
on the motional state itself, see Sec. 8.3. We also have to take into account the normalization
of the pn, thus if we consider the reconstruction as a nonlinear regression problem, we face
a situation with a large number of heavily correlated and partially constrained parameters,
which might also have very different ranges of values. Any standard nonlinear regression
routine will therefore be condemned to fail on this problem. Two different points of view
on Eq. C.1 seem to offer ways to solve this problem: First, the bsb signal can be seen as a
Fourier synthesis of oscillations at different frequencies Ωn,n+1, the relative strength of which
are directly given by the pn. When looking at the spectrum of bsb Rabi oscillations as in
Fig. 4.29, we immediately recognize two problems, namely that alias peaks appear due to
the finite data acquisition time and that the peaks are rather broad and distorted, such that
it is difficult to reliably read off the pn and give figures for their accuracy. Furthermore,
components beyond n = 4 cannot be resolved under the experimental conditions in this case.
Another way would be to consider the pn as a vector, which is multiplied by a rectangular ma-
trix to yield the measurement values. Therefore, singular value decomposition (SVD) of this
matrix can be applied to find the pseudo-inverse, which reveals the pn when multiplied on the
vector of measured data points. This was used in Ref. [Mee96], with the result that negative
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probabilities appear, which have magnitudes beyond their claimed accuracy. Besides these
unphysical results, the SVD method requires the other parameters to be fixed and well-known.
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Figure C.1.: Determination of confidence interval for an occupation probability: The standard
error for the ground state occupation probability p0 for a data set similar to the one in Fig.
4.28 a) is determined as explained in the text. A set of χ2 values with varying p0, including
first-order correlations to other varying parameters, is shown. It is bound from below by a
parabola. The plot at the right shows a probability distribution of χ2 values calculated at the
best fit parameters. The χ2 value at which the probability drops to 1/e sets the cutoff, which
is indicated by the vertical blue line. The intersection of this cutoff line with the bounding
parabola finally determine the confidence interval.

Our way for an efficient and precise phonon distribution reconstruction is to use a genetic
algorithm 1. The parameters are represented by discretized floating point numbers with a
resolution of 8 bit. The range of the pn is from 0.0 to 1.0, and they are normalized after being
extracted from the genome to avoid imposing a complicated constraint on the algorithm.
The other parameters are bounded to ±10% of a preset reasonable value. The algorithm
then calculates the average rms deviation of the signal arising from the parameters of each

1The software for this work used the GAlib genetic algorithm package, written by Matthew Wall at the
Massachusetts Institute of Technology. See http://lancet.mit.edu/ga/Copyright.html
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individual in the population from the measured data:

χ2 =
1

N

N∑
i=1

(
P

(meas)
↓ (ti)− P (calc)

↓ (ti)
)2
. (C.2)

Additional quantities are calculated to provide a guidance for the algorithm to physically
reasonable phonon distributions, namely the variance of the phonon distribution

V = 〈(n− n̄)2〉pn (C.3)

and the curvature of the distribution

C =

nmax−1∑
n=1

(pn−1 + pn+1 − 2pn)2 (C.4)

The final quantity to be maximized is then

Q = (αχχ+ αV V + αCC)−1, (C.5)

where the α are positive values to be chosen such that the algorithm finds reasonable results.
In other words, the algorithm is set to find parameters such that the measurement data
is reproduced, and the phonon distribution should favor low n and be smooth. The last
condition is related to a general aspect of tomographic maximum likelihood reconstruction
of probabilistic quantities describing physical systems, where one maximizes the entropy
additionally to the fitting in order to find the most reasonable physical state. Generally, the
probability distributions with a large curvature correspond to a low entropy, as the contain
more information, therefore the usage of the curvature term in Eq. C.5 is physically justified.
The question is now how to obtain reliable error estimations for the resulting pn, including
their mutual correlations and correlations to the other parameters. For this, we calculate
large sets of χ2 values, where always two of the variables are slightly changed, e.g.:

χ2(Ω0 + dΩ0, a, b, γ, p0, ..., pnmax)

χ2(Ω0, a, b, γ + dγ, p0, ..., pi + dpi..., pnmax)

χ2(Ω0, a, b, γ, p0, ..., pi + dpi, ..., pj + dpj , pnmax)

... (C.6)

where the deviations are scanned across a range of 10% of the resulting value for the extra
parameters and a fixed value 0.1 for the pn. The pn are of course to be renormalized. The
set of resulting χ2 values is plotted versus one parameter of interest, e.g. p0, an example
for which is shown in Fig. C.1. The structure of the set is always that a minimum χ2

min

occurs, from which the best fit parameter p
(best)
0 can be read off. The set is then bounded

from below by a curve which is parabolic around p
(best)
0 . The parabolic curve is obtained

by reducing the set of χ values to the minimum values in a set of bins along the parameter

axis. A parabolic fit can then be performed in a narrow range around p
(best)
0 , which is also
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shown in Fig. C.1. From this parabola, the desired confidence interval can then be obtained
by elementary statistical reasoning. For this, we assume that for the measurement data, the
projection noise error amounts to the theoretical maximum one, i.e.

√
0.52/M for M shots,

corresponding to a constant readout value of P↓ = 0.5. For large enough M , it is then allowed
to consider the shot-to-shot distribution of the P↓ to be Gaussian, with a standard error of
σ2 = 0.52/M . If a given measurement of a curve P↓ with N data points and M shots per
point was to be repeated several times, the statistical expectation value for the shot noise
deviation is given by

〈χ2〉 = σ2. (C.7)

χ2 is to be considered as a random variable as well, such that we can determine what the
statistical spread of the χ2 is. This allows to infer the confidence interval of the fit parameters
from the calculated χ2 sets by the assumption that if χ2 deviates by more than its own

statistical spread σ
(
χ2
)

from the optimum value, the fit parameter can be considered as

erroneous. The standard deviation of χ2 is found to be:

σ
(
χ2
)

=

√
2

N
〈χ2〉 =

√
1

2 N M
. (C.8)

Fig. C.1 illustrates this procedure for determination of the confidence interval for the
extracted ground state population p0 from a bsb Rabi oscillation data set similar to the one
shown in Fig. 4.28 a). A probability distribution for χ2 is calculated by drawing random
measurement values according to Poissonian distributions with the calculated readout values
as mean value for each probe pulse time of the data set. The χ2 at which the probability drops
to 1/e of the maximum value serves as a cutoff value for the determination of the confidence
interval. As a general result, it can be stated that this method for the characterization of
the quantum state is rather imprecise and also bounded to the Lamb-Dicke regime, therefore
either the decoherence timescales have to be much improved or one has to resort to beating
tomography schemes such as the one presented in Sec. 8.4 and Appendix D.
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D. Tomography Method for States with
Entanglement of Spin and Motion

It is of great interest to investigate the decoherence of nonclassical Schrödinger cat states by
directly observing the coherent features in phase space, as it was performed on a cavity field
in Ref. [Gle07]. The question arises if similar experiments could be performed with a trapped
ion, as both the preparation of Schrödinger cat states (see chapter 8) and the tomography of
the quantum state of a motional mode (see chapter 7) is readily achieved. It turns out that
these two experiments cannot be easily combined, as the entanglement of spin and motion
obscures the direct observation of the desired interference features. The Schrödinger cat state
e.g. |↑, α〉+ |↓,−α〉 cannot be unitarily transformed to |↑, α〉+ |↑,−α〉 which would allow for
the application of tomography methods such as the one presented in chapter 7. A dissipative
transfer would destroy the quantum coherence of the state. A possible way to perform such
an experiment is the application of the wavepacket beating scheme presented in chapter 8.
If a similar experiment as in Ref. [Gle07] could be performed with a single trapped ion, the
way would be paved for investigations in higher-dimensional spin Hilbert spaces, i.e. the
decoherence properties of Schrödinger cat states with several ions can be measured, which is
not directly possible for the cavity QED system.
First, we briefly discuss what quantity the wavepacket beating scheme measures at all and
establish the connection to quantum state tomography, see chapter 7. Let us assume we
could perform an arbitrary manipulation of the motional state for a single spin component
only. We then generalize the scheme above such that the displacement operation in the first
gap of the spin-echo sequence is replaced by a general operation leading to the quantum state
of the vibrational mode |χ〉. The reasoning leading to the measurement signal Eq. 8.41 now
yields

P↑ =
1

2
(1 + <〈α|χ〉) . (D.1)

One realizes that besides the trivial offset and scaling factor, this partially gives the Husimi-
Kano Q-function:

Q(α) =
1

π
〈α|χ〉〈χ|α〉, (D.2)

which contains the complete information about the quantum state |χ〉. If the phase of the
second π/2 pulse in the sequence is changed to φ = π/2, the obtained signal is

P̃↑ =
1

2
(1−=〈α|χ〉) . (D.3)

We therefore find that
(2P↑ − 1)2 + (2P̃↑ − 1)2 =

π

4
Q(α), (D.4)
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D. Tomography Method for States with Entanglement of Spin and Motion

which states that the value of the Q-function at a particular point in phase space can be
directly measured by running two different sequences. The restriction of this tomography
scheme lies in the fact that no given input state can be used, one rather has to employ
spin-dependent mechanisms for the state preparation. If a general input state |χ〉 which was
created before the measurement sequence was to be analyzed, the resulting signal would be

P↑ =
1

2

(
1 + <〈χ|D̂†(α)|χ〉

)
. (D.5)

This signal can also be used to fully determine the quantum state. The preparation step
is not part of the sequence anymore, the spin-echo scheme is therefore replaced by a single
displacement pulse sandwiched between the π/2 pulses. The resulting signals then read

P↑ =
1

2

(
1−<〈χ|D̂(α)|χ〉

)
P̃↑ =

1

2

(
1−=〈χ|D̂(α)|χ〉

)
. (D.6)

As pointed out in [Bar98], this provides a direct measurement of the characteristic function
of the Wigner function:

fW (α) = 〈χ|D̂(α)|χ〉, (D.7)

which can straightforwardly be extended to mixed states. The Wigner function is simply
obtained by a Fourier transform:

W (β) =
1

π2

∫
fW (α)eβα

∗−β∗αd2α. (D.8)

We now proceed towards the generalization to input states with possible entanglement be-
tween spin and motion, i.e.

|Ψ〉 = | ↑, χ↑〉+ eiψ| ↓, χ↓〉. (D.9)

Normalization factors are omitted in the following and the relative phase ψ of the spin
superposition is also dropped as it can be safely assumed that it can be measured and modified
separately. We now consider a simple analysis sequence where a displacement drive acting
only on |↓〉 creates the state:

|Ψ〉 = | ↑, χ↑〉+ D̂(α)| ↓, χ↓〉. (D.10)

A concluding π/2 pulse with analysis phase φ gives rise to

|Ψ〉 = | ↑, χ↑〉 − ie−iφ| ↑, χ↓〉+ D̂(α)| ↓, χ↓〉 − ieiφD̂(α)| ↑, χ↓〉. (D.11)

The resulting measured population is

P↑(α, φ) = N
(

1 + cosφ =〈χ↑|D̂(α)|χ↓〉+ sinφ <〈χ↑|D̂(α)|χ↓〉
)

(D.12)

It can be seen that this leads towards the desired result: a component of the characteristic
function pertaining to the motional wavefunctions associated with the adjacent spin compo-
nents. More information can be extracted with a more complex scheme. Starting again from
the input state Eq. D.9, we follow the sequence:
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1. Shift the superposition phase by means of a Stark shift laser beam by θ1.

2. Employ a first π/2 pulse with phase φ1.

3. Drive the displacement of |↓〉 by α.

4. Employ a second phase shift of θ2.

5. Exert the concluding π/2 pulse with phase φ2.

The resulting signal is then given by

P↑(α, φ) ∝ 2 + (cos(θ1 + φ1)− cos(θ1 + φ1 − 2φ2)) =M↑↓(0)

+ (sin(θ1 + φ1)− sin(θ1 + φ1 − 2φ2)) <M↑↓(0)

+ cos(θ1 + θ2 − φ2)=M↑↓(α) + sin(θ1 + θ2 − φ2)<M↑↓(α)

+ cos(θ1 − θ2 + 2φ1 − φ2)=M↓↑(α)− sin(θ1 − θ2 + 2φ1 − φ2)<M↓↑(α)

− sin(θ2 − φ1 − φ2)=M↓↓(α) + cos(θ2 − φ1 − φ2)<M↓↓(α)

+ sin(θ2 − φ1 + φ2)=M↑↑(α)− cos(θ2 − φ1 + φ2)<M↑↑(α), (D.13)

with
Mij(0) = 〈χi|χj〉 and Mij(α) = 〈χi|D̂(α)|χj〉 (D.14)

Thus, by performing different measurements with appropriate choice of the phase angles

φ1, φ2, θ1, θ2, a maximum amount of information can be obtained about the M
(α)
ij for a point

in phase space given by α. The overlap integrals be be separately measured with a simple
measurement as for the simple Schrödinger cat measurement leading to the result Eq. 8.24,
the overlap integral pertaining to adjacent spin states can be measured with the simplified
sequence presented above and the symmetry relation

Mij(α) = Mji(−α)∗ (D.15)

can be used for additional simplification. It is beyond the scope of this thesis the answer
the question of the complete information about the quantum state can be obtained with this
measurement scheme, but it can be stated the desired coherence measurement can already
be performed with the simplified scheme.

225





E. Coherently Driven Ion Crystals

In this appendix, we derive a general frame work for the coherent interaction of laser beams
with ion crystals aligned along the z-axis. The coupling strength for i-th ion is given by

Ωi = Ω(z
(0)
i ) with the equilibrium position z

(0)
i derived from Eq. 2.80. This admits both

single ion addressing of the k-th ion Ωi = Ω0δik and homogeneous illumination as the limiting
cases. In order to not overburden the notation, we restrict ourselves to a beam propagation
along the z-axis, such that the (scalar) laser field is given by

E(z, t) = E0 cos(kzz − ωlt+ φ). (E.1)

This leads to exclusive coupling to the axial vibrational case, however, the most general case
can be straightforwardly retrieved by replacing kzz with ~k · ~r. For direct applicability to
an experimental situation, we discern the cases for coherent driving of internal states (spin)
corresponding to the situations in Secs. 2.1.4 and 9.3, and the direct driving of motional
modes as in Secs. 8.1 and 9.5.

E.1. Driving the Internal State

We extend the interaction part of the Cirac-Zoller-Hamiltonian Eq. 2.45 to the case of N
ions:

HI =

N∑
j

1
2~Ωj(σ̂

+
j + σ̂−j )

(
exp

[
i
(
kz(z

(0)
j + δuzj)− ωlt+ φ

)]
+ h.c.

)
. (E.2)

Employing the generalized coordinates Eq. 2.89 leads to

HI =

N∑
j

1
2~Ωj(σ̂

+
j + σ̂−j )

(
exp

[
i

(
kz(z

(0)
j +

∑
n

M
(z)T
jn q(z)

n )− ωlt+ φ

)]
+ h.c.

)
. (E.3)

Writing the q
(z)
n in second quantization

q(z)
n =

√
~

2mωn
(ân + â†n) (E.4)

and replacing the ladder operators by their interaction picture versions

ân → eiωntân , â†n → e−iωntâ†n,

σ̂+
i → eiωegtσ̂+

i , σ̂−i → e−iωegtσ̂−i , (E.5)
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E. Coherently Driven Ion Crystals

we obtain the interaction picture Hamiltonian:

H
(I)
I =

N∑
j

1
2~Ωj(e

iωegtσ̂+
j + e−iωegtσ̂−j )

·

(
exp

[
i

(
kzz

(0)
j +

∑
n

M
(z)T
jn ηn(eiωntân + e−iωntâ†n)− ωlt+ φ

)]
+ h.c.

)
,

(E.6)

where ηn = kk

√
~

2mωn
is the Lamb-Dicke factor for the n-th mode. Invoking the rotating

wave approximation yields

H
(I)
I =

N∑
j

1
2~Ωj σ̂

−
j exp

[
i

(
kzz

(0)
j +

∑
n

M
(z)T
jn ηn(eiωntân + e−iωntâ†n)− δt+ φ

)]
+ h.c. ,

(E.7)
which constitutes the most general result. We now perform the Lamb-Dicke approximation
assuming all δuzj are much smaller than the driving wavelength and expand the exponential
containing the spatial phases up to first order:

H
(I)
I =

N∑
j

1
2~Ωj σ̂

−
j

(
1 + i

∑
n

M
(z)T
jn ηn(eiωntân + e−iωntâ†n)

)
e
−i
(
δt−kzz(0)

j −φ
)

+ h.c. , (E.8)

from which we can perform a second rotating-wave-approximation under the assumption that
the laser is tuned to the rsb or bsb of a specific motional mode n, δ = +(−)ωn:

H
(I)
I =

N∑
j

1
2~Ωj σ̂

−
j

(
i M

(z)T
jn ηnâ

(†)
n

)
e
i
(
kzz

(0)
j +φ

)
+ h.c.. (E.9)

The key difference between the driving of an ion crystal and a single ion is the occurrence
of the phase factors depending on the equilibrium positions. This means that the phases of
the unitary transform that is realized by the coupling to a given mode jointly depend on the
total internal state, the trap frequency and the structure of the motional mode.

E.2. Driving the Motion

We start from the generalization of the coupling Hamiltonian Eq. 8.5 to N ions:

HI =
N∑
j

1
2~∆S,j σ̂

(j)
z exp [i (∆kẑj − δRt+ ∆φ)] + h.c. . (E.10)

This is equivalent to the case of the internal state driving besides the replacement of the

internal state operator σ̂−j and σ̂+
j with the self-adjoint operator σ̂

(j)
z . We can therefore
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E.2. Driving the Motion

proceed along the same lines of thought as in the previous section to arrive at

H
(I)
I =

N∑
j

i
2~∆S,j σ̂

(j)
z ηnM

(z)T
jn

(
âne

i
(

∆k z
(0)
j −δt+∆φ

)
+ h.c.

)
(E.11)

Where we admit a detuning from the motional frequency of the n-th mode of δ = δR − ωn.
The equation can be rearranged to

H
(I)
I = −

N∑
j

~∆S,j σ̂
(j)
z M

(z)T
jn

(
∆kq̂n sin

(
∆kz

(0)
j − δt+ ∆φ

)
+

∆k

mωn
p̂n cos

(
∆kz

(0)
j − δt+ ∆φ

))
.

(E.12)
Assuming all motional modes to be in the ground state and denoting a total unentangled

spin state with the set of spin variables {s(j)
z } = ±1/2, we can calculate the driving force on

resonance acting onto the mode using Eq. 8.14 to be

Fn = −
N∑
j

~∆S,js
(j)
z M

(z)T
jn ∆k sin

(
∆kz

(0)
j + ∆φ

)
(E.13)

As in the case of the internal state driving, the effect of the interaction depends on the total
spin state and on the oscillation mode properties. Here, even the strength of the displacement
force depends on these parameters. On the one hand, this is provides a cornerstone of the
geometric phase gate described in Sec. 9.5 as specific spin configurations can be selectively
displaced, on the other hand this adds extra complexity especially when gates on larger,
unevenly spaced ion crystals are to be performed as we investigated in detail in [Iva09].
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F. Atomic Properties of Calcium

40Ca ionization energy [eV] 6.11

Atomic weight [u] 40.078
40Ca+ P-state finestructure splitting [GHz] 6682.22

Table F.1.: General properties of 40Ca.

S1/2 2

P1/2 2/3

P3/2 4/3

D3/2 4/5

D5/2 6/5

Table F.2.: Landé factors of the 40Ca+ states [Roo00].

Transition Physical wavelength [nm] Lab wavelength [nm] Lifetime

S1/2 →P1/2 396.847 396.95916(2) 7.7(2) ns

S1/2 →P3/2 393.366 - 7.4(3) ns

S1/2 →D3/2 732.389 - 1.080 s

S1/2 →D5/2 729.147 729.34770(5) 1.045 s

D3/2 →P1/2 866.214 866.45220(5) 94.3 ns

D5/2 →P3/2 854.209 854.444(1) 101 ns

D3/2 →P3/2 849.802 - 901 ns

Table F.3.: Properties of the 40Ca+ transitions [Roo00]. The laboratory wavelength denotes
the readout value of our wavemeter at resonance.
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G. Publications

G.1. Journal Publications

U. Poschinger, M. Hettrich, A. Walther, F. Ziesel, M. Deiss, K. Singer and F. Schmidt-
Kaler, High precision atomic decay rate measurement using a single trapped ion, manuscript
in preparation

Andreas Walther, U. Poschinger, F. Ziesel, M. Hettrich, A. Wiens and F. Schmidt-Kaler,
Using a single ion as a shot-noise limited magnetic field gradient probe, manuscript in prepa-
ration

U. Poschinger, Andreas Walther, Kilian Singer and Ferdinand Schmidt-Kaler, Observing
the phase space trajectory of an entangled ion wave packet, Phys. Rev. Lett. 105, 263602
(2010)

Gerhard Huber, Frank Ziesel, U. Poschinger, Kilian Singer and Ferdinand Schmidt-Kaler,
A trapped-ion local field probe, Applied Physics B 100, 725 (2010)

K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, F. Schmidt-Kaler,
Experiments with atomic quantum bits - essential numerical tools, Rev. Mod. Phys. 82,
2609 (2010)

P. Ivanov, U. Poschinger, K. Singer, F. Schmidt-Kaler, Quantum gate between logical
qubits in decoherence-free subspace implemented with trapped ions, Eur. Phys. Lett. 92,
30006 (2010)

U. Poschinger, G. Huber, F. Ziesel, M. Deiss, M. Hettrich, S. A. Schulz, G. Poulsen,
M. Drewsen, R. J. Hendricks, K. Singer and F. Schmidt-Kaler, Coherent manipulation of a
40Ca+ spin qubit in a micro ion trap, J. Phys. B: At. Mol. Opt. Phys. 42, 154013 (2009)

S. Schulz, U. Poschinger, F. Ziesel and F. Schmidt-Kaler, Sideband cooling and coherent
dynamics in a microchip multi-segmented ion trap, New Journal of Physics 10, 045007 (2008)

Stephan Schulz, U. Poschinger, Kilian Singer, and Ferdinand Schmidt-Kaler, Optimiza-
tion of segmented linear Paul traps and transport of stored particles, Progress of Physics,
Wiley 54, 648 (2006)
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G. Publications

G.2. Talks

Quantum optics experiments in a micro ion trap-towards scalable quantum logic, DPG Frühjahrstagung,
Hannover 2010

A spin qubit in a segmented micro ion trap - towards scalable quantum logic under rough
conditions, QIon 09, Tel Aviv, Israel 2009

A spin qubit in a segmented micro ion trap - towards scalable quantum logic under rough
conditions, EMALI YR Meeting, Oxford UK 2009

A spin qubit in a segmented micro ion trap - towards scalable quantum logic under rough
conditions, CCM Group Seminar, Imperial College London, UK 2009

A spin qubit in a segmented micro ion trap, DPG Frühjahrstagung, Hamburg 2009

Raman ground state cooling and coherent manipulations in the segmented micro ion trap,
STR TR21 Meeting, Reisensburg, 2008

Quantenzustandsmanipulation in segmentierten Ionenfallen, DPG Frühjahrstagung, Düsseldorf
2007

Quantum state engineering in segmented ion traps, EMALI Kickoff Meeting, Zrich, CH, 2006

Optimization of transport and splitting of linear ion strings, SFB TR21 Workshop, Freuden-
stadt, 2006

G.3. Posters

Spin-dependent forces on trapped Ions: Entangled matter wave dynamics and decoherence,
International Conference Quantum Engineering of Matter and Light, Barcelona, ES, 2010

Spin-dependent forces on trapped Ions: Entangled matter wave dynamics and decoherence,
ICAP, Cairns, AUS, 2010

A spin qubit in a segmented micro-ion trap, SCALA conference, Cortina dAmpezzo, IT,
2009
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G.3. Posters

Application of optimal control techniques in scalable ion trap quantum logic, Batsheva de
Rothschild Seminar on Ultracold-Ultrafast Processes, Ein Gedi, Israel 2008

Application of optimal control techniques in scalable ion trap quantum logic, DPG Frühjahrstagung,
Darmstadt 2008

Application of optimal control techniques in scalable ion trap quantum logic, EMALI an-
nual meeting, Heraklion, GR, 2007

Application of optimal control techniques in scalable ion trap quantum logic, Gordon Research
Conference on Quantum Control of Light and Matter, Newport, RI, USA 2007
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[Rie04] M. Riebe, H. Häffner, C. Roos, W. Hänsel, J. Benhelm, G. Lancaster, T. Körber,
C. Becher, F. Schmidt-Kaler, D. James, and R. Blatt, Deterministic quantum
teleportation of atomic qubits, Nature 429, 734 (2004).

[Roo00] C. Roos, Controlling the quantum state of trapped ions, Ph.D. thesis, Universität
Innsbruck (2000).

[Roo08] C. F. Roos, T. Monz, K. Kim, M. Riebe, H. Häffner, D. F. V. James, and R. Blatt,
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C. Becher, J. Eschner, H. Häffner, and R. Blatt, The coherence of qubits based on
single Ca+ ions, J. Phys. B: At. Mol. Opt. Phys. 36, 623 (2003).
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