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Photons carrying a well-defined orbital angular momentum have been proven to modify spectroscopic selection
rules in atomic matter. Excitation profiles of electric quadrupole transitions have been measured with single
trapped 40Ca� ions for varying polarizations. We further develop the photo-absorption formalism to study
the case of arbitrary alignment of the beam’s optical axis with respect to the ion’s quantization axis and mixed
multipolarity. Thus, predictions forM1-dominated 40Ar13�, E3-driven 171Yb� and 172Yb�, and B-like 20Ne5� are
presented. The latter case displays novel effects, coming from the presence of a strong photon–magnetic dipole
coupling. © 2019 Optical Society of America
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1. INTRODUCTION

The interest of scientists in vortex-like dislocations in various
media goes back to 1970s [1,2]. For historic and topical
reviews, we would like to refer the reader to such sources as
[3,4]. The ability of twisted photon beams to transfer orbital
angular momentum (OAM) as an extra degree of freedom, first
shown in Ref. [5], has largely influenced our understanding of
light, e.g., [6–13]. It made OAM-carrying laser beams a popu-
lar research subject in optical and quantum communications
and information security [14–18]. Nontrivial topological struc-
ture of such OAM-carrying optical vortices, paired with
progress in photonics and nanotechnology [19], resulted in
proposals and subsequent implementations of novel devices
and techniques [20–25].

Over years, significant progress has been made towards
understanding the mechanisms of twisted light interaction with
matter. It became clear that in order to detect transfer of
photon OAM to the internal degrees of freedom of electron
configurations, one needs to consider transitions driven by con-
tributions higher than the electric dipole E1. This is the non-
trivial electromagnetic field distribution in the beam vortex,
which bound electrons with high angular momentum are sen-
sitive to [26,27]. It has been shown for molecular [28]

and atomic [29] systems, as well as semiconductor heterostruc-
tures [30,31].

In this paper, we focus our attention on OAM photons in-
teracting with single trapped ions. The possibility to enhance
and control weak atomic transitions was discussed in Ref. [32],
where the authors had foreseen OAM modes being used in
high-precision atomic spectroscopy. Particular interest in the
field has been paid to light–matter interactions in the case
of beams carrying a well-defined OAM [33–36]. In the past,
a detailed experimental study demonstrated the transfer of pho-
ton OAM to the valence electron of a single trapped 40Ca� ion
[11,37]. This progress was based on the technologies developed
for ion-trap quantum computing [38].

Now we propose extending these methods to include
atomic transitions in ions with complex level structure such as
Yb�. We also study selection rules in highly charged ions
(HCIs) as Ar13� and Ne4�. We aim to stimulate experimental
studies on these transitions with OAM light, and have chosen
cases that have already been experimentally studied using
Gaussian beams [39–41] or have accessible optical transitions.
The theory considers arbitrary alignment of the field vector
with respect to the atomic quantization axis and takes hyperfine
splitting into account, extending previous investigations [36].
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The paper is structured as follows: the theoretical approach
is described in Section 2. It is built on the formalism for Bessel
(BB) and Bessel–Gauss (BG) presented in Refs. [32,36,37],
where multipole expansion of the plane wave contribution
has been used, similar to [10]. In Section 3, we compare
our findings with data obtained in 40Ca� ions as a test case
for our theory. In this case, the next-to-the-leading M3 multi-
pole is strongly suppressed, compared to the dominating E2.
Previously, the authors in Ref. [11] used semiclassical formal-
ism, while we follow a purely quantum approach of evaluating
the interaction strength in terms of photo-absorption transition
amplitudes. While certain data we use here were already pub-
lished before, the data for various photon polarization states are
presented to the public for the first time. Section 4 is devoted to
theoretical predictions for the ions with strong electric, mag-
netic, and mixed multipolarities. We study the M1-dominant
P1∕2 → P3∕2 transition in 40Ar13�, the E3-driven transition in
171Yb or 172Yb [42–45], and the mixed M1� E2 multipolar-
ity transition in 20Ne5� [46]. The summary is provided in
Section 5.

2. FORMALISM

For twisted photons in a BB whose vortex line is displaced from
the center of the target atom by a distance b, and where the
atomic states are quantized along an axis parallel to the beam
propagation direction, the transition amplitude M reads
[29,36]

M �BB�
mf miΛ�b; θz � 0� � Aimf −mi−2mγ ei�mγ�mi−mf �ϕb Jmγ−mf �mi

�κb�

×
X
m 0
f m

0
i

d
jf
mf ,m 0

f
�θk�d ji

mi ,m 0
i
�θk�M �pw�

m 0
f m

0
iΛ
�0�:

(1)

This amplitude is proportional to experimentally measured
transition strength ΩR � ΩRabi, e.g., [11]. A denotes an overall
normalization factor. The initial and final atomic states have
quantum numbers fji,mig and fjf ,mf g (where ji,f are total
angular momenta of the electronic states, with orbital angular
momenta l i,f ), and mγ is the projection of the photon beam’s
total angular momentum on the direction of the beam propa-
gation, the z axis. Jm�κb� is a Bessel function with the argument
given by the impact parameter b � fb cos ϕb, b sin ϕb, 0g,
and the transverse momentum magnitude κ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2z

p
.

The d j
m,m 0 �θk� are Wigner rotation matrices evaluated at the

pitch angle θk [47]. M �pw� is the transition amplitude for a
plane wave traveling in the z direction with helicity
Λ � �1. We will also define lγ from the identity
mγ ≡ lγ � Λ, which can be interpreted as the photon’s
OAM in paraxial approximation.

In our practical considerations, we have used a BG mode,
which is a BB with peripheral behavior suppressed by a
Gaussian factor to better fit experimental conditions.
Additionally, when the static magnetic field that defines the
quantization axis of the atomic states points in a general
direction f0, θz ,ϕzg, one has

M �BG�
mf miΛ�b;θz�� e−b2∕w2

0e−i�mf −mi�ϕz

×
X
m 0

f m
0
i

d
jf
mf m 0

f
�θz�d ji

mim 0
i
�θz�M �BB�

m 0
f ,m

0
iΛ
�b;θz � 0�,

(2)

where w0 is the Gaussian width of the beam (beam waist), as
defined in, e.g., [48].

A plane wave photon can be expanded in terms of spherical
waves. Each spherical wave has total angular momentum j, and
the plane wave amplitude can be expressed in terms of spherical
multipoles [32],

M �pw�
mf miΛ�0� � −

X∞
j�1

ij�μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π�2j� 1�
2jf � 1

s
Λμ�1C

jf mf

jimijΛMjμ: (3)

The C
jf mf

jimi ;jΛ are Clebsch–Gordan coefficients, and Mjμ is the
spherical amplitude of order j and multipolarity μ. Magnetic
multipoles are described with μ � 0 and electrical ones with
μ � 1. We conveniently simplify by writing Mj0 � Mj
and Mj1 � Ej.

While the sum in Eq. (3) is formally infinite, typically only
two amplitudes contribute for given atomic states, and often
one of them is small enough to neglect. When an atom has
nuclear spin I , magnetic hyperfine interaction may significantly
contribute to the atom photo-excitation. In case of a nonde-
formed nucleus, such as 171Yb�, the nuclear electric quadru-
pole does not contribute, and the photon angular momentum
couples to the total atomic angular momentum F � J � I
(TAM). Hence, in Eq. (3), one requires the substitution
of the principal quantum numbers jjf mf i → jjf IF f m

�f �
f i

and jjimii → jjiIF im
�f �
i i, e.g., [49], and of the expansion

coefficients,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2jf � 1

s
C

jf mf

jimi jΛ → �−1�jf �I�F i−j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2F i � 1�

p
C

Ff m
�f �
f

F im
�f �
i jΛ

×
�
jf F f I

F i ji j

�
, (4)

where 6j are Wigner coefficients, as defined in Ref. [50].

3. 40Ca�: THEORY AND EXPERIMENT

We consider the atomic transition 42S1∕2 → 32D5∕2 in a single
trapped 40Ca� ion. The coupling scheme, outlined in Eqs. (3)
and (4), allows two multipole contributions: M3 and E2.
However, M3 is much weaker than E2. This is due to M3
contributing in the second-to-the-leading order in the
Taylor expansion of eik·r, while E2 arises in first, along with
M1, e.g., [51]. To the best of the authors’ knowledge, there
are also no spectroscopic effects related to the presence of
M3. So the plane wave amplitude M �pw� can be written as

M �pw�
mf miΛ ≃ C

5∕2mf

1∕2mi2ΛE2: (5)

The interaction strength for a beam of definite helicity Λ and
TAM mγ can then be calculated using Eq. (2). One obtains
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M �BG�
mf miΛ�b; θz � 0�
≃ Aimf −mi−2mγ e−b2∕w2

0ei�mγ�mi−mf �ϕb Jmγ−mf �mi
�κb�

×
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m 0
i

d
jf
mf ,m 0

i�Λ�θk�d
ji
mi ,m 0

i
�θk�C

jf m
0
i�Λ

jim
0
i 2Λ

E2: (6)

We now compare these results with interaction strengths mea-
sured with a single trapped 40Ca� ion, Zeeman-split in a static
magnetic field [11]. In the experiment, an ion was trapped in a
microstructured segmented Paul trap with the 5 nm position
resolution. The interaction strength was measured as a Rabi
frequency as a function of the position of the ion with respect
to the beam (the impact parameter b). For the details about the
experimental setup and trapping techniques, we refer the
interested reader to, e.g., [11].

First we consider data taken with the angle between the
quantization axis and beam propagation vector θz � π∕4.
We consider two datasets. One, shown in Fig. 1, where exci-
tation profiles are measured as a function of the varying polari-
zation. And a second one, shown in Fig. 2(h) and Figs. 3(d) and
3(e), where detailed profiles are measured for left-circular, hori-
zontal (H), and vertical (V) polarizations of light, defined with
respect to the incidence plane formed by the direction of the
static magnetic field and the beam axis.

For both datasets in Figs. 1 and 3, we consider the transi-
tions 2S1∕2 → 2D5∕2 between the Zeeman-split levels: mi �
1∕2 into mf � 3∕2. The polarization angles for the measure-
ments were extracted by comparing the optical response in ex-
periments and those generated in the simulation. We describe
the polarization vector of the beam as

ê � eiδ�ê− cos�α∕2� − ê� sin�α∕2�e−i2δ�, (7)

where the polar angle α and phase retardation δ range in the
interval �0, π�. The convention used here for right-circular
ê− and left-circular ê� polarization states is ê� �
1ffiffi
2

p f	1, − i, 0g. The H state is obtained with α � 90° and
δ � 0, and the V state is obtained using α � 90° and δ � 90°.

For the case of linearly polarized incoming photons, this can
be rewritten as

M �BG�
mf miH∕V �b; θz� � cos�π∕4�M �BG�

mf ,mi−1
�b; θz�

− sin�π∕4�e−i2δM �BG�
mf ,mi1

�b; θz�: (8)

Then we substitute the Eq. (6), rotated by angle θz , as in
Eq. (2). The nonzero phase difference, coming from exponen-
tial factor exp�i�mγ � mi − mf �ϕb�, introduces a new parameter
ϕb. In our simulations, we are tuning this polar angle ϕb,
responsible for the azimuthal orientation of the ion with respect
to the plane formed by the beam propagation axis and constant
magnetic field.

The calculation of the interaction strength involves two ro-
tations performed sequentially: (1) the rotation of the plane
wave photon by the pitch angle θk and (2) the rotation of
the twisted beam over the angle θz . While the ϕb-dependent
phase drops out on the level of Rabi frequencies ΩR ∝
jMmf miΛj for definite helicity states, the same phase factor
exp�imγϕb� becomes observable for H and V states. To control
the polarization of the beam, we used a set of wave plates [11].
By rotating a half-waveplate, the polarization state is varied
along a meridian in the Poincaré sphere.

In Fig. 2(h) and Figs. 3(d) and 3(e), we show a comparison
of the theoretical prediction with the experimental results for
beams with different OAM lγ � 0, 1, 2 with either vertical or
horizontal polarization. Some features of the data can be under-
stood by analytic expansions of Eq. (1) for the various cases.

Fig. 1. Contour plots of the normalized transition strength as a function of polarization and impact parameter for 42S1∕2 → 32D5∕2 in a single
40Ca�. From left to right, the first and second subplots are for lγ � 0 theory and experimental data, respectively. The third and fourth are for
lγ � 1 theory and experimental data, respectively. The theory prediction is fitted using θk � �0.075, 0.095� rad and ϕb � �−0.62, − 0.3� rad for
lγ � 0 and 1, respectively. Red lines indicate pure vertical polarization.
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For small impact parameter b → 0, the Bessel function will col-
lapse into delta function, and the projection of the photon’s
total angular momentum mγ will be transferred into the inter-
nal degrees of freedom of the target atom, Δm � mf − mi �
mγ [36,37,52]. In such a case, the interaction strengths only
depend on the pitch angle θk and the alignment angle θz ,

M �BG��lγ�0�
3∕2 1∕2 H ∝ i�5θ2k − 4� cos�2θz� M �BG��lγ�0�

3∕2 1∕2 V ∝ i�5θ2k − 4� cos�θz�,
M �BG��lγ�1�

3∕2 1∕2 H ∝ 2θk�1� 4 cos θz� sin θz M �BG��lγ�1�
3∕2 1∕2 V ∝ 2θk�2 cos θz − 1� sin θz ,

M �BG��lγ�2�
3∕2 1∕2 H ∝ i 3ffiffi

2
p θ2k�cos θz � cos 2θz� M �BG��lγ�2�

3∕2 1∕2 V � −M �tw�
mf miH �lγ � 2�:

(9)

From the equations above, one can see that the horizontal
polarization is completely suppressed in the vortex center when
θz � π∕4 and lγ � 0. In 45 deg alignment, this is a signature
of transitions with dominant E2. This is due to their sensitivity
to the field gradients [11] and generation of geometry-
dependent terms due to rotation of the quantization axis
[Eq. (2)]. The dependence on the alignment angle was previ-
ously discussed in Refs. [53–55].

When performing the expansion for different OAM expres-
sions in Eq. (9), there is the crucial observation to make: the
plane wave transition amplitudes of different helicity do not
contribute on equal basis as the OAM goes up. While for
lγ � 0, 1, left-circular (Λ � 1) and right circular (Λ � −1)
contribute symmetrically, for lγ � 2, only right-circular com-
ponents contribute into the absorption matrix element at
b → 0. This leads to the effect of local circular dichroism in
isotropic targets. This phenomenon is position dependent
and gets stronger for beams with higher vorticity, until all
the contributions become extinct at the vortex center. This re-
sult confirms and reinforces our earlier findings [56].

In Fig. 1, we show the excitation profiles for a varying polari-
zation for a Gaussian beam and one with lγ � 1. The polari-
zation state is scanned along a meridian in the Poincaré sphere
parameterized by angle α, as defined in Eq. (7). We see that the
theoretical model reproduces all the main features, including
the breaking of radial symmetry for polarizations that are
not purely linear. The fit parameters are the beam waist w0,
the pitch angle θk, and the azimuthal angle ϕb. The fit was
performed using the whole dataset. An overall normalization
constant and pitch angle were picked for each profile independ-
ently, while the waist w0 � 9 μm∕λ and azimuthal angle were
constrained to be the same throughout. We obtain θz � 45°�
5° and δ � 0� 0.02. The polarization patterns are strongly
dependent on angle ϕb. In particular, when ϕb → −ϕb, one
would get a picture, mirror-symmetric to Fig. 1.

Finally in Figs. 2(b), 2(e), and 2(h), we show excitation pro-
files for alignment angle θz � 0 and left-circular polarization
Λ � 1. We plot the results for different OAM lγ � 0, 1, 2
and different changes in magnetic number Δm � 1, 2, 3. At
this angle, the conservation of the projection of angular mo-
mentum for b → 0 is observed. This is why, at the center of

the beam, the only nonvanishing transitions are those in which
the photon OAM matches the change in magnetic number
Δm � mγ . However, it is interesting to note that the Δm �
3 transition is null even if the conservation conditions are
met. This is due to an extra selection rule in which jΔmj ≤
jΔl j � 2 for E2 transitions.

4. PREDICTIONS FOR M1, E3, AND MIXED
MULTIPOLARITY

In this section, we present theoretical predictions of structured
light field excitation for atomic ions featuring electric and
magnetic multipole transitions of interest.

A. 40Ar13�M1-Driven Transition

In the highly charged ion 40Ar13�, the transition P1∕2 → P3∕2
is an example where theM1 amplitude dominates while the E2
is suppressed by 6 orders of magnitude [57]. The relevant plane
wave amplitudes from Eq. (3) are then

M �PW�
�3Λ∕2��Λ∕2�Λ � Λ

ffiffiffiffiffi
3π

p
M1,

M �BB�
�Λ∕2��−Λ∕2�Λ � −Λ

ffiffiffi
π

p
M1: (10)

Following the procedure from the previous sections and under
the condition of small b, one gets the transition strengths,

M �BG��lγ�0�
3∕2 1∕2 H ∝ −i

�
1 −

θ2k
4

�
M �BG��lγ�0�

3∕2 1∕2 V ∝ i
�
1 −

θ2k
4

�
cos�θz�,

M �BG��lγ�1�
3∕2 1∕2 H∕V ∝ θk sin θz M �BG��lγ�2�

3∕2 1∕2 H∕V ∝ θ2k cos
2 θz

2 :

(11)

For the case of the lγ � 0 and a setting of θz � 0, then both H
and V interactions strengths are equal; this is identical to
the behavior for E1 and E2 transitions. However, when varying
θz to π∕2, we see a distinct behavior: the value of the horizon-
tally polarized beam does not change while the vertical goes
to zero. The behavior for M3 at π∕2 [see Figs. 3(a), 3(d),
and 3(g)] is then similar to that of E2 at π∕4, but with inter-
changed roles of the horizontal and vertical polarizations (see
Figs. 3(b), 3(e), and 3(h)). This can be understood by the fact
the E and B vectors are orthogonal in a transverse electromag-
netic wave. For higher OAM, another interesting feature is
observed: the transition strengths are the same for H- and
V-polarized beams independent of the alignment angle. This
effect is a direct result of the circular dichroism, similar to
Section 3. This is exemplified in Fig. 3(d), where we see that
for b � 0, both transition strengths coincide.
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B. Yb� Isotopes and E3-Driven Transition

In this subsection, we consider the electric octupole (E3) tran-
sition in ytterbium known for ultraprecise optical frequency
standards [58]. Ytterbium has several naturally abundant iso-
topes. This makes this element an interesting species to study
the role of nuclear spin and OAM for the features of the exci-
tation strength. Here, we will compare results for ions with a
spinless nucleus as in isotope 172 andwith I � 1∕2 nuclear spin
of isotope 171. The transition from the ground state 2S1∕2 →
2F 7∕2 is driven with light near 467 nm. In the case of 172Yb�,
where the nuclear spin is zero, we can use the formalism that has
been exploited in the case of 40Ca�, and 40Ar13� transitions will
be used also for 20Ne5� in Section 4.C. The coupling scheme to
use for 171Yb� is the one with the coefficients [Eq. (4)] when the
proper quantum number for angular momentum is F � J � I ,
not accounting for electric hyperfine interaction, e.g., [59].

As we can see in Figs. 3(c), 3(f ), and 3(i), the behavior at the
alignment angle θz � π∕4 is conceptually similar to the case of
E2. The position of the minima and the relative amplitudes of
each transition vary slightly. And there is also a dependence of
the relative interaction strengths on the spin content of the
nucleus. One can see that the ion’s response does not change
drastically due to the presence of the hyperfine splitting. The
correction due to the presence of the nuclear spin is on the
order of 10%.

However, a striking and distinctive feature occurs for
E3 transitions in the collinear case: θz � 0. As we show in
Fig. 2, now we can drive Δm � 3 transitions. These are par-
ticularly strong at the center of the beam with mγ � 3, as
expected from the full selection rules and shown in Fig. 2(i).

The matrix elements at vortex center, as calculated for the
previous transitions are

M �BG��lγ�0�
10H ∝ i�4 − 11θ2k��cos θz � 15 cos 3θz�,

M �BG��lγ�0�
10V ∝ −i�4 − 11θ2k��3� 5 cos 2θz�,

M �BG��lγ�1�
10H ∝ −4θk�23� 20 cos θz � 45 cos 2θz� sin θz ,

M �BG��lγ�1�
10V ∝ −4θk�13 − 20 cos θz � 15 cos 2θz� sin θz ,

M �BG��lγ�2�
10H ∝ i

3

2
θ2k�22� 7 cos θz � 10 cos 2θz � 25 cos 3θz�,

M �BG��lγ�2�
10V ∝ i6θ2k�21 − 40 cos θz � 35 cos 2θz�cos2

θz
2
: (12)

Hence, the horizontal polarization is completely suppressed
when impact parameter b → 0 for θz � π∕2. Dichroism effects
can be seen for lγ > 2, and the full amplitude extinction takes
place for lγ ≥ 5 in the central region of the beam for both
171Yb� and 172Yb� isotopes.

Finally in Fig. 4, we plot the profiles for varying polariza-
tions at alignment angle θz � π∕4. It is remarkable how a small

Fig. 2. Transition strengthΩr for different atomic multipolarities and beam types as a function of impact parameter b. The beam direction chosen
to be collinear with the external static magnetic field: θz � 0. Under these conditions, conservation of the projection of angular momentum along z
is conserved (Δm � Λ� lγ) for b � 0. We choose for all plots left-circular polarized photons Λ � �1. Columns group multipolarities
(M1,E2,E3), while rows group results of increasing orbital angular momentum lγ � 0, 1, 2. Line type indicates the magnetic transition Δm �
1, 2, 3 for solid green, dashed–dotted brown, and dotted red. For magnetic dipole transitions, only Δm � 1 transitions are present, and there is a
maximum at the center only for lγ � 0, where the conservation of the projection of angular momentum is conserved. For electric quadrupole (E2)
transitions, also Δm � 2 is allowed when lγ � 1, as seen in subplot (e). There is a nonzero interaction at the dark center of the beam. Similarly, for
the electric octupole (E3), Δm � 3 transitions are allowed. As in all cases, transitions are allowed for b � 0 only when the conservation rule is met:
Δm � Λ� lγ . All plots for E3 transitions also show an expanded inset with the detail of behavior forΔm � 3. In (h), we contrast our predictions to
the results presented in Ref. [11].
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variation in polarization (Δϕb � �17°) results in strong visual
effects of mirror symmetry breaking.

C. 20Ne5� and E2 � M1 Separation

In this section, we consider 2P1∕2 → 2D3∕2 transitions in a
B-like 20Ne5� HCI at λ � 142 nm, where M1∕E2 ∝ 1.1
[46]. As before, we use the multipole expansion of Eq. (3)
to get the regular contributions into the plane wave absorption
amplitude as

M �pw�
mf miΛ ∝

ffiffiffi
5

p
C

3∕2mf

1∕2mi ;2ΛE2� Λ
ffiffiffi
3

p
C

3∕2mf

1∕2mi ;1ΛM1: (13)

With the use of Eqs. (1)–(3), one can work out the explicit
form of expressions for the rotated transition amplitudes and
predict the Rabi frequencies for this case. In the general case,
the norm of the transition amplitude is not always free of in-
terference terms. However, in this case, no such terms arise. For
this reason, the behavior for this transition is simply a linear
combination of the ones for M1 and E2, as described above
and shown in Figs. 3 and 5.

For this HCI, we study the transition amplitudes for hori-
zontal and vertical polarizations, as shown in Fig. 5. The result-
ing amplitude for a transition with a mixture of M1 and E2 is
shown in the first column. The individual multipolar contri-
butions are shown in the second and third columns, E2 and
M1, respectively. One can clearly see that the quadrupole con-
tribution (second column) looks identical to the E2 transition
discussed above for calcium ions (Fig. 2(b), 2(e), and 2(h)), as

well as the magnetic dipole contribution (third column) is iden-
tical to M1 transition discussed above for argon HCIs.

Let us examine this behavior mathematically in proximity to
the beam vortex in this case. For lγ � 0 one gets

Fig. 3. Transition strength Ωr for different atomic multipolarities and beam types as a function of impact parameter b. In all cases, the atomic
change in magnetic number is Δm � 1. Columns group multipolarities (M1,E2,E3), while rows group results of increasing orbital angular mo-
mentum lγ � 0, 1, 2. Red solid (blue dashed) line indicates results for light polarized vertically (horizontally). For E3, we also show the corre-
sponding results for non-null nuclear spin (I � 1∕2) in dotted purple (dashed–dotted black). We observe the inclusion of nuclear spin in the E3
transition produces only a difference in overall strength but no change in structure. Electric transitions (E2 and E3) are for alignment angle
θz � π∕4; they show qualitatively similar behavior. In subplots (b) and (e), we contrast our predictions with experimental data from [11].
The magnetic M1 transition is shown at alignment angle θz � π∕2, where it also shows qualitatively similar behavior to the electric quadrupole
and octupole but with the polarizations inverted.

Fig. 4. Contour plots of the normalized transition strength as a
function of polarization and impact parameter for 2S1∕2 → 2F 7∕2
in a single 172Yb�. In both cases, lγ � 1, δ � 0; but ϕb � 0
(−0.3 rad) for left (right) plot.
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M �BG�
3∕2 1∕2 H ∝ i

� ffiffiffi
3

p
M1 − E2�1 − 2 cos θk� cos 2θz

�
,

M �BG�
3∕2 1∕2 V ∝ i

� ffiffiffi
3

p
M1 − E2�1 − 2 cos θk� cos θz

�
: (14)

For M1 → 0, we get the same approximation as in the purely
E2-driven case [Eq. (9)]. In the same way, E2 → 0 gives
Eq. (11). The same can be proven for higher values of
OAM lγ . This means that for the case with mixed multipolar-
ity, the horizontal component cannot be completely suppressed
at any α, unless magnetic contribution is negligible or the pitch
angle θk is very small. Second, however, would mean taking the
limit of OAM going to zero—the plane wave limit. Hence,
presence of strong M1 contribution sensibly changes the
photo-absorption behavior at the beam center.

Both 20Ne5� and 40Ar13� have first nonzero contribution
coming from a magnetic dipole. In Figs. 5(a), 5(d), and 5(g),
the observed drastic difference in neon optical response in the
area of the beam penumbra, compared to argon in Figs. 3(a),
3(d), and 3(g), is due to the presence of the second strongest
multipole—the electric quadrupole. It can be inferred that con-
tributions coming from higher order multipoles may result into
visible effects in the central region, as in this case, turning min-
ima into maxima in position dependence of Rabi frequency.
This would be especially useful for fundamental studies in
spectroscopy of HCIs.

5. CONCLUSION AND OUTLOOK

In this paper, we have studied the modifications of selection
rules for electric and magnetic transitions, particularly E2,
E3, and M1, when well-localized single ions interact with

focused tailored electromagnetic fields with vortices. We have
developed a complete theoretical framework, extending pre-
vious results, e.g., [36], where we can determine the full
dependence of the photo-absorption transition amplitudes
on OAM, on polarization of the beam, on impact parameter,
on nuclear spin when relevant, and on directions of the
quantization axis of the atoms. This whole framework for
single-ion–vortex interactions is tested and verified using exper-
imental data for 40Ca� [11].

We also encourage development of future experiments
involving twisted photon photo-absorption on various ions, in-
cluding Yb (used for clocks) and other HCIs, by predicting
rates for selected transitions and a variety of structured electro-
magnetic beams. We highlight peculiar effects, which can form
a rich ground of fundamental studies, and will, e.g., allow sepa-
rating the E and M character for given atomic transitions and
enhance the excitation rates in certain circumstances.

The calculations give transition amplitudes, which for fixed
laser strength are equivalent to Rabi oscillation frequencies, as
experimentally measured. The experimental results for the 40Ca
ion, which confirmed the validity of the calculations, were for
the case with a 45° static magnetic field alignment and in the
full polarization domain of the laser beam for OAM lγ � 0
and 1. Together with the predictions in related configurations
for Ar, Ne, and Yb ions, one may conclude that local, or small
impact parameter, alteration of the ordinary spectroscopic se-
lection rules enables selective enhancement of high-order
multipolar contributions in the ion response by manipulating
the photon twist. Circular dichroism related to the twisted pho-
ton topology is theoretically seen on the level of factorized
multipolar contributions. The reported circular dichroism in

Fig. 5. Transition strength Ωr for different atomic multipolarities and beam types as a function of impact parameter b. The left column shows the
expected response for a transition with similar contribution from theM1 and E2multipoles, such as for the HCI 20Ne5� on the transition 2P1∕2 →
2D3∕2 [46]. Columns E2 and M1 show the individual contribution from each of the multipoles. In all the cases, Δm � 1, ϕb � 0, and the
alignment angle is chosen to be θz � π∕4. Each row shows the expected result for increasing orbital angular momentum lγ � 0, 1, 2. Red solid
(blue dashed) line indicates results for light polarized vertically (horizontally) beams.
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atom–photon interactions may contribute into the study of
chiral light–matter interactions [60].

The ions and transitions studied in this paper are excited
by different multipolarities. The results from horizontal and
vertical linear polarization states become most distinct at par-
ticular static magnetic field alignment angles θz , with the angle
of most sensitivity depending on the photon–atom angular mo-
mentum transfer. For the system withM1 transitions, or partial
wave amplitude with j � 1, choose θz � π∕2; for E2 or j � 2,
choose θz � π∕4; and for E3 or j � 3, choose again θz � π∕2.
For the Boron-like 20Ne5� HCI, the M1 and E2 partial waves
are unusually similar, leading to effects shown in this paper (see
also [32]). This makes this HCI a promising candidate for
future experimental research of topological effects in light–
matter interactions. Progress in this direction will also allow
further investigation of the quantum nature of spin-orbit
coupling in photon laser beams.

Also included are a number of results for θz � 0, with tran-
sition amplitudes for differing OAM lγ with positive circular
polarization Λ, and with differing changes in the atomic angu-
lar momentum projections, Δm. One sees again [11,36] the
nonzero response at the zero impact parameter only for
Δm � mγ � lγ � Λ, and of note is the good agreement with
experimental data available in a range of impact parameters for
one of the 40Ca� cases.

Photon OAM coupling to the internal atomic degrees of
freedom can be used, as seen here, to separate the electric
and magnetic character of given transitions, to locally enhance
next-to-leading order transition rates, and to suppress parasitic
transitions. In the realm of quantum computation, incorpora-
tion of OAM states of light can provide ion–photon interaction
on the level of energy, momentum, polarization, and phase.

The theory outlined in this paper can also be successfully
applied to such systems as bulk semiconductors and artificial
atoms in the ways similar to [61,62]. When developed, it
may become useful in such fields as metrology, classical and
quantum communication, quantum computing, high-capacity
data transfer, and cybersecurity, to name a few. The highlighted
sensitivity to the target position in the beam, polarization, and
phase can be used in beam diagnostics.

APPENDIX A

One might benefit from linking two alternative sets of angles
f�ψk, �θk, �ϕkg, equivalent to active and passive 3D rota-
tion. The conventional formalism [32,63] for photo-absorption
of the plane wave of arbitrary incidence angle Ω by the atomic
system may be written as

M �pw�
mf miΛ�Ω� � −

ffiffiffiffiffi
4π

p X∞
j�1

Xj

m�−j

ij�μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j� 1

2jf � 1

s
Λμ�1

× Dj

Λm�ψ k, θk, 0��−1�j−jf �jiC

jf mf

jimijmMjμ, (A1)

where the rotation matrix is related to ours as
Dj

mm 0 �ψk, θk,ϕk� � e−imψ k d j
mm 0 �θk�e−im 0ϕk . This matrix repre-

sents active Euler rotation in Hilbert space. The part of the
tensor responsible for the spatial configuration of the system,

ΛDj

Λm�ψk, θk, 0�C

jf mf

jimijm, (A2)

reproduces up to a sign the one in semiclassical formalism
[53,54]. It can be checked in direct calculation, and the results
are presented in the top part of Table 1.

If, instead of rotating the photon state, we rotate an electron
state, similar to Eq. (1), then

M �pw�
mf miΛ�Ω��−

ffiffiffiffiffi
4π

p X∞
j�1

X
m 0

f ,m
0
i

ij�μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j�1

2jf �1

s
Λμ�1

×D
jf
mf m 0

f
�0, −θk, −ψ k�

×Dji

mim 0

i
�0, −θk, −ψk��−1�j−jf �jiC

jf m
0
f

jim
0
i jΛ
Mjμ: (A3)

This is the passive rotation f0, −θk, −ψ kg, equivalent to
fψk, θk, 0g. The configuration-dependent part of this equation,X

m 0
f ,m

0
i

ΛC
jf m

0
f

jim
0
i jΛ
D

jf
mf m 0

f
�0, −θk, −ψ k�Dji


mim 0
i
�0, −θk, −ψ k�,

(A4)

is identical to Eq. (A2), though containing an extra Wigner
rotation matrix. In our formalism, Section 2, we have used
the rotation system, defined in terms of the Euler angles in
Eq. (A3) as f0, − θk, − ϕkg. The resulting geometry-related
terms are presented in the bottom half of Table 1. If we proceed
with this alternative description in terms of active rotation, we
get the equation, analogous to Eq. (1),

M �BB�
mf miΛ�b; θz � 0� � A

X
m
im−2mγ ei�mγ−m�ϕk Jmγ−m�κb�

× d j
mΛ�θk�M �pw�

mf miΛ�0�, (A5)

where the plane wave amplitude is defined as Eq. (3) with the
coupling coefficient being

CΛ
jjf ji � �−1�j−jf �jiC

jf ,mf

ji ,mi , j,m: (A6)

As one can see, this way photon TAM projection mγ explicitly
dictates multipolar balance in the optical response of the ion in
the beam penumbra, as discussed in Ref. [55].

Table 1. Geometry-Dependent Terms in the Plane Wave Photo-Absorption Matrices [Eq. (A1)] for Two Sets of Euler
Angles: Top, fψk , θk ,0g; Bottom, f0, − θk , − ϕk g

Δm

H∕V 0 �1 �2

H sin�2θk� cos ψk � cos 2θk cos ψ k − i cos θk sin ψk − 1
2 sin�2θk� cos ψ k � i sin θk sin ψk

V i sin�2θk� sin ψk − cos θk cos ψ k � i cos�2θk� sin ψ k � sin θk cos ψk − i 12 sin�2θk� sin ψk
H − sin�2θk� � cos�2θk� cos ϕk � i cos�2θk� sin ϕk sin�2θk� cos�2ϕk� � i sin�2θk� sin�2ϕk�
V 0 − cos θk�cos ϕk � i sin ϕk� − sin θk�� cos�2ϕk� � i sin�2ϕk��
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