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Abstract
This report presents the work on a project in the framework the experiment about the deterministic

implantation of single ion in diamond, in the AG Schmidt-Kaler, located in the Institut für Physik
in Mainz.

In the first part I will give a global overview of the experiment which consists in trapping single
ions in a linear Paul trap before accelerating them by the mean of electric fields into a diamond.

In the rest of the report I will present two different optimizations I made for the knife-edge
measurement of the single ion beam. They rely respectively on the two interpretations of probability:
the frequentist and Bayesian point of view. Then I will explain the working principle of each of them
as well as their theoretical background.

Finally I will discuss their performances by using simulations. It turns out that their accuracies
are similar but the robustness and the usability make the Bayesian method the best alternative for
the single ion beam measurement.

Résumé
Le présent rapport présente le projet effectué dans le cadre de l’expérience sur l’implantation

déterministique d’ion dans un cristal de diamant au sein the du groupe de Ferdinand Schmidt-Kaler,
situé au “Institut für Physik” à Mayence.

Dans la première partie je donnerai un point de vue d’ensemble de l’éxpérience qui consiste à
piéger des ions uniques dans un piège de Paul linéaire avant de les accélérer au moyen de champs
magnétiques vers un cristal de diamant.

Dans le reste du rapport je présenterai deux différentes optimisations apportées à la mesure du
diamètre du faisceau d’ions unique par la “méthode de la lame de couteau”. Elle reposent sur deux
interprétation de la probabilité : le point de vue fréquentiste et le point de vue Bayesien. J’expliquerai
leur principe de fonctionnement ainsi que leur cadre théorique.

Enfin, je discuterai leur performances en utilisant les résultats de simulations. Il s’avère que leurs
exactitudes sont similaires mais la robustesse et la facilité d’utilisation de la méthode Bayesienne en
font la meilleure alternative pour la mesure de faisceaux d’ions uniques.
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1 INTRODUCTION 1

1 Introduction
1.1 Framework of the internship
This internship was done in the team of Kilian Singer, in the Physikalisches Institut in Mainz among
other projects of the Ferdinand Schmidt-Kaler’s group. I worked at the experiment for the deterministic
implantation of single Nitrogen ions in Diamond. The main goal is to create NV centers1 whose position
and number are well defined. To do so, one uses a segmented Paul trap to catch one single ion, which is
first accelerated by an electric field and then focused in the diamond by the mean an electrostatic lens.
For the moment, the group was working only with Calcium ions instead of Nitrogen for simplicity. The
current goal is to reach better focusing and then to use Nitrogen ions to create NV centers at given places.

1.2 Goals of the internship
This report presents the project I had to carry out. When I arrived in the lab, the team was changing the
old electrostatic lens for a new one. We were able to achieve a focus resolution of 8 nm measured with a
knife-edge measurement method. However this measurement was relatively basic, not particularly reliable
and time-consuming. The main task I had to deal with was to find a way to optimize this measurement
to make it more precise and faster. This was mainly simulations using Mathematica and C++2 in order
to write an improved program using a Bayesian approach to run the experiment for measuring the beam
diameter.

First, I will present the whole setup in order to give a global view on the experiment in order to to
describe with which system we are working. Then, I will present the different approaches we considered
to optimize the measurement: first an optimization of the existing measurement, which will be called
"Frequentist" method in the present report, by opposition to the second method which is a "Bayesian
method" based on the Bayesian experimental design. I will also deepen the explanations about the
Bayesian point of view and the consequence on the interpretation of the results. Finally I’ll present some
results of the simulations, due to unexpected problems with the experiment.

The main point of the report is not about which resolution can be achieved but about how one can
perform an efficient and reliable measurement and how to express a result which can be trusted.

1Nitrogen Vacancy centers
2with the help of MCP, a C++ interface developed by Kilian Singer. See .
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2 The implantation experiment
2.1 Introduction
In the past few years the number of transistors on an integrated circuits has increased exponentially,

the size of these structures reaching few tens of nanometers. At these scale the statistical Poissonian
fluctuations can modify the properties of the device a lot. This is also problematic for any future solid
state Quantum computers that are based on the implantation of single atoms acting as Qubit carriers,
for example color centers in diamond or phosphorus dopants in silicon, [Dutt et al., 2007,Neumann et al.,
2008,Kane, 1998]. Some of these candidates are promising, but the problem of the scalability is still a
big issue that needs to be overcome in order to create a quantum computer, [DiVincenzo et al., 2000].

So far very few methods, if none, have achieved to implement particles in a highly deterministic way
with a resolution of the order of a nanometer. There are two major problems: the achievable resolution
on one hand and the number of implanted ions on the other hand. The challenge is to solve both at the
same time. Until recently, implantation relied solely on thermal sources where the fluctuating number
of dopants can be only checked a posteriori without any further possible improvement. Moreover these
sources uses particles with a high energy which induce defects in the substrate and a fluctuation of
dopants number. Some other tricks can be use to implant particles at a given such as [Hausmann et al.,
2011] using ordered nanostructure in order to trap the Nitrogen at some specific place or [Meijer et al.,
2008] using an AFM tip with a small hole to guide the ion beam to a specific target. But in the end, the
number of dopant implanted still fluctuates.

The idea of the current experiment is to trap single ions in a Paul trap, which nowadays is a well-known
technology, and accelerate them by applying an electric field before focusing the beam with an electrostatic
lens. Trapping the ion initially gives a very small velocity dispersion of ∆v/v = 8m.s-1/110303m.s-1 which
corresponds to an energy dispersion of ∆E/E = 3 · 10−4 and a very narrow angular spread of the beam
about ≈30 µrad, since the initial position and momentum are well defined. Moreover, the energy of the
ions is relatively low, about 2 µK. The main limitation up to now was the resolution about 5 µm. With
installation of a new lens, we were able to achieve a resolution down to a few nanometers while using
using deterministic single ions. Determining this value was the main motivation for this internship.

In this first part we are going to give a global overview of the experiment.

2.2 Experimental setup
The focus of this work is not on the whole experiment, so I am just going to give a global idea of how
the experiment works. For more details one can look in the master and PhD thesis from former students
as [Wolf, 2012] or to the published papers [Schnitzler et al., 2010], [Schnitzler et al., 2009]. First we are
going to give a global view of the setup, before explaining in the next part the implantation process. We
won’t detail so much all the technical details of the experiment which would be far beyond what has been
done during the internship and what could have been done in a such little amount of time.

2.2.1 General scheme

In figure 1 are represented the main elements of the experiment necessary to understand the working
principle. We won’t detail all the laser setup for the Doppler cooling, neither the technical details of the
microscope, the electronics needed to control the electrodes of the trap nor the sequence needed for each
step of the experiment.
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Figure 1: General scheme of the experimental setup

2.2.2 Segmented Paul trap

Figure 2: Picture of the trap. Each electrode has a width of 200 µm and the gap between two of them is 30 µm
large.

The Paul trap is made up of 4 ceramic blades covered by gold electrodes and assembled in a cross shape
as shown in picture 2. Due to the requirements for a Paul trap, two of the blades are supplied with
DC voltage for the axial confinement and the two others supplied with RF voltage. The DC electrodes
are segmented in 11 independent electrodes3 which allow to manipulate the potential in axial direction,
see [Walther et al., 2012] for the demonstration of a such transport in a similar trap from another setup
of the lab. There are two additional end cap electrodes at each side of the trap which are used to extract
the ions by applying a high negative voltage. A small hole of 200 µm has been dug by eletroerosion and
allows for extraction of the ion. By applying the right voltages and frequencies one can trap the ion,
before cooling it down by the mean of Doppler cooling and then extracting it.

If one wants more information about Paul traps and single ion trapping one can refer to [Leibfried
et al., 2003] for instance.

2.2.3 Electromagnetic lens

The electrostatic lens is a crucial element to get a small implantation resolution. The design affects the
focus size a lot. When I arrived in the lab, we install the new lens with a new design. The previous one
led to focus size about 5 µm whereas with the new one resolutions of few nanometers were achieved.

3but two of them are linked together due to fabrication defects
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Since we are using beam with small divergence and narrow velocity distribution, we don’t have to
make sophisticated aberration corrections and the design stays simple: it is three consecutive circular
electrodes, the first and the third are at ground potential whereas the electrode in the middle is at a
positive or negative voltage up to 3 kV. Depending on the voltage sign of the middle electrode, the lens
presents different behaviors:

• If the sign is the same as the sign of the particle charge, it is a deceleration-acceleration mode.

• If the sign is the opposite of the sign of the particle charge, it is a acceleration-deceleration mode.

In the accel-decel mode the chromatic and spherical aberrations are smaller. However the decel-accel
mode requires lower voltage to achieve the same focal length, which is a good point since in general it is
difficult to isolate effectively the electrodes from each other. In addition, it is possible to correct for the
spherical aberration by switching the lens to a higher voltage when the particle is passing through the
lens. In the experiment we use the decel-accel mode, that is to say we apply a positive voltage on the
middle electrode. The details about the lens can be found in [Fickler, 2009] or [Schnitzler, 2010].

For more general information about electrostatic lenses, on can refer to [Rose, 2008].

Figure 3: Picture of the new lens, compared to the old lens, a more sophisticated procedure was applied. Also
the isolation between the electrodes is better.

2.2.4 MCP

For this report, one important part of the experimental setup is the control of the experiment by a
computer. To do so, every experimental procedure is written in C++ using the Master Control Program
interface, aka MCP. MCP is a Qt based C++ user interface developed by Kilian Singer which allows easy
dynamical handling of C++ functions. It allows also to plot one or two dimensional graphs, histograms or
to displays parameters values for example. This can be seen as an equivalent of the front end of LabView
but with C++ code in the back end. A screenshot can be seen in figure 14 in the appendix with the
interface of the procedure written during the internship. One can use the debugging functionalities of
Microsoft visual studio to track errors in our code interpreted by MCP. One of the main advantage is that
it can compile the code without restarting the program and losing the front end elements. It naturally
benefits from the high computation speed and hardware compatibility of C++.

It also runs every experiment in the lab but can also be used for simulation which requires higher
computational power than interpreted language software like Mathematica. Many very complex routines
are carried out on the experiment and allows for handling nearly every parameter of the experiment from
the computer.

In all the following, most of the simulation were written with Mathematica to start before implement-
ing it in C++ with MCP. However it uses some particular templates to communicates with the front end,
which forces to "bad" programmation habits like using global variables or putting class member in the
public part.

2.3 Implantation overview
In this part we describe here the different steps of the implantation process.
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2.3.1 Loading, cooling and separation of the ions

For the moment we are only working with Calcium ions, because it is easier to produce Calcium than
Nitrogen ions, the latter one needing higher energies. First to produce the ions, Calcium powder is heated
in an oven to evaporate it, the atoms are first excited by a laser at 423 nm and ionized by a second one at
375 nm. The ions are then Doppler cooled down to 2 mK. Initially more than one ion are trapped in the
potential, it is therefore needed to remove the extra ions by lowering the potential barrier. Note that we
cannot cool down the Nitrogen directly ions since there is no laser available to do it, therefore the cooling
will be done by sympathetic cooling with Calcium ions. This kind of cooling relies the thermalization
of two different atom species in a potential: the two species share their energy through the Coulomb
interaction in order to reach the same temperature. However since the Calcium ions are cooled by lasers
so the whole system is progressively cooled down. The cooling is really important since the temperature
will increase the lateral energy dispersion and therefore will increase the size of the focus.

The fluorescence of the Calcium ions is imaged by a camera and a procedure check if there is effectively
one single ion in the trap. In the end, after this step there is only one ion trapped in the Paul trap which
can be extracted.

2.3.2 Extraction and focusing

To extract the ions from the trap, we apply a negative high voltage on the end cap of the Paul trap to
accelerate the ions. They go through a small aperture in the end cap and fly through the main chamber
of the setup before being focused by an electrostatic lens.

The working principle of an electrostatic lens is similar to an optical lens and so are the aberrations.
Considering that we want a very high accuracy, one needs to take these errors into account. In our
experiment, one can neglect the influence of the chromatic aberration. This one changes the focus
position depending on the energy distribution which here is the energy distribution of the ions.

However the spherical aberration plays an important role and has to be taken into account. The
spherical aberration changes the focus position according to the position of the incident beam on the
lens. The aberration is particularly important near the edge of the lens. It’s due to the fact that some
approximation concerning the lens are done, like for example the thin lens approximation in the case of
optical lenses, which are no more valid. To describe the spherical aberration, let’s consider a point source
at a distance a from the lens, this point is shifted to a distance r1 from the optical axis. Moreover the
beam includes an angle α with the optical axis. In the case of a perfect lens, the distance between the
optical axis and the image of the source situated at the position b is given by:

r2 =
(

1− b

f

)
r1 +

(
a+ b+ ab

f

)
(1)

and a beam which includes an angle α with the optical axis cross this one after the lens at a distance:

fα = f (r1 + aα)
(f + a)α− r1

(2)
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Figure 4: The upper scheme corresponds to a perfect lens, every ray from the object in position a are focused
on the image at z = b. In the lower scheme is represented the focus length for a lens with spherical
aberration.

For a lens with a spherical aberration, these formulae are not valid anymore far from the axis. For
a small angle, the distance from the axis can be approximated by x =≈ r1 + aα the position where the
beam crosses the optical axis is shifted by ∆f in the direction of the lens. If we consider a rotational
symmetry for the lens, the 1st order expansion of the shift can be expressed as:

∆f = c2x
2 +O(x4) (3)

where c2 is a coefficient which characterizes the spherical aberration and which we want to determine
experimentally. The distance r3 from the optical axis to the image of the source is:

r3 = x∆f
fα −∆f (4)

If we want to determine, this distance r3 but for any arbitrary z0 position, noting r4 this gap, one can
write it as follows:

r4 = z0 − (fα −∆f)
∆f r3 =

z0 + c2 (r1 + aα)2 − f(r1+aα)
(a+f)α−r1

+O(x4)
f

(a+f)α−r1
− c2 (r1 + aα) +O(x3)

(5)

This expression doesn’t make any sense if ∆f becomes equal to fα or if ∆f > fα. It is therefore
meaningful to make a Taylor expansion for α ≈ 0. We also add the assumption that the source is now
on the optical axis. Finally r4 is approximated by:

r4 (α) =
(
z0 + a

(
z0

f
− 1
))

α+ ac2(a+ f)2z0

f2 α3 +O(x4) (6)

One can also find the formula in [Rose, 2008]. From a knife edge measurement, one can thus find the focal
length and also estimate the spherical aberration. One can also find the z-position where the dispersion
of the beam is the lowest, it is at ∆f/4 after the beam focus. At this place, the beam has a width of

r3,min ≈
c2x

3

4fα
(7)

In practice, one wants to have the smallest possible focus, therefore one needs to minimize the spherical
aberration which is done by aligning the beam to the center of the lens. For that, considering that the lens
has a spherical symmetry, we can scan over the lens by changing the voltage of the deflection electrodes.
They are situated at the exit of the trap and allows for adjusting the trajectory of the ion. One can
fit the result with the formula 6. Depending on the relative position between the focus plane and the
measurement plane, the beam position takes different shapes. For a plane measurement near the focus,
the lens shows a large region near the center where the final position doesn’t depend on the position on
the lens, as shown in 5.
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Figure 5: Example of experimental scan showing the position of the beam according to the deflection voltage,
fitted with the formula 6. One finds c2 = 1.24 ± 5nm-1 for the spherical aberration coefficient.

This symmetry point of the function is where the beam is aligned to the optical axis of the lens and
thus the aberration becomes minimal. At this point one might check the size of the beam using a basic
knife-edge measurement. This is the part which will interest us in the rest of the the report, so I will
discuss that in detail that later.

2.3.3 Implantation and annealing of the diamond

Once the Nitrogen has been accelerated into the diamond at a place selected by the piezo table, one has
to anneal the diamond at 800◦ in order to produce the NV centers. The Nitrogen has to merge with a
vacancy to produce color center. This is the only step in the process which is not totally deterministic
since the efficiency of creation of NV center is not 100%. The efficiency of NV center creation depends
strongly on the ion energy as explained in [Pezzagna et al., 2010].

How to proceed with this step hasn’t been decided yet, the problem is that the high temperature can
damage the piezo table. There are different possibilities, but for the moment the diamond will be taken
out the vacuum chamber.

2.3.4 Checking the NV center creation through spectroscopy

The last step of the process is to check whether the color center creation was successful or not. We use
a confocal microscope which should be able to resolve two near NV centers from each other according
to the Rayleigh criterion. The resolution for a normal microscope is given by r = λ

2n sin θ where 2n sin θ
is the numerical aperture. At a distance of few tens of nanometers and at a wavelength of 532 nm, this
won’t be enough to resolve two close NV centers. There are two possibilities which can work well in the
setup to overcome this resolution limit.

• STED microscopy (Stimulated emission depletion microscopy: a first laser beam with a non-
Gaussian mode is used to saturate the absorption of the color centers in a ring around a central
point while a second laser beam will activate the fluorescence of the non saturated centers in the
middle with a different wavelength corresponding to the fluorescence wavelength. See [Willig et al.,
2007] for more extensive explanations.

• GSD microscopy (Ground state depletion microscopy: It’s nearly the same excepted that we don’t
use a second laser, if the NV center is exactly in the middle, it won’t emit any light at all. One
just has to scan over the sample. Afterwards the image is a convolution of the centers the toroidal
shape of the beam and hence has to be deconvoluted.

Since we want to observe the sample in situ, the GSD is used because it needs only one laser beam.
According to [Hell, 2007], the resolution achievable for the GSD microscope is given by:

∆r ≈ λ

2n sinα
√
Isat/Imax + 1 (8)

where n sinα is the numerical aperture and ζ = Isat/Imax is defined as the saturation factor.
The microscope system using GSD is already in place in the experiment and we are able to detect

NV centers from a sample correctly, [Wolf, 2012].
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2.3.5 Completion of the pattern

The great advantage of this experiment is that if we observe a missing NV center in the designed pattern,
we can always afterwards redo the procedure to implant the missing centers. However since the diamond
has already been annealed, few diamond vacancies are left and the Nitrogen ion is still trapped in the
diamond. One can create additional vacancies at this place by shooting Carbon ions or Calcium ions and
anneal sample again. Thus we can build a fully deterministic pattern of NV centers.
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3 Beam measurement: First approach
During the internship I had to deal with a very practical issue, namely the measurement optimization of
the distribution of the ion trajectories which can be seen as a "beam". This is an important issue since
the beam diameter will determine the achievable precision on the implantation of the Nitrogen ions in
diamond and thus the minimum deterministic gap between two NV centers. This will prove the viability
of the experiment. With the recent change of the lens, big improvements were done but we were unable
to measure this beam diameter with a good confidence. To measure it, we used the well-known Knife
Edge measurement method which we will describe in the following. It’s commonly used to determine
laser beam diameters for example, but in our case this measurement becomes non trivial and has to be
improved in order to acquire meaningful data.

3.1 Introduction and problematic
This method is used to determine the diameter of a beam with a given distribution. Very often the shape
of the beam follows a Gaussian distribution, e.g. the first Gaussian mode of a good quality laser beam,
and we will also assume in first approximation that the ion trajectory follows a Gaussian distribution:

P (r, z) = f (z)× exp
(
− r2

2σ2(z)

)
(9)

with:

• The sigma of the beam σ (z) such as w = 2σ where w is the width of the beam.

• A function f depending on the position z along the propagation axis and which reduces the diameter
size at the focal point. For each z position, the PDF should be normalized so f(z) = 1

2πσ(z)

This distribution is similar to the shape of the laser beam except that instead of working with macro-
scopic particle number, we deal with only one particle at a time. The function σ(z) in our case has been
evaluated as:

σ (z) =

√
z2f2σ2

α + 2azf (f − z)σ2
α + (z − f)2 (a2σ2

α + σ2
r)

f2 (10)

with σr the standard deviation of the spatial distribution of the source, i.e. the initial position of the ion,
a the distance between the source and the lens and σα is the standard deviation of the thermal velocity
distribution in the trap.

The principle of the measurement is very simple: we cover a part of the beam for a given z position
with a blade and we measure the rest of the beam. By moving the blade until covering the whole beam,
we can access the cumulative distribution of the beam, which is, in the case of a Gaussian distribution,
an error function:

PMeasured(x) = P0

2

[
1 + erf

(
(x− x0)√

2σ (z)

)]
= P0

2 erfc
(
− (x− x0)√

2σ (z)

)
(11)

or
PMeasured(x) = P0

2

[
1− erf

(
(x− x0)√

2σ (z)

)]
= P0

2 erfc
(

(x− x0)√
2σ (z)

)
, (12)

depending if it is a rising or falling edge. Just as a reminder, the complementary error function erfc (x) =
1− erf (x) and the symmetry property of the error function erf (−x) = −erf (x). Then by fitting the data
set, one can find σ and x0 for a given z position. By reiterating the measurement for different z position,
one can measure the function σ (z) and for example find where is the focus of a convergent beam.

This method is usually used to measure the parameters of a laser beam, but in the case of single ion
measurement, this is no trivial matter for different reasons.

First, contrary to laser beam, the only outcome values are 0 or 1 since we send only one ion at a
time and we observe its transmission through the electrostatic lens. The consequence is that a single
measurement won’t help to obtain the probability at a given blade position, one needs many ions to
estimate the probability.

The direct consequence, considering that a single ion shoot takes roughly a second, is that the mea-
surement can require a huge amount of time. If the system is not perfectly stable and there is for instance
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some drift, a long measurement won’t let us to determine precisely the parameters. Therefore we can’t
choose an arbitrary large number of ions for each point without exposing us to some supplementary noise
that perturbs the measurement.

Lastly, dealing with a finite number of ions rises the question of the determination of the uncertainty:
is the number of ions high enough to estimate it statistically ?

This last question leads to a very interesting point: Should we use a Frequentist approach or a
Bayesian approach? We will deal with this problem later, just remind that for the moment x0, σ and P0
have a fixed value

Usually, for a given z position, a set of 300 ions distributed over the different blade positions gives
reasonable measurement times compared to the drift of the system due to the oven. Thus the goal is
to acquire the most useful data with a limited number of ions. We need to evaluate which points will
give the most information on the σ. For all the following, we assume that the beams follows a Gaussian
distribution.

3.2 Basic approach
Before the start of the internship, by simplicity the most basic approach we can imagine was used for
this measurement. As shown on figure 6, we just move the blade position with equidistant steps and we
measure an equal number of ion extractions. Then we fit the data with an error function as described
before. In this case since all the points are equivalent, we don’t have to normalize the result and the
amplitude can be simply interpreted as a number of ion detection. The estimation of the error was
estimated with the expression of the standard deviation used for a statistical number of points. Thus
for the fit every point is equally weighted. Typically we measure the transmission of 20 Ca ions for
approximately 15 points distributed equally over the whole blade range position.

This method has many drawbacks and bias which make it inaccurate to evaluate precisely the width of
the beam. Intuitively it seems pretty obvious that too many ions are used to measure the probability far
away from the center, where the probability is either 1 or 0, with the exception of the noise. Moreover
only the points near the mean value can really give information about the position of this one and about
the sigma. To compensate that we often searched by fumbling the center and then reduced the position
range, but by doing so, we lose some information from the ions used to roughly find the center.

Second, the determination of the uncertainty was totally wrong. We equally weighted every points
since we can’t use the standard deviation due to the lo number of points. It would have been expressed
as follows:

σx =

√√√√ 1
Ntotal

n∑
i=1

(y − µ)2 (13)

where y is the outcome of one ion transmission and µ the mean value at a given x position. The alternative
would have been to use a binomial distribution which is not possible either4. From a very practical point
of view, it is not easy to measure additional data points after the scan is done. The last disadvantage
of this measurement method is the fitting process. We basically use a non-linear least square method
provided by any data analysis software with the model presented before. The problem is that the fit
doesn’t converge well due to the large uncertainty but the equal weight of the data, this give rise to
different possible values or absurd ones.

4Explanations will follow in 3.3.3.
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Figure 6: Example of a typical knife-edge measurement before any optimization. Every point has the same weight
and don’t take the error into account. The number of parameter is high for the number of points. With
so few points in the middle, the result could have been different.

Thus we cannot hold as reliable the result of the focus measurement where this one was about "8 nm".
To be able to claim a such focusing resolution, one must determine the focus size with a better confidence.

3.3 Frequentist optimization
In this "frequentist optimization" method, by opposition to the Bayesian one that we will describe later,
we still want to find the probability for few points at different blade position and then fit the data to
find the parameters. This implies taking many points at the same position in order to find an estimation
of the probability at this place. The main difference is that an algorithm will seek for the center and
measure more extractions near it.

We will explain in 4.1.1 that this method works with the frequentist interpretation of probability.

3.3.1 Global idea

The idea is quite simple:
• Starting far away from where the center x0 is presumed to be, we scan with as few ions as possible

and then reduce the research interval. In the the C++ code this step is referred as "Broadscan".

• Then we reiterate again this step t narrow again the research interval. In the the C++ code this
step is referred as "Scan".

• Wemeasure a high number of single ion transmissions at equidistant blade positions in this narrowed
interval where the falling edge is. In the the C++ code this step is referred as "Finescan".

• Finally we fit the results as before.
The major improvement is that we use a higher sampling to measure the probability where the intuitive
information gain seems to be higher, i.e. around the rising/falling edge. For that, one has to convert
the number of ions transmitted into a probability. Moreover, one another big amelioration is that every
outcome of ion transmission measurement is saved and used for the final fitting; we can start we any
arbitrary large blade position range without losing any information while looking for the center. And
finally, I programed it to be able to correct manually any interval between each step or to repeat one
of the step described above if we need more points, the constraint being that to be able to calculate a
probability, there should be no single ion transmission measurement for a single blade position but always
many points for a same blade position.
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3.3.2 Detailed explanation

The code of the C++ implementation can be found in the appendix B We will only explain the main
idea of the working principle and the critical points, but globally most of the code is not interesting from
a physical point of view.

3.3.2.1 Simulation of the transmission process and influence of the noise To simulate the
shooting of one ion through the lens one can use the previous distribution with the error function:

Px = 1
2erfc

(
(x− x0)√

2σ (z)

)
(14)

when the blade is uncovering the beam and

Px = 1
2erfc

(
−(x− x0)√

2σ (z)

)
(15)

when the blade begins to cover the beam. Then we can just generate a random number between 0 and
1, if the outcome is below the value given by the distribution, the function will return 1, else 0.

This works well for a perfect experiment with a detection efficiency of 100% and no other external
perturbation. In practice there is always a small probability that the ion is not detected, even if the
outcome should have been one. To take this into consideration we just test afterwards if the simulated
ion is "lost" and reduce the result to 0 if it is the case. We could also introduce a factor to translate the
fact that the maximum total transmission is lower than 1:

Px = Pmax
2 erfc

(
±(x− x0)√

2σ (z)

)
(16)

with Pmax the maximal transmission efficiency. We chose the first possibility to highlight the fact the
noise may be independent of the blade transmission.

Implemented in C++, this gives the following code:

double KE::newpointsim(double x){
int y;
if(m_reverseDir==true){

if((double)rand()/RAND_MAX<0.5*erfc(-(x-m_MV)/sqrt(2.)/realS)) y=1;
else y=0;
if((double)rand()/RAND_MAX>=noiseloss);
else y=0;
return y;

}
else{

if((double)rand()/RAND_MAX<0.5*erfc((x-m_MV)/sqrt(2.)/realS)) y=1;
else y=0;
if((double)rand()/RAND_MAX>=noiseloss);
else y=0;
return y;

};
}

We can also add a time dependency of the center position, i.e. a dependency of the number of ions
in the simulation, x0 (N) to take into account the drift of the system, which might be not negligible for
long time measurement.

The influence of the noise has to be considered seriously since it makes complex the algorithm to
detect where the center is: observing a "1" over two ions shots doesn’t give so much information about
the center position if noise is present. It can mean that we are close to the center or very far away but
the ion wasn’t detected. It can easily perturb the boundaries of the research interval.

3.3.3 Error estimation

One critical point is the error estimation. Previously as described in 3.2, we used the classic definition of
the standard deviation to describe the uncertainty. However this can’t be right due to the low number
of ions.
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For example, let’s say we measure the probability in the region where the probability is one. We
measure 4 ion transmissions and all of them give a detected ion, i.e. “1”. That would mean that
σ =

√
4(1− 1)2 = 0 which is totally absurd: we always might observe a “0”, no ion transmitted, in the

next trial whatever the previous outcomes were. The uncertainty should take that into consideration.
This behavior shows up because these statistical analysis assume an important number of events. Usually
for the experiments with binary outcome like here, the experiment is repeated so many times that the
variance is never 0, there is always an observation of the other event. We need to find another to describe
the uncertainty.

The intuitive solution of the problem would be to use the standard deviation of a binomial distribution
whose standard deviation is:

σ =
√
Np (1− p) (17)

with N the number of trials and p the probability to observe 1. In our small example, this would give
σ =

√
4× 4

4 × 0 = 0 which is not realistic. Another model has to be used.
Actually this situation corresponds to the problem of the noisy coin as described in [Ferrie and Blume-

Kohout, 2012]. Thus, for a low number of trials, one can describe the average value of the transmission
probability through the lens by:

〈PHit〉 = n+ 1
N + 2〈

P 2
Hit

〉
= (n+ 1) (n+ 2)

(N + 3) (N + 2)

(18)

where PHit is the probability to measure a hit on the detector, i.e. measuring 1, N the total number of
ions shot and n the number of hits on the detector. Then the standard deviation becomes:

σx =
√
〈P 2
Hit〉 − 〈PHit〉

2 (19)

That gives in our example σ =
√

5
7 −

5
7

2 =
√

10
7 ≈ 0.45 which is different from 0 and seems acceptable.

This translate well the fact that having only 1 doesn’t mean that the next outcome will also be 1 and
that we have a knowledge of the probability limited by the number of trials. For high trials number
however the standard deviation will converge to the same value as 19 and we find again the behavior of
a statistical measurement.

We used this model to describe the error measurement error which seems to describe correctly the
results.

3.3.4 Simulation and results

Typically a simulation of this measurement gives the following result plotted on the figure 7 for x0 = 1000,
σ = 25 and Pmax = 0.85.
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Figure 7: Simulation of a Knife-Edge measurement with the optimized algorithm. Where the error bars are
smaller that corresponds to a higher number of measure for this position. The total number of ion
is 516. The probabilities near the sides are determined with 6 points whereas the probabilities in the
middle are determined from 20 or more measures.

We clearly see that more points are measured near the middle, where more information can be
extracted.

However the fit gives σ = 20.4± 3.85 which doesn’t cover the the real value. However this is not false
due to the interpretation of the error range.

3.3.5 Limitations

Undeniably this measurement methodology is better than the previous one and allows to gain a lot of
time in the data acquisition. However, there are still some loopholes.

The algorithm is not very robust either if the initial parameters are wrong or if the noise is impor-
tant. It’s mainly designed to be monitor by someone adjusting the the interval between each step. In
its automatic mode, wrong parameters will make the experiment measure points which aren’t useful.
Moreover, if the drift of the system is fast enough, the center might be brought out of the region of
interest since during the last step, where most of the points are measured, there is no real-time update
of the boundaries.

Moreover this algorithm is really specific to the experiment and built based on the knowledge of
the error function. This wouldn’t be adaptable to different measurements with different distribution
functions.

5The value can be seen as realistic and could be expressed in nanometers
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4 Beam measurement: Bayesian Approach
4.1 Introduction to Bayesian approach
4.1.1 Bayesian vs. Frequentist

The Bayes’ theorem is well known in statistics and probability but the Bayesian approach is far more
general than the Bayes’ theorem. This theorem was first formulated by Thomas Bayes (1701–1761), albeit
published only later. This opened a debate about the meaning of probability which has no definitive
conclusion so far. The Bayesian interpretation has to be opposed to the frequentist interpretation. These
are two different ways of extracting and interpret information from observation. They are fundamentally
different and there is no "right" one. A good introduction this problematic applied to physics can be
found in [Lyons, 2013].

In the frequentist interpretation, the veracity of an assumption is determined by the proportion of
the different outcomes; the more observations we have, the more we can predict the real value of the
assumption with a good uncertainty. The frequentist interpretation is the most used, particularly in
Physics. For an important number of repeted observations, we are able to predict the real value with a
good confidence interval. The main idea of this interpretation is that we assume there is a fixed value for
the parameter we want to determine, but we don’t have enough data to find the true value because we
are limited by the finite amount of observations and by the noise on these, therefore we give an statistical
estimation of this value based on the frequency of observation. A probability, from a frequentist point
of view is objective and is the limit of the relative frequency of an observation. A unique event from the
frequentist point of view doesn’t mean anything: if I throw a dice twice and two times the result is 6,
that doesn’t mean the dice is loaded. Another point: the limits of a confidence interval are known but
random.

On the other hand, using the Bayesian interpretation, there is no fixed value for the hypothesis and we
try to estimate how probable the values are, using the finite amount of data collected. The parameters
we want to determine are random and follow a probability distribution, to give the value of a parameter
one often uses the mean value of the distribution. Contrary to the frequentist approach, one need an
initial degree of belief, i.e. an initial distribution, which is the reason why from a Bayesian point of view,
probabilities are subjective, it depends from the initial degree of belief. Each time an observation is made,
we can update this degree of belief. Concerning the confidence interval, the limits of this last one are
known and fixed, it can be determined precisely. Let’s take the previous example with the dice: If the
initial belief is that the dice is loaded, observing two 6 will narrow the probability distribution around
the parameter value "the dice is loaded" and vice versa. We can also believe initially the possibility of
having a loaded dice is equal to not have one, "the dice is loaded" will become more probable. In case
of the Bayesian interpretation, it makes sense to attribute a probability to a single event since we can
compare it to the initial degree of belief, contrary to frequentist interpretation. Saying that the dice has
75% chance of being loaded after two dice roll has a real meaning since in this interpretation we don’t
have to choose between one of the statement.

Bayesian approach is often used in other fields of science, for example in Biology to find the cause
a disease among a huge amount of genes or in medicine for the image reconstruction [Herman et al.,
1979], particularly for brain imaging. It has also applications in Physics, particularly in particle physics
where very few events are measured and one needs to extract data from that. To determine the existence
of the Higg’s boson a Bayesian approach was used, which created a lot of heated discussion about the
interpretation of the events, a kind of revival of the quarrel between frequentists and Bayesians. In our
case, it is very interesting since we can’t achieve a very high number of events: we can’t make accurate
statistics, so the fit of the data is not really accurate enough and gives sometimes absurd values. By
choosing a Bayesian method, we will gain a lot of accuracy and confidence about the result. However,
there are also counterparts:

• The Bayesian method needs us to choose an initial distribution for the values of the parameters, an
initial “prior”. It is an initial assumption which summarizes the knowledge about the parameter.
This choice arbitrary but can be improved by determining the prior in the light of some previous
experimental data; this approach is called “Experimental Bayes”. In our case we can design it,
knowing the design of the experiment and the results of previous measurements. Even if in the end
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it won’t influence the final result due to the big number of updating, this might be an argument
against the Bayesian approach. We will discuss this point in 4.2.1.

• Due to the interpretation of the probability, the result of the measurement won’t be the value of the
sigma with a confidence interval, which means that the real value for any new evaluation will give
a result in this interval with a given confidence level. Instead we have to use a "credible interval".
It gives the probability of measuring the parameter in this range. In practice, both intervals can
be similar but the interpretation is different. We will discuss this point in 4.3.3.

• As said before, the probability is not objective for the Bayesian approach, it depends indirectly on
the initial prior. Normally both interpretations should give the same result for a sufficient number
of data. In practice, we will see later for example that the data can be interpreted in different ways.

In probability theory and statistics, the most basic expression of the Bayes theorem is:

P (A|B) = P (B|A)P (A)
P (B) (20)

with A and B two statements. It connects P (A|B), the probability of having A knowing B, also called
the posterior, to:

• P (A), the probability of having A independent of the value of B, it is also called the prior, which
characterizes the initial degree of belief before acquiring a new evidence. It’s an "a priori" probability
which can be totally arbitrary.

• P (B|A) the probability of observing B knowing A, also called as the likelihood

• P (B), the marginal probability. It corresponds to the probability to observe A independently of
B. It is comparable with a normalizing factor.

One can also write it like:
P (A|B) = P (B|A)

P (B) ·P (A) (21)

where the factor P (B|A)
P (B) translates the impact of the new evidence on the probability P (A).

4.1.2 Bayesian experimental design

How to apply concretely the Bayes theorem to our measurement? Generally speaking, from [Chaloner
and Verdinelli, 1995], the application of the Bayes theorem to an experimental setup is called "Bayesian
experimental design". It is stated as follow:

P (θ|y, ξ) = P (y|θ, ξ)P (θ)
P (y, ξ) (22)

where:

• θ is a set of parameters we want to determine

• y is the result of the measurement

• ξ is the design of the experiment, which is often the adjustable parameter of the experiment.

To apply it directly to our experiment, if we note σ the standard deviation of the distribution, x0 the
center and x the blade position, the formula becomes:

P ((x0, σ)|y, x) = P (y|(x0, σ), x)P ((x0, σ))
P (y, x) (23)

where the set of parameters x0 and σ define a point in the two dimensional parameter space; the x position
of he blade is chosen by us, that is the "design" of the experiment. In other words, if we assume an initial
distribution of the set of parameters (x0, σ), we can update our knowledge about the distribution of the
parameters by knowing P (y|x0, σ, x) calculated by taking into account the new data point. We can then
iterate the process by replacing the initial distribution P ((x0, σ)) by P (y|(x0, σ), x) evaluated in the
previous step. Thus, the knowledge about x0 and σ is updated constantly and take into account every
data acquired.
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That is the working principle of the Bayesian experimental design. In theory it can be applied to
many different domains; however experimentally it is not so easy to implement. One of the major reasons
is that the dimension of the problem depends on the number N of parameters, which can make things
really complex, since it would need a N dimensional integration to compute the probabilities. Due to
this computation time, most of the experiments which use the Bayesian approach measure a whole set of
data before doing a Bayes update before measuring another set. This is how it is done in [Brune et al.,
2008], for instance, to count photons in a cavity. It takes advantage of the Bayes’ theorem to optimize
the measurement. needs to be adjusted dynamically.

However, it was possible to do the Bayesian updating simultaneously with the experiment in our case
due to the low number of parameters, the relatively long time between each new data point measure-
ment and the fact that we measure isolated events. This is a dynamical Bayesian experimental design.
Concerning our experiment, we actually work in a 3D parameter space: we want to determine x0 and σ,
but we also have to take the experimental imperfection which can be modeled by a single supplementary
parameter. We will discuss this issue later in 4.3.1

Nonetheless, even with only 3 parameters, the integration time during the computation can be very
long, this is the reason why we had to use a grid, with a size of of 30 × 30 × 15 points approximately,
in order to discretize the probability distribution and be able to update this one between each step in a
reasonable time. This problem will be discussed in the next part.

4.2 Detailed Explanation of the Bayesian algorithm
We are going to explain in a more detailed fashion the Bayesian algorithm written to optimize the
knife edge measurement. First we start with the 2D problem which works well before adding later the
supplementary dimension which stands for the experimental noise. The code can be found in the appendix
C.

The goal of the algorithm is to determine at which blade position the next ion transmission experiment
should be done to maximize the information gained and reiterate the process according to new data
acquired.

4.2.1 Initial prior

This Bayesian algorithm assumes that some initial knowledge of the system is available; however even
if that is a very rough guess, the program will still converge correctly. The choice of the prior is not
without consequence since that a wrong prior can leads to wrong results. This kind of consideration is
shortly discussed in [Efron, 2013] as well as a solution which is to use preexisting data and information to
choose the prior. In our case, due to the known design of the experiment and the results from previous
experiments, one can choose a credible prior with which we can start. A two dimensional Gaussian
function can be a reasonable PDF6:

P0(x, σ;x0, σ0) = 1√
2πσx0

exp
(
−(x− x0)2

2σ2
x0

)
· 1√

2πσσ0

exp
(
−(σ − σ0)2

2σ2
σ0

)
(24)

with σx0 and σσ0 the widths of the initial distributions projected along the two axis corresponding to
x and σ respectively. This choice is not totally arbitrary, due to the Central Limit Theorem, if we
would measure their value a important number of times, in the end the probability distribution would be
approximated well by a Gaussian distribution. Another argument is that the Gaussian distribution is a
conjugate prior, it means that the result P (A|B) of a Bayesian updating is also a Gaussian if we choose
P (A) as being a Normal distribution. The results won’t diverge.

As we said before, we are working with a limited grid which is save between each step. The initializa-
tion consists in initializing the grid with the presumed distribution; there are also different initializations
for the variables, the graphs and so on that we won’t detail here. What’s follows is already in the loop.
In practice, this probability is implemented in C++ by a multi-dimensional table7 p_theta.

4.2.2 Maximum information finding

This is the first step of the optimization process, therefore we have to decide of the blade position to
gain as much information as possible during the measurement. To quantify the information gain, we can

6Probability distribution function
7A vector would have been preferred but this functionality hasn’t been implemented yet.
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calculate the utility U (x) which is the gain in Shannon information. In information theory, the Shannon
entropy characterizes the unpredictability of a random variable, in other words the information content
of this variable.

By computing the gain in Shannon entropy, defined as the utility, at different positions, we can tell
in which region the measure will bring the most information. The utility for a given blade position ξ is
obtained by summing the utility depending on y and ξ over the outcomes y:

U (ξ) =
∑

y∈{0,1}

U (ξ, y) = DKL (P (θ|y, ξ) ‖P (θ|ξ)) (25)

Where U (ξ) is given by the following formula:

U (y, ξ) =
∫

log (P (θ|y, ξ))P (θ|y, ξ) dθ −
∫

log (P (θ))P (θ) dθ (26)

which also corresponds to the definition of the Kullback-Leibler divergence, used in probability theory
and information theory. So we can write:

U (y, ξ) = DKL (Pn (θ|y, ξ) ‖Pn−1 (θ|ξ)) (27)

Since we used discrete grid instead of continuous variables, the Kullback-Leibler divergence for the step
number n takes the following form:

DKL (Pn (θ|y, ξ) ‖Pn−1 (θ|ξ)) =
∑
θ

ln
(
Pn (θ|y, ξ)
Pn−1 (θ|ξ)

)
Pn (θ|y, ξ) (28)

where P (θ|ξ) is the distribution probability for the n− 1 step. Even if it doesn’t appear in the notation,
P (θ|ξ) still contains the information about the outcome of the measurement n− 2, n− 3, and so on, but
not explicitly. In practice we need a fast numerical computation, this is why we chose a discrete grid and
why we have discrete summation.

In our case, with the notations of the previous section, this divergence is written like this:

DKL (Pn ((x0, σ) |y, ξ) ‖Pn−1 ((x0, σ) |ξ)) =
x0,max∑

x0=x0,min

σmax∑
σ=σmin

ln
(
Pn ((x0, σ) |y, ξ)
Pn−1 ((x0, σ) |ξ)

)
Pn ((x0, σ) |y, ξ) (29)

where we sum over all the possible values of x0 and σ. As a reminder, the probabilities used here are the
following ones:

• Pn−1 ((x0, σ) |ξ) is the probability distribution for the previous step, which is stored in the array
p_theta,

• Pn ((x0, σ) |y, ξ) is the new probability distribution after this step n.

The latter is estimated with the Bayes’s theorem:

Pn ((x0, σ) |y, ξ) = P (y| (x0, σ) , ξ)Pn−1 ((x0, σ))
P (y, ξ) (30)

where:

• In this case, P (y| (x0, σ) , ξ) plays the role of the likelihood. This the probability distribution when
knowing y and the parameters. Here it corresponds to the model used to describe the experiment:

P (y| (x0, σ) , ξ) = 1
2erfc

(
±(ξ − x0)√

2σ

)
(31)

according to the direction of the scan. We called it designfunction in the algorithm. Note that we
can reverse the distribution only by switching the sign, due to the properties of the error function.

• Pn−1 ((x0, σ)) is the prior. In this case, the value is given by the values of the two dimensional
array evaluated during the previous steps. Or P0(x, σ;x0, σ0) for the first iteration.
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• P (y, ξ) is the marginal, which is a kind of normalization. It’s computed in the following way:

P (y, ξ) =
x0,max∑

x0=x0,min

σmax∑
σ=σmin

Pn−1 ((x0, σ))P (y| (x0, σ) , ξ) (32)

which is the particular case for a discrete summation over x0 and σ of:

P (y, ξ) =
∫
θ

P (θ)P (y|θ, ξ) dθ (33)

Then, we evaluate the Kullback-Leibler divergence for different ξ positions in order to find the maxi-
mum. To do so, we used this simple recursive algorithm:

const int recursionN=10;//number of steps of the recursion

double BKE::findmax_Kullback_Leibler(double start,double stop,int cnt){

double maxval=-DBL_MAX,val;

double storexi=start;

for(double xi=start;xi<stop;xi+=(stop-start)/double(recursionN)){

val=calc_Kullback_Leibler(xi);

if(val>maxval){

maxval=val;

storexi=xi;

}

}

if(cnt>0) return findmax_Kullback_Leibler(
storexi-(stop-start)/double(recursionN),
storexi+(stop-start)/double(recursionN),--cnt);

else return storexi;

}

Where calc_Kullback_Leibler computes the Kullback-Leibler divergence for a certain blade position
as described previously. From this part of the algorithm, we obtain the blade position for which the
information gain will be the highest. The points are mainly measured where the curve begin to fall
down or to rise. Intuitively we understand that the distance between the two positions give the width
of the PDF8. There are also points measured at the middle which maybe stands for the mean value
determination. The dispersion of the points looks like as follows on figure 8.

8Probability distribution function
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Figure 8: Histogram of the repartition of the points for 100 independent simulations with 1000 points, taking the
noise into account as explained later in 4.3.1. The noise introduce an asymmetry since there is no dark
count, only "hit" loss.

4.2.3 Measurement and distribution updating

At this point we measure an ion transmission, experimentally or by a simulation, at the blade position
guessed before. We obtain a binary outcome: y = 0 or y = 1. From this result, we now have to update
the probability distribution of x0 and σ, that means updating our knowledge of x0 and σ.

First, we need to evaluate the current mean value:

x0 =
∑
x0,σ

x0 ·Pn ((x0, σ))

σ =
∑
x0,σ

σ ·Pn ((x0, σ))
(34)

and the associated variances:

Var (x0) =
∑
x0,σ

(x0 − x0)2 ·Pn ((x0, σ))

Var (σ) =
∑
x0,σ

(σ − σ)2 ·Pn ((x0, σ))
(35)

in order to update the parameter PDF afterwards. The probabilities Pn ((x0, σ)) are given by the array
p_theta. Theses values give the current estimation of the parameters and the uncertainty9 on these
values. In the end, the final result will be these values given at the last step. The more steps we do, the
higher the precision should be.

We can now evaluate the new probability taking the last transmission measurement into account. To
do so, we have to use the Bayes theorem again, replacing every value of the array:

Pn+1 ((x0, σ)) = P (y| (x0, σ) , ξ)Pn ((x0, σ))
P (y, ξ) (36)

where P (y| (x0, σ) , ξ) is similar to P (y| (x0, σ) , ξ) in the previous part , our model for the distribution
of the transmission probability, and P (y, ξ) is similar to the same expression in 4.2.2 , the normalization
factor.

At this point of the algorithm, we have updated the values of the parameters by adding the small
amount of information we gathered from measuring one more point. The great advantage of this method
is that we can repeat these steps as often as we want to obtain, theoretically, a variance as small as we
want. We will discuss the accuracy and the relevance with the support of the simulations in the part 5 .

9Note for later that this is not totally correct
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4.3 Refinement of the algorithm
4.3.1 3rd dimension

For simplicity, so far we have worked only with a two dimensional space containing the mean value of the
distribution and its width. However in practice, because of experimental reasons, especially the detector
efficiency, we detect less ions which means that the transmission probability is never 100% which mainly
tends to increase the width in a 2D space. However, we don’t observe any dark count in the experiment,
this cause an asymmetry in the PDF. To take this effect into consideration, we add another parameter
which we will call Pmax and change the model as follows:

Px = Pmax
2 erfc

(
±(ξ − x0)√

2σ

)
(37)

That also means that we need to work in a three dimensional space and optimize for this new pa-
rameter. On the other hand, it increases the computation time a lot. The process is the same except
that we add another parameter, so in equation 22, θ stands for the set of parameters {x0, σ, Pmax}. The
likelihood becomes:

P (y| (x0, σ, Pmax) , ξ) = Pmax
2 erfc

(
±(ξ − x0)√

2σ

)
(38)

The initial prior becomes:

P0(x, σ, Pmax;x0, σ0, Pmax,0) = 1√
2πσx0

exp
(
−(x− x0)2

2σ2
x0

)
× 1√

2πσσ0

exp
(
−(σ − σ0)2

2σ2
σ0

)
× exp

(
−(Pmax − Pmax,0)2

2σ2
Pmax

) (39)

and the marginal becomes:

P (y, ξ) =
x0,max∑

x0=x0,min

σmax∑
σ=σmin

Pmax,max∑
Pmax=Pmax,min

Pn−1 ((x0, σ, Pmax))P (y|(x0, σ, Pmax), ξ) (40)

Every measurement done in the laboratory will use the three dimensional algorithm since the transmission
efficiency is never 100%.
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4.3.2 Zoom

Normally, this algorithm is able to work with any initial range for the blade position; however we are
rapidly limited by the size of the grid. Due to the pixel size, we lack for resolution which keeps us unable
to decrease the uncertainty of the sigma any further and causes also calculation errors.

To overcome this problem one had to adapt the size of the grid to the broadness of the parameter
distribution. In other words, we have to "zoom" where the distribution of the parameters has its highest
value. Basically, we keep the same grid size10 but we rescale the distribution to fit the "region of interest".
This is no trivial operation. Although the distribution can be easily approximated by a Gaussian function,
whose value is very small far away the center, every time we resize the picture, we lost a little bit of
information contained in the tail of the distribution.

The algorithm works as follows: If the edge of the picture is nearer than a given σx0 , σσ0 or σPmax

from the center for the corresponding parameter, then we delete one row and rescale the image to the
array. This is contained in the function zoomin. We wrote a similar function to zoom out of the picture.
this is useful when the experimental system is drifting and that the center of the distribution tends to go
out of the array. As for the inverse operation, we lose some information by compressing and interpolating
the data points. Moreover the probability of the new line is set to 0, which is not so far from the real
value, but it is still some made-up data.

This function doesn’t allow zooming fast enough when working with grids with more points.
At this point a simulation looks like figure 9.

10Which is fixed anyway since we work with tables and not vectors
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Figure 9: Simulation of a knife-Edge measurement with the Bayesian algorithm in three dimensions, with a zoom
activated, for a measurement of 1000 points. The size of the grid is 30 × 30 × 20. The real values
are: x0 = 1000, σ = 25 and Pmax = 0.9. The final guess for 1000 points are: x0 = 1000.56 ± 3.21233,
σ = 27.9807±3.1207 and Pmax = 0.920306±0.0531696. The ranges are only a hint and are not coherent
with a Bayesian interpretation even if their value is acceptable.
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4.3.3 Confidence and credible interval

Until now we have masked a non-trivial problem: how to express the uncertainty of the result? In
a frequentist interpretation, we use an interval which is called "confidence interval", while Bayesians
use a "credible interval". Even if in practice their values can be very similar, their interpretations are
fundamentally different. We can find a good explanation in [Porter, 2013]

Let’s consider an interval pl < p < pu with p the mean value and a given probability level, 68% for
instance.

In the frequentist interpretation, the ends of the range pl and pu changes for each new measurement
and are considered like random variables. The meaning of the confidence interval is that if we repeat
the experiment many times, 68% of the time the considered range would contain the true value of p. It
doesn’t say anything about if the mean value of p is currently in the range for the current data set! It
just gives information about pl and pu. We don’t know the probability of having the true value in the
range but we do know how often the range will be right. It is often misunderstood with the Bayesian
interpretation. To estimate this interval one usually uses the standard deviation. It makes only sense if
the experiment can be repeated: If we measured all the samples in the universe11, the parameter value
has to be the mean since it takes a fixed value. Here, the standard deviation just characterizes the value
dispersion. In other words, if we repeat the experiment, 68% of the time, the interval pl < p < pu will
contain the true value.

In the Bayesian interpretation however, the limits of the range pl and pu are fixed and determined
by the posterior distribution. In this case, the credible interval of 68% tells us that p has 68% of
being in this range, but there is still a probability of 32% for p to be outside this range. The Bayesian
approach doesn’t predict anything about what could be measured next, only gives an estimation about
the current estimation! Note that this interval depends on the prior distribution whereas in the frequentist
interpretation it only depends on the data.

Since we are working in a fully Bayesian way, one should to work with a credible interval. We estimate
it in the easiest way as described in [Yong-Sheng, 2008]. We choose a credible level CL = 1 − α with
α ∈ [0, 1] to determine the credible interval [θl, θu] where θ = x0, σ or Pmax is the parameter of which we
want to determine the credible interval. The lower bound can be defined by:∫ θl

−∞
Pn ((x0, σ, Pmax) |y, ξ) = α

2 (41)

And the upper bound defined by: ∫ ∞
θu

Pn ((x0, σ, Pmax) |y, ξ) = α

2 (42)

In practice, the probabilities are given by the array p_theta and the boundaries are evaluated numerically
in the following way:

sum=0;int i=0;double dx=(stopMV-startMV)/(p_theta_size-1);

while(sum<1-alpha){

sum+=p_MV[i];i++;

}

i=i-1;

var2[0][0]=abs(mean[0]-(startMV+i*dx));

for the evaluation of the lower bound of the x0 interval.
This is a quite rough approximation:

• We do a small error since we don’t interpolate by simplicity. Thus it is works well for large grids.
11In the mathematical meaning
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• This is correct if the distribution has one central peak and at the edge the probability is nearly 0,
which is not always the case for Pmax.

There are many ways to determine the credible interval depending on the shape, but in our case this
simple estimation should be enough.

Note that contrary to the frequentist range, the limit can be asymmetric with respect to the center
and the interval won’t have any non-physical values: a negative σ or Pmax > 1 for instance. However since
the method is computationally consuming and since the grid is too small during the data acquisition,
we use it only during the consecutive analysis as described in the next part. Without this interval the
results can’t be evaluated rigorously.

4.3.4 Analysis of the data

One great functionality is the ability to recalculate the whole experiment afterwards in order to increase
the precision or to reinterpret the data in the light of a new prior. In the frequentist approach, all the data
is evaluated only afterwards with statistical methods. In the case of the Bayesian approach, the evaluation
is quite complex to do in real time due to a permanent updating of the distribution probabilities, but it
is possible to do it afterwards with higher computational power: it is often the way it is done in particle
physics where few events are used to state about a property of a particle or its existence with a latter
computation.

In our case, once we have the data, we can recalculate it with better approximations for the parameter
by computing the "story" of the experiment from the start. To do so, we just use the procedure to run
another measurement but instead of using simulated points or experimental points, we use the data points
from a previous experiment or simulation. A simulation is shown in 5.1. Since we also know the result of
the previous measurement, one can reduce the interval parameters and thus using a better initial prior.
This solve one of the main critics about the Bayesian approach, which is the arbitrary choice of the initial
prior, by using the experimental results we can justify this choice. The computation time is even lower
since we don’t have to maximize the utility of each point as described by 25.

So we can improve the accuracy of the parameter values only by computing them again with better
approximations. This step is necessary to lessen the calculation errors due to the rough discretization.
But that highlights the point that even if the data is still the same, their interpretation from the Bayesian
point of view can differ only by changing the initial prior. In other words, one has to be careful with the
final result which intrinsically depends on the initial prior; it only represents which is the most probable
value of the parameter starting from a given prior.
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5 Simulation, results and discussion
In this section, we are going to present the results, mainly of simulation, before comparing with the
frequentist method.

5.1 Bayesian recalculation
One of the main problems is to produce a result with an uncertainty which is plausible and give a

good estimation of the value of x0,σ and Pmax. As we said before, one can recalculate12 the result to
counteract the numerical approximation and to give a right estimation for σ.

We first did a recalculation plotted in figure 10 of the simulation shown in 9, with a credible interval
having a credible level of 68%, i.e. corresponding to the usual confidence level we usually use to present
results.

It’s obvious that the algorithm doesn’t converge really better than before even if we increased the
precision. We tried also with even higher grid, that doesn’t change the result. The deactivation of the
zoom removed an additional error, but since the initial range is narrower, it wouldn’t be of any use.
We also tried with another simulation 30000 points, the convergence doesn’t seem to become better and
by the way measurement with more than 1000 points begins to be very long experimentally. At some
point we are limited by the set of data we measured. There are different explanations possible for this
limitation of accuracy. The first one is that since the Kullback-Leibler optimization works with a smaller
grid, at some point the algorithm returns values for the next measurement which doesn’t give any new
information avoiding to reach the right value. The second hypothesis is that we are limited by the number
of data points: the design function is highly non-linear and all the parameters are correlated. This is
particularly true for Pmax.

The calculation of the credible interval has to be polished. The discretization limits its precision and
the way to calculate it is questionable even if not fundamentally false. For instance, we set the higher
boundary of Pmax credible interval to one since the distribution is quite broad and its value is more than
0 at any time. We can also change the credible level to higher value to give a result which can be believed
easily. In the case we choose a 95% credible level, meaning that the value of the parameter has 95%
chance of being in this range. Such a graph is shown on figure 11.

With a credible level of 95% the real value is nearly all the time in the error range; we can confirmed
that with other simulation. It is not possible however to determine experimentally if the values of the
parameters are really close to the “true” one, this is the reason why it is so important to have a result
which can be trusted in any situation.

12The reason is only the computation time
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Figure 10: Simulation of a knife-Edge measurement with the Bayesian algorithm in three dimensions, without
zooming, for a measurement of 1000 points. The size of the grid is 250 × 250 × 50. The real values
were: x0 = 1000, σ = 25 and Pmax = 0.9. The final guess for 1000 points are: x0 = 1000.7 + 2.7 − 2.5,
σ = 27.9 + 2.6 − 2.59735 and Pmax = 0.923 + 0.077 − 0.021.
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Figure 11: Simulation of a knife-Edge measurement with the Bayesian algorithm in three dimensions, without
zooming, for a measurement of 1000 points. The size of the grid is 250 × 250 × 50. The real values
were: x0 = 1000, σ = 25 and Pmax = 0.9. The final guess for 1000 points are: x0 = 1000.6 + 5.6 − 5.0,
σ = 27.9 + 5.1 − 5.3 and Pmax = 0.923 + 0.077 − 0.070.
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5.2 Accuracy comparison
We saw that we can’t increase indefinitely the accuracy of the parameter values but we at least want to
know how wrong we are and compare it to the previous method to see what we have gained. The idea
here is to repeat the experiment many times and to see the distribution of values. Since experimentally it
is not possible, we can at least simulate it: both for the frequentist and Bayesian approach, we repeated
the experiment 100 times independently and plot the results. This gives a hint about how often the
different algorithms converge to the true value.

5.2.1 Frequentist Knife-Edge: result dispersion

The number of ions for each measurement is around 1000 ions but not always constant depending how
fast the algorithm finds the maximum. If we do basics statistics on these values, one finds:

x0 = 998.9± 2.2
σ = 24.0± 2.7

Pmax = 0.92± 0.03
σx0,0 = 2.5
σσ,0 = 2.9

σPmax,0 = 0.03

where σx0,0,σσ,0 and σPmax,0 are the standard deviations from the real values. These values have to be
compared with the value of the first method

x0 = 998.3± 6.7
σ = 24.0± 5.9

Pmax = 0.93± 0.02
σx0,0 = 6.9
σσ,0 = 6.0

σPmax,0 = 0.03

There is clearly an increase in performance, particularly when one observes the standard deviations from
their true value. That means that the values are closer to the true value with this method. This point
is important because we can’t experimentally check how far from the real value we are and one need to
trust “blindly” the result.
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Figure 12: Dispersion of the fitted value for independent Knife-Edge measurements with the frequentist method.
The real values were: x0 = 1000, σ = 25 and Pmax = 0.85.
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5.2.2 Bayesian Knife-Edge: result dispersion

The similar simulation has been done for the Bayesian knife-edge measurement, the results are plotted on
figure 13. The first thing we see is that the final guess doesn’t seem to depend from the initial guess we
chose; the algorithm seems to works relatively well for a broad range without having too much problem
of convergence. Experimentally, we always know roughly where the beam and the blade are, so it works
fine. We can now compare this with the two previous methods by doing statistics on the measurements:

x0 = 1000.1± 2.9
σ = 25.1± 2.4

Pmax = 0.90± 0.05
onewithσx0,0 = 2.9

σσ,0 = 2.4
σPmax,0 = 0.07

The Bayesian method seems to provide results which are closer than the basic approach but very similar
to the results given by the frequentist method. Until now the reasons for that are not so clear. One
possible explanation would be that 1000 data points is high enough to provide good statistical estimation
of the different probabilities and therefore a good fit. Another possible explanation is that the Bayesian
algorithm "forget" some information when going for a very high number of points: all the information
is contained in the distribution, since the array use to store the distribution has a finite size, the small
errors are accumulating in the distribution, modifying the "memory" of the experiment. One other
possible limitation is that, since we use independent measurement, at some point any new measurement
will counteract the previous point, creating a kind of “random walk”: the width is limited by some
excursions from the real value due to the randomness of the process. However the details are not clear
due to the complexity of the Bayesian updating.
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Figure 13: Simulation of a knife-Edge measurement with the Bayesian algorithm in three dimensions for a mea-
surement of 1000 points with random initial guess in a research range. The size of the grid is
30 × 30 × 15. The real values were: x0 = 1000, σ = 25 and Pmax = 0.85. The initial research
area were: 0 < x0 < 1500, 0 < σ < 80 and 0, 7 < Pmax < 1
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5.3 Discussion
So far, we couldn’t determine if one method allows to measure the focus more precisely than the other.

The dispersion of the final values shows that both optimizations are still better than the basic method
but none give really better result according to the final prediction of the real value.

However from a practical point of view the Bayesian algorithm is far better because of its robustness
and its usability: one only to enter a large research range and the algorithm will find itself which region to
measure. On the other hand, the frequentist methods can become very inefficient if the initial parameters
of the program are not carefully chosen, this can lead to the measurement of a huge amount of useless
data and therefore a loss of time. Moreover for an efficient measurement the procedure needs a human
supervision.

The next step will be to measure the uncertainty according to the number of points, this will give a
hint about how fast and how accurately each method converges, for that we evaluate the Allan variance
[Allan, 1966], which is a good way to quantify this property. For the Bayesian method it is easy as
already implemented; however for the frequentist approach we will have to modify the code to simulate
it and implement it in the experiment. It will be rather easy with the basic method, but less with the
optimization method we presented. The problem will be the number of ions we can afford before starting
this measurement: for the frequentist method, one always needs a small data set to make an initial fitting
and determine where is the middle and the sigma as well.

Some improvements could be made for each measurement by using some trick from the other method:

• For the frequentist measurement, instead of measuring equally distributed points in the region
of interest, we could use the Kullback-Leibler divergence to determine beforehand where are the
interesting positions to measure.

• For the Bayesian method, we could measure few ion transmissions, for example 10, and work with the
probability estimated from the 10 measures instead of working with 10 independents probabilities
whose values are either 0 or 1. Actually we made some short tests, it turns out that the mean value
of each parameter is more stable but the error range is roughly the same. It’s actually just a trick
to suppress the problem of the “random walk”, but in the end the result won’t change.

We still also have to determine which method has to be used to present following results of the ex-
periment. Theoretically, for a big amount of points, neither the frequentist nor the Bayesian approach
should be better. Since both methods seems to be on an equal foot according to the performance, another
point which can tip the scales is how we want to interpret the result: with a Bayesian or Frequentist
interpretation? The real value of the beam diameter itself doesn’t really matter since we want to find a
estimation of the achievable resolution, for this purpose a Bayesian interpretation with a credible interval
seems more appropriate because of the fixed limits of the credible interval. A frequentist measurement
would be more appropriate to find which minimal beam size we managed to achieve. However in practice
the difference won’t make any big difference.

5.4 Experimental results
Due to a lack of time and independent experimental problems, we couldn’t measure the focus of the single
ion beam. However the method itself works fine but no interesting results have been measured yet.
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6 Conclusion
6.1 Conclusion and outlook
During this internship we compared mainly two ways of measuring the size of a single ion beam. These
two methods turned out to come from two very different theoretical backgrounds: the frequentist and
the Bayesian interpretation. Neither one of them is more "correct" than the other one but their ranges
of implementation are really different. The frequentist approach works usually well for most of the
measurements in Physics13 and this is the one used most of the time for other knife edge measurement.
However it turns out that it doesn’t fit so well for the estimation of the size of single particle beam, where
few events are observed.

We first tried to optimize this measurement method to obtain better results with the same amount
of points by reducing first the range of scan. It appears to work well and could be used.

Then we tried a Bayesian method which was a success for many reasons. First it gave more reasonable
results and converges nearly all the time, contrary to the frequentist measurement. Then it is really easier
to use far less demanding experimentally. Last but not least it is one of the rare physics experiments
which makes a full use of the experimental design: The Bayesian has often been used to analyze data
afterwards, but it is probably one the rare experiments which is fully driven by a Bayesian optimization
and updated in real-time! However, one of the drawbacks is that we have to be cautious about the result
and its interpretation which is slightly different.

In the end, the major difficulty is to determine which methods is the best suited for the single ion
beam diameter measurement.

The next step is to use this measurement to get the focus size on the single ion beam in order to
estimate the achievable resolution for the implantation. Since the production of Nitrogen ions is nearly
operational, we should be able to implant ions soon. The only very limiting step is the baking of the
sample in situ.

6.2 Personal contribution and feedback on the internship
The first part of the internship was mainly to observe how the experiment works and learn how to use
the specific "tools" of the lab, in particular MCP. The work done during the internship was an essential
parallel project done in total autonomy with just some guidance at some points. It wasn’t sure if the
Bayes method would work or not. What corresponds to 3.3 was mainly my idea, even if not used in
the end. All the theoretical explanations about the Bayesian interpretation and theorem come only from
what I read in the literature since nearly no one knew a lot about these theoretical problematics in the
group.

Most of the work was programing, first in Mathematica to quickly see how to implement the different
methods and to have the framework, and then in C++ using MCP. This was the occasion to perfect my
programing skills in C++ and Mathematica. All the code one can find in the appendix was written from
scratch during the internship and are now able to run perfectly. The Bayesian algorithm is now daily
used and creates a huge gain of time, reliability and simplicity for measuring the focus size.

However, due to the complexity of the experiment, the few data acquisition were done with the help
of Georg Jakob, a PhD student.
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A User interface
The Bayesian algorithm display many elements for the user, here are displayed some of them

Figure 14: Graph with:
in black, the true beam probability distribution of this simulation,
in red, the current guess for the the beam probability distribution,
in green, the experimental data points. Those which are outside correspond to the start of the exper-
iment, when the algorithm doesn’t know at all the position of the beam,
in blue, the current blade position.



A USER INTERFACE 38



B C++ CODE OF THE FREQUENTIST ALGORITHM 39

From left to right:

• The first graph corresponds to the current estimation of the center of the distribution with the
credible interval. The second is the the estimation of the sigma and the third the estimation of the
maximum probability. The red lines are the real value, in the case of a simulation.

• The first graph is the projection of the three dimensional array along the axis of the center position,
the second the projection along the sigma axis and the third along the maximum probability axis

• For the three parameters are presented in this order: the current value for the lower boundary of
the parameter space, the negative uncertainty, the current guess for the parameter, the higher part
of the credible interval and the current higher boundary for the parameter space

• Some controls among others.

B C++ code of the Frequentist algorithm
The code is too long to be put here, please find the attached file.

C C++ code of the Bayesian algorithm
The code is too long to be put here, please find the attached file.
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