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Abstract

In this work, the construction and operation of a scalable trapped-ion quantum logic

processor is presented. Quantum information is stored in Zeeman sublevels |↑〉 and |↓〉
of 40Ca+ ions and operated by laser Raman interactions. Central part of the processor

is a segmented micro-structured linear Paul trap, which is also referred to as quantum

charge-coupled device (QCCD). Single ions are shuttled along the trap axis between

memory zones and a processing zone, where single- and two-qubit logic gates are driven

with lasers.

Single-qubit gates are performed with a fidelity of 99.9949(2)% and we achieve a qubit

state preparation and measurement rate of 99.923(3)%. For two-qubit entangling gates

a fidelity of 99.5(1)% is accomplished. High fidelity entangling gates require the ions to

be close to the motional ground state, which imposes stringent requirements on coherent

excitation from shuttling operations and anomalous heating of the ion trap. We achieve

a low heating rate of three motional quanta per second at a radial mode frequency of

2π×4.6 MHz. We actively stabilize this mode frequency to better than 2π×20 Hz.

Three different shuttling operations suffice for QCCD operation – transport, rotation

and separation of ion crystals. Since suppressing motional excitation along the axial

shuttling direction is experimentally challenging, we use a radial mode, as a bus mode

for the entangling gate. Ion transport is performed with a motional excitation of 0.028(2)

phonons on this mode within 30 µs, two-ion separation with 0.03(1) phonons (80 µs) and

two-ion rotation with 0.02(1) phonons (42 µs).

The experimental building blocks are combined to implement a scalable quantum logic

circuit. We generate a maximally entangled four-qubit Greenberger-Horne-Zeilinger

state |ψ〉 = 1√
2
(|0000〉+ |1111〉), which is an important resource for measurement-based

quantum computing and quantum error correction. The constituent entangled ions are

spatially separated over a distance of 1.8 mm and full quantum state tomography yields

a state fidelity of 94.4(3)%. A dynamical decoupling technique is employed to maintain

69(5)% coherence at a storage time of 1.1 seconds.

Aside from probing the QCCD approach to scalable quantum computing, we demonstrate

gate operations with a planar ion crystal: ground state cooling of a zigzag mode in

a planar ion crystal is performed. For the first time, we realize the application of a

spin-dependent optical dipole force on this mode, which is an important step towards

an analog quantum simulator in a two-dimensional geometry.
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Zusammenfassung

Diese Arbeit beschreibt den Aufbau und den Betrieb eines skalierbaren Ionen-Quanten-

prozessors. In Diesem wird Quanteninformation in den Zeeman-Zuständen |↑〉 und |↓〉
von 40Ca+-Ionen gespeichert und durch lasergetriebene Raman-Übergänge gesteuert.

Das Herzstück des Prozessors ist eine segmentierte, mikrostrukturierte, lineare Paul-Falle,

welche auch als quantum charge-coupled device (QCCD) bezeichnet wird. Einzelne Ionen

werden entlang der Fallenachse zwischen Speicherzonen und einer Prozessorzone bewegt,

wo Ein- und Zwei-Qubit-Logikgatter mit Lasern durchgeführt werden.

Für Ein-Qubit-Gatter wurde eine Fidelity von 99.9949(2)% erzielt, wobei eine Erfolgsrate

von 99.923(3)% für die Präparation und Messung des Qubit-Zustands erreicht werden

konnte. Verschränkende Zwei-Qubit-Gatter wurden mit einer Fidelity von 99.5(1)% reali-

siert und setzen voraus, dass sich die Ionen nahe am Grundzustand der Bewegung befin-

den. Daher müssen die kohärente Anregung, welche durch Ionen-Verschiebeoperationen

entsteht, und das anomale Aufheizen der Ionen möglichst gering sein. Die Heizrate

der Ionenfalle ist niedrig. Sie beträgt drei Phononen pro Sekunde bei einer radialen

Fallenfrequenz von 2π×4.6 MHz, die aktiv auf eine Frequenzabweichung von weniger als

2π×20 Hz stabilisiert wird.

Für einen QCCD werden drei unterschiedliche Ionen-Verschiebeoperationen benötigt:

Transport-, Rotations- und Trennoperationen von Ionenkristallen. Da die Unterdrü-

ckung von Bewegungsanregung entlang der axialen Verschiebungsrichtung eine expe-

rimentelle Herausforderung ist, wird das verschränkende Quantengatter mittels einer

radialen Schwingungsmode realisiert. Die Anregung dieser Mode betrug für Ionentrans-

porte 0.028(2) Phononen bei einer Transportdauer von 30 µs. Trennoperationen von

Zwei-Ionenkristallen wurden innerhalb von 80 µs bei einer Anregung von 0.03(1) Phono-

nen realisiert, Rotationsoperationen innerhalb von 42 µs (0.02(1) Phononen).

Die vorgestellten experimentellen Techniken wurden kombiniert, um mit vier Qubits einen

skalierbaren Quantenlogikschaltkreis auszuführen, welcher einen maximal verschränkten

Greenberger-Horne-Zeilinger-Zustand |ψ〉 = 1√
2
(|0000〉+ |1111〉) erzeugt. Dieser stellt

eine wichtige Ressource für messungsbasierte Quantencomputer und Quantenfehlerkor-

rekturverfahren dar. Die vier verschränkten Ionen waren räumlich über eine Distanz von

1.8 mm verteilt und mittels Quantenzustandstomographie wurde eine Zustands-Fidelity

von 94.4(3)% gemessen. Mithilfe einer dynamischen Entkopplungssequenz konnte eine

Zustandskohärenz von 69(5)% bei einer Speicherzeit von 1.1 Sekunden aufrechterhalten

werden.

Neben der Erforschung des QCCD-Ansatzes zur Realisierung eines skalierbaren Quan-

tencomputers wurden Gatteroperationen mit einem planaren Ionenkristall demonstriert:

Auf einer Zickzack-Mode wurde Grundzustandskühlen und zum ersten Mal eine Spin-

abhängige Dipolkraft realisiert. Dies stellt einen wichtigen Schritt in Richtung eines

analogen Quantensimulators in einer zweidimensionalen Geometrie dar.
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1
Motivation

Quantum computing might become one of the most disruptive technologies of the twenty-

first century. Information storage and processing in a quantum computer are performed

on the single-atom level, where physics is governed by the laws of quantum mechanics.

Phenomena, such as entanglement, are required and harnessed for the operation of

a quantum computer. A universal quantum computer offers the potential to solve

important problems in the fields of information science, solid state physics, chemical

processes and health care substantially more efficient than a classical computer [Fey82;

Nie00; Lad10]. A high degree of experimental control is required to construct and operate

such a device, which implies the use of cutting edge technology. The field of quantum

technologies is growing quickly and commercial development of this key technology is

advancing [Tou16; Moh17; Cas17].

In this thesis, the design and construction of a trapped-ion quantum logic processor is

presented. Ions are stored in a segmented micro-structured linear Paul trap and are

shuttled along the trap axis between memory zones and a processing zone, where quantum

logic gates are driven with lasers. The device is characterized and its suitability for

scalable quantum computing is investigated by performing a multi-qubit quantum logic

circuit. In this introductory chapter, a brief historical overview of quantum computing

and its basic ideas are presented. Furthermore, quantum information experiments are

reviewed and experimental platforms for the realization of a universal quantum computer

are compared.

1.1. The quantum computer

The invention of digital computers has led to groundbreaking success in research and

fundamentally changed our society. First steps towards the quantum computing age
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1. Motivation

were made in 1980, when Yuri Manin discovered the potential of a quantum computer

to efficiently simulate quantum systems and Paul Benioff proposed a quantum Turing

machine [Man80; Ben80; Man99]. Richard Feynman independently developed the quan-

tum simulator approach in more detail [Fey82; Fey86]. Quantum turing machines were

further developed by Deutsch [Deu85], Yao [Yao93] and Bernstein and Vazirani [Ber97].

Information in a quantum computer is stored in quantum bits (qubits), which are

the analogue to bits in a classical computer. However, a qubit can be in the two

computational basis states |0〉 and |1〉 at the same time. Such a quantum mechanical

superposition is described by the wave function |ψ〉 = α |0〉 + β |1〉, where α, β are

complex amplitudes with the constraint |α|2 + |β|2 = 1. Therefore, the smallest unit

of information can take infinitely many different states and thus, in principle, store an

infinite amount of information. However, if a superposition state is measured, the wave

function collapses to the state |0〉 or |1〉 with probability |α|2 or |β|2.

Quantum information, that is stored in a qubit, is manipulated by quantum logic gates.

Logic gates are executed either on single qubits or multiple qubits. A concatenation of

multiple quantum logic gates constitutes a quantum logic circuit.

To unleash the potential of qubits in a quantum computer, it is necessary to create

entanglement between multiple qubits. The simplest example is a maximally entangled

Bell state |ψ〉 = 1/
√

2(|00〉+ |11〉) [Ein35; Bel64; Asp82]. This state can be created from

the separable two-qubit state |ψ〉 = |0〉 ⊗ |0〉 ≡ |00〉 by the application of a Hadamard

quantum logic gate [Nie00] on the first qubit, followed by a controlled-NOT gate on

both qubits [SK03]. The corresponding quantum circuit is sketched in figure 1.1.

H

Figure 1.1.: Quantum logic circuit for the creation of a Bell state. The single-qubit
Hadamard gate creates a superposition state 1/

√
2(|0〉 + |1〉) for the first qubit. A

subsequent C-NOT gate flips the second qubit, depending on the state of the first qubit.
Since the first qubit is in a superposition state, a maximally entangled Bell state is
created.

It has been shown, that any quantum circuit can be constructed from only single- and

two-qubit gates, which makes such a set of gates universal [DiV95]. The power of

2



1.2. Quantum computing platforms

a quantum computer arises from a property called quantum parallelism. It enables

the device to evaluate a function f(x) for many different input states x at the same

time [Nie00]. However, in a single experimental realization, only one measurement

result is acquired. In Deutsch’s algorithm [Deu85] for instance, quantum parallelism is

combined with interference, to obtain output information for two different inputs with a

single evaluation. A classical algorithm would require at least two evaluations for the

same task.

A combination of creating entanglement between qubits and manipulating them in

parallel is used in quantum algorithms, such as Shor’s factorization algorithm [Sho94].

The algorithm finds the prime factors of a given integer number. It is based on a quantum

Fourier transform and features an exponential speedup over classical factorization

algorithms, which poses a threat to many of today’s encryption systems. Another class

of quantum algorithms is based on Grover’s quantum search algorithm for unsorted

data bases [Gro97]. It is an attractive candidate for implementation, as it features a

quadratic speedup over classical search algorithms, which are a bottleneck in many of

today’s algorithms. A recent overview on quantum algorithms is provided in [Mon16a].

Besides the circuit model of quantum computation [Deu89], there exist other promising

approaches, such as the one-way quantum computer [Rau01; Lan13] and adiabatic

quantum computing [Far01; Miz07]. It is not clear which of these approaches will prevail

in the future. In our research, we focus on the circuit model of quantum computation.

The approach requires the qubits to be well protected from the outside world in order

to prevent decoherence. Despite this challenge, remarkable realizations in the field of

quantum computing were made, such as the first realization of the Grover [Chu98] and

Shor [Van01] algorithms, using nuclear magnetic resonance. Today, advanced few-qubit

trapped-ion [Sch13; Deb16] and solid state [Kel15] quantum processors have been realized.

The realization of a useful scalable quantum computer is a great challenge and it is

unclear, which physical platform will succeed in this open race.

1.2. Quantum computing platforms

A physical system, which might serve as a platform for a quantum computer, needs to

fulfill requirements, known as the DiVincenzo criteria [DiV00]. In a nutshell, the device

needs to be scalable to a large number of well characterized qubits without an excessive

use of resources. Relevant coherence times have to be long and a universal set of logic
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1. Motivation

gates has to be available to manipulate the qubits. Error correction [Sho95; Ste96] is

necessary, as undesired qubit-environment interaction cannot be entirely prevented. The

need for error correction implies efficient qubit state initialization and readout. These

requirements are experimentally challenging and currently, researchers aspire to fulfill

them using various candidate platforms.

Trapped atomic ions

One of the most promising platforms for quantum information processing are trapped

atomic ion qubits. The idea behind this approach was put forward in 1995 by Cirac

and Zoller [Cir95]. Ions are stored as a chain in a Paul trap [Pau90] and qubits are

encoded using long-lived electronic states. Qubit transitions are driven with laser

beams, focused at the ions, as sketched in figure 1.2. Common vibrational modes of the

Figure 1.2.: Left: Sketch of laser beam addressing of a trapped ion in a linear Paul trap.
Image taken from [Hit13]. Right: Photograph of the trapped-ion quantum processor at
Mainz university, which is presented in this thesis.

ion string are used as bus modes for laser-driven entangling operations between ions.

Entanglement between two [Tur98], four [Sac00], eight [Häf05a] and 14 [Mon11a] ions

has been demonstrated experimentally. The first quantum logic C-NOT gate, which

is based on the Cirac-Zoller idea, was realized with a single ion [Mon95a] and later

between two ions [SK03; Lei03a]. Logic operations between trapped ions were then

used to teleport quantum information [Rie04; Bar04] and led to the development of

few-qubit programmable quantum computers [Mon16b; Deb16], that feature quantum

error correction operations [Nig14].

Trapped ions also offer the possibility to couple qubits between distant locations via

photon transfer [Mon14]. Entanglement between two ions, which are separated by
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1.2. Quantum computing platforms

one meter, was demonstrated [Moe07] and quantum teleportation between distant ions

was realized [Olm09]. A long-term goal is the construction of a quantum repeater

with this technique, that would allow for secure quantum communication over large

distances [Dür99; Pfi16; Zwe17].

The success story of trapped ions for quantum information processing is based on some

key properties:

• Qubit preparation and readout can be performed with near unity efficiency [Har14].

• Complex quantum algorithms require high-fidelity quantum logic operations,

that are significantly above the threshold for fault-tolerant quantum compu-

tation. Today such gates exist for trapped ions, which can be driven with lasers

[Bal16; Gae16] or microwaves [Har16].

• Qubit coherence times in the seconds regime have been demonstrated, which are

orders of magnitude higher than the required time for single-qubit operations.

High coherence times can be achieved by storing qubits in hyperfine atomic clock

states [Bol85; Har14], in a decoherence free subspace [Kie01] or by applying

shielding techniques to combat ambient magnetic field noise [Rus16].

• Sympathetic recooling of ions allows for cooling of the quantum register without

affecting the qubit coherence [Kie00].

Entangling logic gates require the ions to be close to the ground state of motion, which

can be compromised by anomalous heating [Des06]. This noise effect can be suppressed

by in-situ cleaning of the trap surface [All11; Hit12] or by operating the trap at cryogenic

temperatures [Des06]. The challenge for trapped ions in quantum computing is to extend

the high quality of deterministic few-qubit algorithms, to more complex algorithms, that

feature error correction schemes [Ber17]. Furthermore, it is necessary to reduce the

duration of quantum logic gates [Cam10], while maintaining a high gate fidelity.

Superconducting circuits

Superconducting materials feature electric currents without resistance at cryogenic

temperatures. This effect is caused by electrons, that form Cooper pairs [Coo56; Bar57].

Cryogenic electric resonator circuits exhibit an anharmonic potential with discrete energy
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1. Motivation

levels, that can be used as qubits [Lad10]. A circuit model for a superconducting qubit

is shown in figure 1.3.

Figure 1.3.: Left: Circuit model of a superconducting qubit – the blue X denotes a
Josephson junction [Jos74]. Image taken from [Lad10]. Right: Microscope image of
a linear array of nine superconducting Xmon [Bar13] transmon qubits, which feature
individual control and measurement, as well as nearest-neighbor coupling. Image taken
from [Kel15].

Qubits are either manufactured as charge [Nak99], flux [Chi03], or phase qubits [Mar02],

depending on the choice of circuit components and the resulting potential shape. Re-

cent developments include transmon [Koc07] qubits and three-dimensional resonator

qubits [Pai11].

Qubit manipulation is accomplished via electronic radio frequency and microwave signals.

Each qubit requires electric connections, which is challenging for the scalability of the de-

vices. Superconducting qubits are analogous to chip devices and thus benefit from decades

of fabrication technique optimization. Atomic ion qubits are identical, whereas super-

conducting qubits differ from each other, due to fluctuations in the fabrication process.

State preparation and readout for superconducting qubits has been improved [Wal17] but

does not match the quality in trapped-ion systems [Har14]. Therefore, the realization of

quantum error correction schemes is aggravated for superconducting qubits.

Superconducting qubit logic gates have been advanced [Bar14] and allow for the ex-

ecution of complex quantum algorithms [Bar16]. Currently, experimental efforts are

made [Cho14; Kel15; Cór15], to implement the two-dimensional surface code quantum

error correction scheme [Fow12]. Qubit logic gates are usually carried out within tens of

nanoseconds, which is considerably faster than typical gate times in trapped ion systems.

However, this is not central to quantum computing – the number of logic gates within the

coherence time is comparable for both platforms. Superconducting qubits are more prone

to decoherence than trapped ions, due to the large number of participating conduction

6



1.3. Trapped-ion quantum computing architectures

electrons. However, technical development has continuously improved coherence times

to around one millisecond [Rea16], which is still considerably less than in trapped-ion

systems. Qubit circuits are manufactured next to each other on chips and couple either

inductively or capacitively. To operate a deterministic quantum computer, it is necessary

to have full control over inter-qubit couplings. For this purpose, tunable interactions

between qubits have been demonstrated [Nis07], but interaction between distant qubits

still remains challenging. An experimental comparison between two five-qubit quantum

computers – trapped-ion and superconducting qubits – is provided in [Lin17].

Creating photonic interconnects between distant quantum processors is much harder

than for trapped ions. A proposal for coupling of optical photons to superconducting

qubits is based on interaction with an organic molecule [Das17].

Other platforms

Pioneering experiments in quantum computing were performed with nuclear spins in

molecules, using magnetic resonance technology [Chu98; Van01]. However, this approach

is considered to be not scalable as precise control of larger molecules in liquid solutions

becomes difficult. Other viable platforms are photons, quantum dots, dopants in solids,

neutral atoms and Rydberg atoms. A comprehensive overview over these technologies

and their advantages and disadvantages is provided in [Lad10]. At the present day,

trapped ions and superconducting circuits are the most promising candidates for a

universal quantum computer, while many other experimental platforms have contributed

to the field and continue to do so.

1.3. Trapped-ion quantum computing architectures

Various architectures have been proposed and realized for quantum computation and

simulation with trapped ions. The earliest experiments were performed using one-

dimensional ion crystals [Cir95; SK03; Lei03a]. Entanglement of up to 14 has been

demonstrated, by using a common vibrational mode of an ion crystal [Mon11a]. Ad-

dressing of individual qubits is realized by tightly focused laser beams, see figure 1.4.
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1. Motivation

a) b) c)

d)

Figure 1.4.: Trapped-ion architectures for quantum computation and simulation. (a):
Sketch of a linear five-ion chain quantum processor. Qubit-selective gates are performed
with a multi-channel acousto-optic modulator, which can simultaneously address multiple
individual ions. Image taken from [Deb16]. (b): Linear ion chain quantum processor.
Qubit-selective gates are performed via spectroscopic decoupling operations of individual
ions. Image taken from [Nig14]. (c): Proposal for a quantum charge-coupled device,
where ions are shuttled between memory and processing zones. Image taken from [Kie02].
(d): Fluorescence image of a 17-ion planar ion crystal for quantum simulation of quantum
spin magnetism. Image taken from [Ber12].

For larger ion chains however, the inter-ion distances shrink and the laser beam crosstalk

to adjacent qubits significantly affects the performance of quantum logic operations.

Furthermore, individual qubit readout is challenging for larger numbers of closely posi-

tioned ions. It is thus rather likely, that a large-scale trapped-ion quantum processor will

require a reconfigurable quantum register, enabled via ion shuttling operations [Mon14;

Lek17]. This approach is discussed in detail in section 1.4.

Planar ion crystals are a promising architecture for the realization of an analog quantum

simulator [Ber12; Sch12]. They also allow for the study of structural phase transi-

tions [Kau12b; Ulm13; Mie13] and solitons [Lan14; Bro17]. Ion crystals are either

stored in three-dimensional [Pau90] or surface ion traps [Sei06]. The latter are easier

to fabricate on a microscopic scale with conventional integrated circuit manufacturing

techniques and offer high optical access for laser beams. However, the ions are stored

closer to the trap surface, which leads to pronounced anomalous heating. Due to the

deeper and less anharmonic trapping potentials, three-dimensional ion traps are better

suited for storing large ion crystals.
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1.4. Quantum CCD

1.4. Quantum CCD

A quantum charge-coupled device (QCCD) is an array of interconnected Paul traps, that

allows for shuttling operations of ions between memory zones and processing zones [Kie02].

Analogously to a CCD, charges are transported, by changing control electrode voltages,

and thus moving electrostatic potential wells. Scalability of this architecture was first

demonstrated as a realization of a programmable two-qubit quantum processor [Hom09;

Han10]. It is desirable to perform shuttling operations within a duration comparable

to logic gate operations (10 – 100 µs). The relevant timescale is given by the secular

trap frequencies, which are typically around 2π×1 MHz in the axial direction and about

2π×3 MHz in the radial direction. Any quantum register in a QCCD can be reconfigured

by three basic shuttling operations – ion transport, ion crystal separation and ion crystal

rotation, see figure 1.5.

Figure 1.5.: Three fundamental shuttling operations in a quantum QCCD. From left
to right: ion crystal rotation, ion crystal separation and ion transport operation. The
operations are performed by applying well-tailored DC supply voltages to the individual
trap electrodes.

The performance of ion shuttling operations is crucial to the operation of a QCCD, since

high-fidelity quantum gates require the ions to be close to the motional ground state.

Therefore, ion shuttling operations ought to be operated with low motional excitation.

Ions are trapped in a harmonic potential well and sudden changes of the trapping

voltages will lead to coherent excitation. Careful timing calibrations allow for fast

transport operations without significant coherent excitation [Bow12; Wal12]. The ion

crystal separation imposes additional challenges, since the trapping potential becomes

9



1. Motivation

shallow during the transition from a single well to a double well potential [Kau14]. This

operation can also be carried out with only a few motional quanta of excitation [Bow12;

Rus14]. A fast ion crystal rotation reconfigures the quantum register, such that initially

non-adjacent ions can interact. During this operation, the ions are tightly confined in

a single well potential, which allows for fast execution with negligible motional excita-

tion [Kau17a].

The architecture was originally proposed with X,T-or Y-junctions to store ions in memory

zones. However, design and fabrication of such junctions is challenging, as the radio fre-

quency potentials need to be carefully calculated and the resulting electrode geometries

are complex [Hen06; Moe11]. Shuttling operations through these junctions are harder to

control and in general lead to motional excitation of a few quanta [Bla09]. Our QCCD

is manufactured without junctions, as we can achieve comparable functionality by fast

ion crystal rotations.

The thesis is structured as follows: In chapter 2, the theoretical concepts for our

trapped-ion qubits are presented. Emphasis is laid on the laser-ion interaction, that is

used for single- and two-qubit quantum logic gates. The construction of the trapped-ion

processor is described in detail in chapter 3. It requires hardware for operation, such as

lasers and electrical supply voltages, which are described in chapter 4. In chapter 5, a

detailed theoretical analysis of fast ion crystal separation is provided. The experimental

performance of our apparatus is assessed in chapter 6. In chapter 7, the realization of

a fast and cold two-ion crystal rotation is presented. We demonstrate the capability

of our programmable QCCD in chapter 8. A quantum logic circuit is performed on a

reconfigurable four-qubit register, to create a four-ion entangled Greenberger-Horne-

Zeilinger state. In chapter 9, we turn to a different subject and present experimental

results from measurements on a static two-dimensional ion crystal. We realize sideband

cooling of a zigzag motional mode and demonstrate the application of a spin-dependent

optical dipole force on this mode, which is an important step towards an analog quantum

simulator in a two-dimensional geometry. An outlook on future experiments in our

quantum device is provided in chapter 10.

10



2
Theoretical Elements

In this chapter, the theoretical foundations for ion trap operation are summarized.

We focus on considerations, which are relevant for our particular implementation of a

quantum processor.

2.1. The 40Ca+ spin qubit

We use trapped 40Ca+ ions to store and process quantum information. In this section,

laser cooling, qubit initialization and qubit readout are described. In figure 2.1, the

relevant atomic transitions of calcium ions are sketched.

393 nm 397 nm

Ram
an

729 nm

854 nm

866 nm

6.90 ns

6.90 ns

1.20 s

1.17 s

4  S

4  P

4  P

1/2
2

1/2

3/2

2

2

3  D5/2
2

3  D3/2
2

 ∆

Figure 2.1.: Relevant atomic levels of 40Ca+. Wavy arrows indicate spontaneous decay
from the short-lived P -states and solid arrows indicate laser-driven transitions. The
spin quantum bit |0〉 , |1〉 is encoded in the ground state of the Zeeman sublevels, which
are split by around 2π×10 MHz. Qubit transitions are realized by stimulated Raman
transitions near 397 nm, which are typically detuned by ∆ ≈ −2π×3 THz.

11



2. Theoretical Elements

2.1.1. Doppler cooling

Doppler cooling of trapped ions is performed on the 2S1/2 ↔ 2P1/2 transition (hereafter

referred to as cycling transition) with laser light near 397 nm. The light is red detuned

from the atomic resonance by a few tens of MHz. In the reference frame of an ion, which

moves towards the laser source, the light is resonant. Thus, a photon is absorbed and

the ion is excited to the short-lived P1/2 state. The state decays by spontaneous photon

emission with 94% probability [Het15] to the ground state S1/2 and with 6% probability

to the metastable D3/2 state, from where it is transferred back to the P -state with laser

light near 866 nm. Emitted photons apply a recoil on the ion in all directions, whereas

the initial absorption of photons occurs in one direction and thus reduces the ion motion

in that particular direction. As a result, a net force arises, which reduces the ion motion

in one direction. Since the ion is trapped in a three-dimensional harmonic oscillator

potential, it is necessary to cool the oscillatory motion along the principal trap axes

x, y, z. This is achieved by a single laser beam, that projects on all of the axes by around

45°. Due to the stochastic nature of the absorption and emission processes, the ion

cannot cool down to zero energy. The ion motion is thus reduced to a thermal state.

For calcium ions, a Doppler cooling limit temperature of T = ~/(2kBγ) ≈ 550 µK is

calculated [Win87], where kB is the Boltzmann constant and γ = 6.9 ns is the lifetime of

the 2P1/2 state. At a motional frequency of around ω = 2π×1.5 MHz in our trap, this

temperature corresponds to a theoretical minimum mean phonon occupation number of

n̄ = 1/(e(~ω/kBT ) − 1) ≈ 7.

2.1.2. Qubit initialization

For our experiments, we initialize an ion to the |↑〉-state. This is achieved by optical

pumping with light near 397 nm and 729 nm. Pumping near 397 nm is an incoherent

process – a laser beam with σ+ polarization drives exclusively the transition |↓〉 ↔
|P1/2,mj = +1/2〉. The P -state decays into both ground states |↓〉 and |↑〉. Since no

excitation from the |↑〉-state is driven, ultimately all population from the |↓〉-state is

transferred to the |↑〉-state.

Additionally, coherent optical pumping near 729 nm is performed. A laser pulse with a

pulse area of about π is executed to drive the transition |↓〉 → |D5/2,mj = +3/2〉. In the

experiment, the optical frequency of the laser beam is calibrated to this transition with

a precision of a few kHz. To transfer the population from the metastable D-state to the

12



2.2. Segmented linear Paul trap

short-lived P3/2-state, light near 854 nm is applied. The P -state decays to the ground

states |↓〉 and |↑〉, from where only the |↓〉-state is excited by subsequent repetitions of

the scheme. Thus, the ion is initialized to the |↑〉-state.

Incoherent σ-pumping near 397 nm is simpler to implement, than coherent optical

pumping. Selectivity for the driven atomic transitions is given by the polarization of

the laser beams, which is subject to small imperfections in the experiment. Thus, the

preparation success rate for this method is typically around 98% to 99%. For coherent

optical pumping near 729 nm, selectivity is provided by the optical frequency of the

laser beam. Thus, a higher preparation success rate of >99% is typically achieved in

the experiment. However, 729 nm pumping exhibits an increased duration compared to

σ-pumping. We use a combination of both methods as a compromise between duration

and efficiency.

2.1.3. Qubit readout

To determine, whether the ion is in the qubit state |↑〉 or |↓〉, we use state-selective

electron shelving and fluorescence detection. If the ion is in the |↑〉-state, a frequency-

selective laser pulse near 729 nm will transfer it, via a robust rapid adiabatic passage

on the narrow quadrupole transition [Pos09], to the metastable D5/2-state. Specifically,

we transfer the population to the states |D5/2,mj = +5/2〉 and |D5/2,mj = −3/2〉.
Subsequently, light near 397 nm and 866 nm is applied for fluorescence detection, to

drive the cycling transition 42S1/2 ↔ 42P1/2. If no photons are scattered, the ion was

shelved to the metastable D state, thus initially in the state |↑〉. If photon scattering is

observed, the ion was initially in the state |↓〉. After the fluorescence detection, a laser

near 854 nm transfers population in the metastable D-state to a P -state, from where it

decays to the S-state. Readout is performed by collecting fluorescence light for about

0.7 ms and a state discrimination rate above 99% is achieved.

2.2. Segmented linear Paul trap

We trap single 40Ca+ ions in a segmented linear Paul trap [Pau90] in three dimensions

x, y, z by applying direct current (DC) and radio frequency (RF) electric fields. The RF

field generates a rapidly oscillating quadrupole field, that provides confinement in the

radial directions, whereas the DC field provides confinement along the trap axis.

13



2. Theoretical Elements

A sketch of the ion trap geometry, which we use in our experiments, is shown in figure 2.2.

Figure 2.2.: Sketch of a segmented linear Paul trap and a single ion, which is located in
the center of the trap. Red electrodes are supplied with DC voltage for axial confinement,
blue electrodes with RF voltage for radial confinement and yellow electrodes are on
ground potential.

2.2.1. Ion motion

In the following, we consider the motion along the axial x-direction of a single trapped

ion – the other directions can be treated analogously. The potential energy for a single

ion is given by

V (x, t) =
1

2
mW (t)x2 (2.1)

with the ion mass m and the ion position x. The ion is trapped in a harmonic oscillator

potential with time-dependent curvature

W (t) =
Ω2
RF

4
[ax + 2qxcos(ΩRF t)] (2.2)

where ΩRF is the frequency of the applied radio frequency electric field. The dimensionless

parameters a, q for a singly charged ion are given by [Pau90]

ax =
4|e|αUDC
mΩ2

RF

, qx =
2|e|α′URF
mΩ2

RF

(2.3)
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2.2. Segmented linear Paul trap

where e is the elementary charge, UDC is the applied static voltage, URF is the radio

frequency voltage and α, α′ are geometry parameters of the ion trap.

The ion position along the x-axis is given for (|ax|, q2
x � 1) by

x(t) ≈ 2AC0cos

(
βx

ΩRF

2
t

)[
1− qx

2
cos(ΩRF t)

]
(2.4)

with βx ≈
√
ax + q2

x/2, where A is an arbitrary constant and C0 is a real coefficient

from a series expansion, see [Lei03b] for details. The ion motion is comprised of a

harmonic oscillation at the frequency ωx = βxΩRF /2 � ΩRF and a fast oscillation

at the trap drive frequency ΩRF , which is denoted as micromotion. This motion is

enhanced, if the ion is displaced from the node of the RF quadrupole field. Excess

micromotion is undesirable in the experiment, since it impairs operations such as coherent

laser manipulations. We compensate for the micromotion by displacing the ion with

compensation electrodes and minimizing the ion fluorescence on the Doppler cooling

transition, for details see [Pos10a].

2.2.2. Ion trap potentials

The ion trap, which is presented in this thesis, is typically operated at an axial electrode

voltage of −6 V. This results in a depth of the trapping potential of around 1.1 eV. The

mean kinetic energy of laser-cooled trapped ions is four to five orders of magnitude

lower, thus the ions are strongly confined in the trapping potential. The trap features 32

individual segment pairs, which are equally spaced along the x-direction – the calculated

electric potentials are shown in figure 2.3 and the technical details of the ion trap are

provided in chapter 3.

The electrostatic force feed-through between adjacent segments is high. In the minimum

of a single potential well, the slope of an adjacent potential well is almost maximum,

which is beneficial for transport operations. The total axial potential is given by

Φ(x) =
∑
i

ViΦi(x), (2.5)

where Vi is the voltage at electrode pair i and Φi(x) is the potential, which corresponds to

this electrode pair. Each minimum of the total axial potential constitutes an individual
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2. Theoretical Elements

ion trap. The trap frequency of a potential minimum is given by ω =
√

e
mΦ′′(xmin),

where xmin is the potential minimum position.
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Figure 2.3.: Calculated electrostatic potentials of our ion trap. Left: Axial potential wells
of the 32 individual Paul traps along the x-direction of the ion trap. In order to calculate
the individual axial potential wells, all electrodes are set to ground potential, except
for a pair of two opposing DC electrodes, which are set to −1 V. Right: A single ion
is located in the center of the static radial potential. Darker colors indicate a higher
potential. For this calculation a static voltage is applied to all RF electrodes, which
are located along the z-direction. The DC electrodes – located along the y-direction
– are set to ground potential. Since the trap geometry in the radial direction is not
symmetric, the confinement in the z-direction is stronger, compared to the y-direction.
The numerical calculation of the electrostatic potentials is performed with a boundary
element method [Sin10].

2.2.3. Ion crystals

We extend the single-ion description to N ions, trapped in the same harmonic potential.

The ions n = 1, ..., N repel each other due to the Coulomb force and form ion crys-

tals [Jam98; Enz00; Mar03]. A fluorescence image of a six-ion crystal, which is located

in our trap, is shown in figure 2.4.

The effective potential for singly charged ions of identical mass is given by

V =
m

2

N∑
n=1

∑
i=x,y,z

ω2
i x

2
n,i +

e2

8πε0

N∑
n,m=1
m 6=n

 ∑
i=x,y,z

(xn,i − xm,i)2

− 1
2

(2.6)

where xn,i denotes the position of each ion and ε0 is the vacuum permittivity. For small

displacements from the equilibrium position, the dimensionless equilibrium positions
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2.2. Segmented linear Paul trap

Figure 2.4.: Fluorescence image of a six-ion crystal in our trap. The distance between the
ions is around 12 µm and the axial confinement is 2π×0.15 MHz

of the ions un,i = x̄n,i/l, with l = [e2/(4πε0mωx)]1/3, are obtained by solving the

equation [Jam98]

(
ωi
ωx

)2

un,i +
N∑

m=1
m 6=n

um,i − un,i[
3∑
i=1

(un,i − um,i)2

]3/2
= 0 (2.7)

The equation can be solved analytically for N = 2 and N = 3 in one dimension.

Since the ions are trapped in a common harmonic potential and coupled via the Coulomb

force, common motional modes of the ions ωi arise. Expanding equation 2.6 around the

equilibrium positions to second order and neglecting the constant term yields

V ≈ 1

2l2

3N∑
s,t

q′sq
′
tDs,t . (2.8)

where D is the 3N × 3N Hessian matrix of V and q′iN+n = qn,i ≈ xn,i − x̄n,i are the

displacements from the equilibrium positions x̄n,i. Equation 2.8 is now in the form of a

harmonic oscillator potential with eigenfrequencies

ωr = ωx
√
µr with r = (1, ..., 3N) (2.9)

where µr are the eigenvalues of the Hessian matrix D [Mar03]. The relevant two-ion

modes, for the experiments performed in this thesis, are shown in figure 2.5. Ion crystals

align in a chain along the direction of the weakest confinement, which is usually the

trap axis x. If the ratio of axial to radial confinement is increased, linear ion crystals

undergo the phase transition to a zigzag ion crystal. A detailed study of the equilibrium

positions and motional modes of these crystals is provided in [Kau12a; Kau12b]. In

chapter 9 of this thesis, the realization of a spin-dependent force on a three-ion zigzag

crystal is presented.
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axial modes

c.o.m. mode

breathing mode

radial modes

c.o.m. mode

rocking mode

Figure 2.5.: Common motional modes of a two-ion crystal. The motional frequency
of the axial breathing mode is

√
3 · ωx, where ωx is the axial secular frequency, that

corresponds to the center-of-mass mode. The rocking mode frequencies are
√
ω2
r − ω2

x,
where ωr = ωy,z is one of the radial secular frequencies.

2.3. Light-motion coupling

In the following, quantization of the ion motion is used to describe the coupling to a light

field. The ion motion in the one-dimensional harmonic oscillator potential along the

x-direction, from equation 2.1, is described in the Heisenberg picture by the Hamilton

operator

Ĥm = ~ωx(â†â+ 1/2) (2.10)

with the ladder operators â† and â, that act on the eigenstates |n〉 of the harmonic

oscillator at frequency ωx. The position operator is given in this picture by x̂ =√
~/(2mωx)(â† + â).

We treat the ion as a two-level system for the light-matter interaction following [Lei03b].

The ground state |g〉 and the excited state |e〉 are separated by the energy ~ω0 =

~(ωe − ωg). The Hamiltonian, which describes this system is given by

Ĥe = ~(ωg |g〉 〈g|+ ωe |e〉 〈e|) = ~
ω0

2
σz, (2.11)

where σz is the Pauli z-matrix. A single ion, coupling to a running wave light field, is

described by the total Hamiltonian

Ĥ = Ĥm + Ĥe + Ĥi. (2.12)

The interaction Hamiltonian is given by

Ĥi =
~
2

Ω(σ+ + σ−)[ei(kx̂−ωt+φ) + e−i(kx̂−ωt+φ)], (2.13)
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2.3. Light-motion coupling

where |g〉 〈e| = σ− = 1/2(σx − iσy) and |e〉 〈g| = σ+ = 1/2(σx + iσy), Ω is the resonant

Rabi frequency, k is the wave number, ω is the effective light frequency and φ is the

phase of the light field.

The Lamb-Dicke parameter is defined as η = kx0 = k
√
~/(2mωx). It is the product of

the extension of the ground state wave function and the wave number of the driving

laser field – a large η results in a strong coupling of the ion motion to the driving laser

field. We now consider ions, which are near the motional ground state – that is in

the Lamb-Dicke regime, where η � 1 and the mean phonon occupation number n̄ is small.

The Hamiltonian from equation 2.13 is transformed to the interaction picture with

respect to the free Hamiltonian Ĥm + Ĥe. Subsequently, a rotating wave approximation

and an expansion to the lowest order in η are applied. Finally, the Hamiltonian takes

the following form in the Lamb-Dicke regime [Lei03b]:

Ĥ
(LD)
i =

~
2

Ω0σ+[1 + iη(âe−iωxt + â†eiωxt)]ei(φ−δt) + h.c., (2.14)

where Ω0 is the bare Rabi frequency and δ = ω− ω0 is the detuning of the effective light

frequency to the atomic transition. Three important transitions between atomic levels

are described by this Hamiltonian:

• carrier transitions for δ = 0 of the type |n〉 |g〉 ↔ |n〉 |e〉 with Rabi frequency Ω0

are used for spin flips.

• red sideband transitions for δ = −ωx of the type |n〉 |g〉 ↔ |n− 1〉 |e〉 with Rabi

frequency Ωn,n−1 ≈ Ω0η
√
n are used for resolved sideband cooling.

• blue sideband transitions for δ = +ωx of the type |n〉 |g〉 ↔ |n+ 1〉 |e〉 with Rabi

frequency Ωn,n+1 ≈ Ω0η
√
n+ 1 are used for spectroscopic measurements.

Beyond the Lamb-Dicke regime, the Rabi frequencies for the transitions are given by

Ωn,n+∆n = Ωn+∆n,n = Ω0e
−η2/2η|∆n|

√
n<!

n>!
L|∆n|n<

(η2), (2.15)

where L is the generalized Laguerre polynomial [Lei03b] and n< is the lesser of n+ ∆n

and n.
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2.4. Stimulated Raman transitions

We use two laser beams near 397 nm to drive transitions between the qubit states |↑〉
and |↓〉, via two-photon stimulated Raman transitions [Mon95b] – the scheme is sketched

in figure 2.6.
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 ∆

Figure 2.6.: Scheme of stimulated Raman transitions in 40Ca+ ions. The secular frequencies
are not shown here – the detuning δ can be tuned to −ωx, for instance, to adress the
first red sideband. Typically, coupling of the individual laser beams via electric dipole
transitions is considered [Win98].

The beams have the optical frequencies ωL1 and ωL2, respectively. The effective wave

vector, that couples to the internal states of the ion, is the difference of the individual

laser beam wave vectors k ≡ k1 − k2. The effective detuning δ from the transition

|↑〉 ↔ |↓〉 is given by ω0 + δ = ωL1 − ωL2. Both beams are detuned from the cycling

transition by a single photon detuning ∆, which is typically more than four orders of

magnitude larger than its natural linewidth of about 2π×22 MHz. The effective coupling

strength between the states |↑〉 and |↓〉 is then given by [Lei03b]

(~/2)Ω = −~ |ΩL1ΩL2|
∆

e−i∆φ, (2.16)

with the dipolar Rabi frequencies ΩL1 and ΩL2, that pertain to resonant driving of the

cycling transition for each of the two beams. The phase ∆φ corresponds to the difference

phase between the two laser beams.
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2.5. Entangling quantum gate

2.5. Entangling quantum gate

In order to create entanglement between the spins of two trapped ions, we employ a

geometric phase gate – specifically the light-shift gate [Lei03a]. The explanation of the

gate mechanism in the following is based on [Lee05; Roo08].

2.5.1. Forced harmonic oscillator

We consider a single ion harmonic oscillator at frequency ωx, which is driven by a force

at frequency ωf and coupling strength Ω, and we neglect the two-level structure of

the trapped ion qubit. The Hamiltonian describing this system has the form Ĥ =

Ĥm + Ĥi = ~ωx(â†â+ 1/2) + ~Ωi(â†eiωf t − âe−iωf t), where we neglect the wave vector

and the phase of the driving laser field. In the interaction picture, with respect to Ĥm,

the Hamiltonian takes the form

Ĥint = ~Ωi(â†eiδf t − âe−iδf t), (2.17)

with δf = ωf − ωx and where |δf | � ωx. If the interaction Hamiltonian is applied for a

time t, a displacement operator is realized

D̂(α) = eαâ
†−α∗â, (2.18)

where α(t) =
∫ t

0 dt
′Ωeiδf t

′
. The operator translates motional states in position-momentum

phase space without distortion. It acts on the motional ground state by creating a

coherent state ˆD(α) |0〉 = |α〉 = e−1/2|α|2∑∞
n=0

αn
√
n!
|n〉, where |n〉 are Fock states of the

harmonic oscillator.

After an interaction time t with the driving force, the time evolution operator is given

by

Û(t) = eiΦ(t)D̂(α(t)) with Φ(t) = Im

(∫ t

0
dα(t′)α(t′)∗

)
, (2.19)

where an integration over infinitesimal displacements in time and the Baker-Campbell-

Hausdorff relation D̂(α)D̂(β) = D̂(α + β)eiIm(αβ∗) were used [Lee05; Roo08]. The
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geometric phase Φ is accumulated over the entire path in phase space and the following

relations are obtained for the displacement and the geometric phase

α(t) = i
Ω

δf
(1− eiδf t) and Φ(t) =

(
Ω

δf

)2

(δf t− sin(δf t)). (2.20)

After an interaction time τ = 2πK/|δf |, where K is an integer, K loops in phase space

are closed (α(τ) = 0) and the initial motional state is retained. However, a phase of

Φ(τ) = 2πK
(

Ω
δf

)2
sign(δf ) is imprinted on the state. Entanglement between the spins

of two ions can be created by making this phase spin-state dependent, as explained in

the following section.

2.5.2. The σz ⊗ σz gate on two ions

In order to create entanglement, we trap two ions in a potential well and apply a

harmonic driving force with two superposed laser beams, as shown in figure 2.7. The

beams form a beat pattern with the frequency ωL ≡ ωL1 − ωL2 and the effective wave

vector k ≡ cos(Θ)(kL1 − kL2) in the radial z-direction. An AC Stark shift is exerted on

the spin states |↑〉 , |↓〉, which depends on the polarization of the light and is different

for each state [Sch16]. This corresponds to a spin-dependent displacement force [Mon96;

Lei03a]. The beat pattern is essentially a moving periodic spin-dependent potential,

which gives rise to a near-resonant force on both ions in the radial direction. The beat

pattern is moving, since the two laser beams are detuned. This system can be treated

similarly to the forced harmonic oscillator, where only a single ion is considered, see

section 2.5.1. By extending equation 2.17, the resulting Hamiltonian describing the

interaction is then

Ĥint = ~Ωi(â†eiδf t − âe−iδf t)(σ̂z ⊗ I + I⊗ σ̂z) (2.21)

where I is the 2× 2 identity matrix, and unimportant global and single qubit phases are

disregarded. In our case, the detuning is δf = ωL − ωz, with the radial c.o.m. mode ωz

of the two ions, which is used as a bus mode for the gate. Excitation of other radial

modes can be ignored in first order, as they are sufficiently separated in frequency space.
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Figure 2.7.: Raman laser beam configuration for the light shift gate on a radial secular mode.
Left: Top-view of two ions in the trap. Two laser beams L1 (horizontal polarization)
and L2 (vertical polarization) are focused on the ions. A polarization standing wave
is formed, which is perpendicular to the trap axis (x-direction). Blue stripes indicate
zones of σ+-polarized light and white areas indicate zones of σ−-polarized light. The
effective wave vector of this wave is given by kL = kL2 − kL2. Right: View from the
x-direction on the ions and the polarization standing wave. One ion is opaque for better
visibility. The radial trap axis z forms an angle Θ with the effective wave vector. Thus,
the effective wave vector, for the coupling to the gate mode ωz, is reduced by cos(Θ). Due
to the linear ⊥ linear polarization configuration of the beams, the resulting polarization
is space-dependent [Cou92; Sch16]. Specifically, it varies from σ− to linear to σ+. The
circular components give rise to a Stark shift, which depends on the spin state. In the
lower panel, the resulting energy shift to the spin states is sketched. As a result, a space-
and spin-dependent potential is formed.

The relative ion distance d, in the moving periodic potential, corresponds to the Raman

phase difference between the ions and determines which of the four spin states are driven

by the near resonant force [Bal14]. If the distance is chosen to be k ·d = π+n2π, where

n = 0,±1,±2, ..., only the states |↓↑〉 , |↑↓〉 are driven by the force for maximum gate

efficiency.

Two ions, which are initialized to the state |↑, ↓〉 |n = 0, n = 0〉, are driven along a closed

circle in phase space, when exposed to the gate laser pulse for duration τ = 2π/|δf |.
Spin and motion of each individual ion are entangled during the phase space trajectory,

but separable once the loop is closed. After the closed trajectory in phase space, the two

ions are in the separable state e−iΦ(τ) |↑↓〉 |n = 0, n = 0〉. The laser intensities, the gate

23



2. Theoretical Elements

detuning and the beam polarizations can be adjusted, such that the geometric phase is

Φ(τ) = −π/2. In this situation, the time evolution operator is given by

Û(τ) = Ĝ ≡


1

i

i

1

 . (2.22)

This phase gate can be used in combination with single-qubit rotations [Nie00] to produce

a maximally entangled Bell state 1/
√

2(|↑↑〉+i |↓↓〉), which is demonstrated in section 8.4.

In the experiment, the gate operator will feature a global phase, which does not play

a role, as long as the phase difference between the states |↑↑〉 , |↓↓〉 and |↓↑〉 , |↑↓〉 is ±π/2.
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Ion Trap

The centerpiece of cold ion experiments is the ion trap, which needs to meet stringent

design requirements. Within the scope of the work leading to this thesis, a micro-

structured ion trap was designed, manufactured, characterized and used to conduct

state-of-the-art quantum information processing experiments. The goal was to produce

a trap, that features low motional heating and good optical access and allows for fast

ion shuttling operations. In this chapter, the design of the trap and the filter board as

well as the fabrication and the ultra high vacuum assembly procedure of these parts are

described. The entire trap is displayed in figure 3.1 – it is an advancement of a former

version of a microchip ion trap [Sch07; Sch09] with significantly improved performance.

Figure 3.1.: Technical drawing of the linear segmented micro-structured ion trap. The
trap consists of three layers, which are mounted by two titanium screws. The outside
dimensions of the trap are around 15 mm x 15 mm.
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3. Ion Trap

3.1. Micro-structured ion trap design

Three-dimensional segmented Paul traps typically consist of two chips with a conducting

coating, which constitute the trap electrodes and feature a slit that defines the center of

the trap. The two trap chips are separated by an insulating spacer layer. A close-up

view of the trapping region of our ion trap is shown in figure 3.2.

Figure 3.2.: Close-up view of the trapping region of the segmented ion trap showing all 32
trapping zones. The gold-colored electrodes, are individually supplied with programmable
voltage waveforms. Between the electrodes, 50 µm wide white isolation trenches are
located. The RF electrodes are colored blue in this drawing for clarity. They are
segmented in the same fashion to make the trap geometry symmetric. The effective trap
dimensions are initially chosen to be h = 400 µm, d = 254 µm and w = 150 µm. After an
electroplating procedure, the thickness of all gold surfaces is increased by around 8 µm.
Therefore, the trap dimensions are changed to h = 384 µm and w = 166 µm. Another
DC electrode array, identical to the electrode array on the bottom, resides behind the
blue top RF electrode. Ions are trapped in the center of the trap slit and are transported
between individual electrodes.

The trap features 32 independent DC electrodes, which are supplied from a fast mul-

tichannel arbitrary waveform generator, thus enabling fast ion transports along the

trap axis. The geometry parameters are chosen to facilitate separation and merging

operations for ion crystals, see section 5.2. The overall dimensions result from a trade-off

between small dimensions for large electric fields for tight confinement and fast shuttling,

and large dimensions for sufficient optical access. Thus, a trap slit of h = 400 µm is

chosen as well as a thickness of d = 254 µm for the spacer between the trap chips. The

width of the electrodes was chosen to be w = 150 µm as this maximizes the quartic
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3.2. Ion trap fabrication

confinement during a separation operation and also features a sufficiently high trap

frequency [Kau14].

The trap slit is elongated to 12.84 mm to suppress axial micromotion. The isolation

trenches between all gold surfaces are at least 50 µm wide, since about 8 µm of gold are

added to the thickness of the gold layers in a consecutive electroplating process. A thick

gold layer is empirically known to reduce anomalous heating of the ions for comparable

traps [Bla10; Kie15].

Two screws ensure a precise and sturdy assembly of the trap chips. Similar ion traps

were assembled in our research group with glue. However, this comes with the disadvan-

tage of potential outgassing, which could lead to increased overall background pressure

in the UHV apparatus, increases local pressure in the back volume, and undesired

contamination of the trap surfaces. Furthermore, the glue does not allow for minor

corrections of the trap chip alignment once it has become solid.

3.2. Ion trap fabrication

The ion trap was fabricated in cooperation with Christian Schmiegelow1 (mainly respon-

sible for electroplating and trap chip cutting) and Marco Dillmann2 (filter board design)

and Max Hettrich2 (wire bonding). The main parts of the ion trap are two gold-coated

alumina chips, which form the trap electrodes, see figure 3.3. The manufacturing process

of these chips consists of five steps. In the first step, the chips are laser machined – cuts

which penetrate the wafer are carried out, for instance the trap slit. In the second step,

the chips are coated with gold in an evaporation process. Since all electrodes are shorted

after this step, in the third step a further laser machining run removes gold, such that a

set of electrically isolated electrodes is obtained. On the outer edge of the chips, the

electrodes are still connected, which is necessary for the fourth step: an electroplating

procedure creates a thick gold layer on top of the first rather thin gold layer. In a last

step, the chips are diced along their sides in order to isolate all electrodes. This section

contains a description of the five steps in the manufacturing process of the trap chips.

1Present address: LIAF - Laboratorio de Iones y Atomos Frios, Departamento de Fisica & Instituto de
Fisica de Buenos Aires, 1428 Buenos Aires, Argentina

2Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany

27



3. Ion Trap

Figure 3.3.: Top (left) and bottom (right) chip of the ion trap. All electrodes are labeled, the
acronym ’Scr.’ denotes the 1.3 mm wide holes for the two titanium screws. Additionally,
for micromotion compensation in the direction of the DC electrodes, the electrodes RF
compN and RF compS feature compensation in the direction of the RF electrodes. The
back side of each chip is symmetric with respect to its front side. After the electroplating
procedure, the chips are cut along the blue lines in order to isolate the conducting surfaces.

First step – laser machining: The trap chips are made from 5.08 cm x 5.08 cm

polished alumina wafers3 (aluminum oxide, Al2O3) of 127 µm thickness. A femtosecond

laser is capable of cutting well defined structures in this material with a precision of a few

µm – the process is executed by a specialized company4. The dimensions of the wafers

allow for placing eight trap chips on a single wafer, which allows for a better handling of

the fragile trap chips and a production of several identical chips within one fabrication

run for a selection of the best samples. The laser machining and gold evaporation process

are carried out on all chips on the same wafer. In the first laser machining step, all

cuts which penetrate the chip are laser machined: the trap slit, including the segmented

electrode geometry, as well as the holes for the vertical interconnect accesses (VIAs).

The trap electrodes are cut from only one side with the ablation laser, which results in

a slightly conical shape. Thus, the sharp well-defined edges are the sides of the trap

chips which face the ions in the assembled trap.

3Coors ADS996-polished / Al2O3 99,6%
4Micreon GmbH, Garbsener Landstraße 10, 30419 Hannover, Germany
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3.2. Ion trap fabrication

After the laser machining, the wafers experience a thorough cleaning procedure to ensure

a perfectly clean surface for the subsequent gold coating. At first, the wafers are cleaned

in an ultra sonic bath at 40 ◦C of isopropyl alcohol (C3H8O, purity grade ≥ 99.8%)

and afterwards rinsed with de-ionized water. A successive cleaning with the aggressive

piranha solution removes organic, reactive and many other materials from the alumina

wafers. The piranha solution is made by slowly adding one part of hydrogen peroxide

(H2O2, 30% dilution) to four parts of concentrated sulfuric acid (98% H2SO4). After a

waiting period of 30 minutes, which serves to cool from the exothermic mixing procedure,

the wafers are slowly dipped into the solution. The submerging needs to be carried out

slowly to prevent damage to the thin alumina wafers from a thermal shock. The wafers

spend ten minutes in the piranha solution and are then submerged in de-ionized water

(purity grade: lab grade) and ultimately in isopropyl alcohol (purity grade ≥ 99.8%).

After this wet cleaning procedure, the wafers are dried for at least one hour, suspended

inside a beaker and covered by aluminum foil to prevent contamination. Subsequently,

the wafers are packaged and prepared for the gold coating process.

Second step – gold coating: In the next step, the wafers are coated by an electron

beam physical vapor deposition procedure with an adhesive titanium layer of 50 nm,

followed by a 500 nm layer of gold to create an inert conducting surface. The process

is performed at the university of Ulm5. In the procedure, the wafers are rotated and

turned to ensure a homogenous coating around corners and edges. One example of the

wafers after this fabrication step is shown in figure 3.4.

Figure 3.4.: Microscope image of the trapping region after gold coating. Small grains of
gold are visible. From a distance, the wafers resemble a mirror-like surface.

5Universität Ulm, Institut für Optoelektronik, Albert-Einstein-Allee 45, 89081 Ulm. Contact person:
Rudolf Rösch
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3. Ion Trap

Third step – isolating the electrodes: The gold-coated wafers experience a second

run of laser machining at a specialized company6 similar to the first step. Here, the

deposited gold is removed precisely along tracks to provide isolation and thus creating

the trap electrodes. Finally, the individual trap chips are removed from the wafer –

one of the chips is shown in figure 3.5. On the outside of the chips, all electrodes are

connected to allow for the subsequent electroplating procedure. On the top chip, we

leave 1 mm excess material on the outside and on the bottom chip, we leave 0.5 mm

excess material.

Figure 3.5.: Left: Photograph of a gold-coated ion trap chip after the second laser
machining run. On the outside of the chip all electrodes are still electrically connected
for the subsequent electroplating procedure. Right: Microscope image of the trapping
region. The exposed alumina between the electrodes serves as electrical isolation.

Fourth step – electroplating: In this procedure, the 500 nm gold layer on the chip

surface is increased with an electrochemical deposition technique to around 8 µm. After

the last, step all electrodes on the chip are still electrically connected, thus only one

electrical connection per chip is required to set all electrodes on the same electrical

potential for the procedure.

The electroplating procedure was carried out similarly to [Bla10]. The solution, which

was used for the gold deposition, is a sulphite-based gold bath7. Before the electroplating,

the chips are cleaned in an ultra sonic bath of isopropyl alcohol (purity ≥ 99.8%) at

40 ◦C for 15 minutes. The basic principle of the electroplating procedure is to place

the trap chip in the gold bath next to a platinum8 electrode. This electrode is set to a

positive voltage and acts as the anode, whereas the trap chip is wired to ground and

acts as a cathode. Gold is then deposited on the cathode and increases the surface

6Micreon GmbH, Garbsener Landstraße 10, 30419 Hannover, Germany
7Gold-SF-bath, Metakem GmbH, Achtzehnmorgenweg 3, 61250 Usingen, Germany
8beaker glass anodes - platinized titanium 0.5l, Metakem GmbH
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3.2. Ion trap fabrication

thickness of the original layer. The ideal current density on the surface is specified to

be 10 mA/cm2, which results in a deposition rate of 38 µm per hour. The setup for the

electroplating process is shown in figure 3.6.

Figure 3.6.: Left: Setup for the electroplating procedure. The gold bath, a platinum
anode, a manual stirring rod and a magnetic stirrer reside in a 500 ml beaker. The trap
chip is submerged in the gold bath for electroplating. A current supply is connected
to the anode and the cathode. Right: The screw holes, which are used for assembling
the multi-layered trap, serve as an electrical connection for a single trap chip during the
electroplating procedure. The screw, which connects the thin metal sheet to the trap
chip, is a conventional stainless steel M1.2 screw. Between the metal sheet and the trap
chip, as well as on top of the metal sheet, a stainless steel nut is placed. The contact
between the metal sheet and the conducting wire is established similarly – the wire is
tightened between two M1.2 nuts. Tightening of the screws is executed by hand without
a defined torque.

The voltage drop between cathode and anode as well as the current are monitored

with two multimeters. The heat plate is used stabilize the gold bath at 60 ◦C and the

magnetic stirrer is set to 600 rpm. Before placing the trap chip into the gold bath, the

anode is set to −0.1 V to prevent detrimental effects on the surface quality from an

uncontrolled start of the process. Once the trap chip is submerged in the gold bath, the

anode is switched to a positive voltage and ramped to +0.6 V. It is stabilized at this

setting, by the constant voltage mode of the power supply, throughout the process. In

test procedures for the electroplating process it was found, that stabilizing the voltage

– rather than the current – yields a satisfying result. In principle, the current should
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3. Ion Trap

be stabilized to reach the ideal current density of 10 mA/cm2, however this relies on

having precise knowledge of the surface that is being electroplated. Since the trap chip

is contacted by a wire, a metal sheet, a screw and nuts, calculating the precise surface

resulted in a current density which deviated from the expected value by 20% to 50%. The

voltage is a monotonous function of the applied current and thus a working procedure

was found where the voltage is stabilized and the current density is monitored, to be in

the region of the expected value. The trap surface, which is electroplated, is 4.5 cm2 and

the contacting chip holder and wire has a combined surface of around 1.5 cm2. Thus,

the current is monitored to be around 60 mA to reach the ideal current density.

The chips spend about 15 minutes in the gold bath, which results in a layer thickness of

about 8 µm. The process is paused several times for an inspection of the chips, where the

chips are removed from the solution. There is no evidence that this might be detrimental

to the surface quality. During the process, a manual stirring rod is used in addition to

the magnetic stirrer, in order to enhance the mixing of the solution and to prevent a well

defined flow of the gold particles. Once the desired layer thickness is reached, the current

is turned off and the chips are taken out of the gold bath. After the electroplating

process, the trap chips are cleaned in de-ionized water, isopropyl alcohol (purity ≥
99.8%) and acetone (C3H6O). A fully coated trap chip is shown in figure 3.7.

Figure 3.7.: Left: Photograph of an electroplated trap chip. The surface is slightly less
reflective than after the initial gold evaporation. In the bottom corner, the surface shows
traces of the electrical contact during the procedure. Right: Microscope image of a region
with and without electroplating. The top region was contacted during the deposition
process and the gold layer is thus about 8 µm thicker than the region at the bottom, which
only features the evaporated gold layer. The two regions are separated by an isolation
trench.
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3.2. Ion trap fabrication

During the electroplating process, small nuggets of gold are observed in the gold bath.

For future procedures it is thus advisable to filter the solution. It will also be helpful to

put the beaker, that contains the gold bath in a larger beaker which contains tap water

and is already heated to 60 ◦C. This heat bath setup ensures a quicker heating process

and a more stable temperature for the gold bath. Furthermore, for a more accurate

voltage and current control during the electro plating procedure, the surface of the wires,

which hold the trap chips in the solution, should be accounted for in the calculation.

Fifth step – cutting off the trap chips: After the trap chips are electroplated, they

need to be diced along the blue lines in figure 3.3 to isolate the electrodes. The trap

chips are cut individually with a dicing saw. To prepare the trap chips for the cutting

procedure, they are glued to the surface of a 5 cm x 5 cm x 1 cm slab of plastic with a

special wax9, which can be completely dissolved in acetone later on. It is advisable to

apply a thin bubble-free layer of wax between the trap chip and the plastic slab – we

inspect the wax layer by eye and do not observe bubbles. The plastic slab is then sturdily

mounted in the diamond wire saw10. The saw wire has a thickness of 220 µm and a

diamond grain size of 40 µm. It moves up and down along the trap chip surface and cuts

through the alumina wafer along the desired lines. The wire changes its direction every

5 s and the velocity of the wire is estimated to be around 2 m/s. The precision of the

cuts is sufficient, it is measured to be around 200 µm since the sawing was guided by eye.

However, the described cutting procedure causes a complication which is illustrated in

figure 3.8.

Figure 3.8.: Microscope image of a sawed off edge of a trap chip. The cutting wire is
moved along the surface along the horizontal direction to cut through the alumina. As a
side effect, the movement drags gold from the soft gold surface into the isolation trench
between the electrodes.

9Crystalbond� Type 509
10model 3500, Diamond WireTec GmbH & Co.KG, Südliche Bergstraße 14, 69469 Weinheim, Germany

33



3. Ion Trap

Gold from the surface is dragged into the isolation trenches and needs to be removed in

a subsequent filing procedure, to prevent short-cuts between the electrodes. The trap

chip is glued on the plastic slab, with both cut-off sides coinciding with the edges of the

plastic slab. The slab is clamped to a simple holder and mounted under a 45° angle with

respect to the table. We then file across the cut-off side carefully with diamond-coated

paper11 in parallel to the table. An inspection under the microscope reveals that using

this procedure the gold in the isolation trenches is reliably removed.

The trap chips are then removed from the plastic slab, by dissolving the wax in acetone

and afterwards thoroughly cleaned in de-ionized water (evaporation residue < 1 ppm,

total organic carbon < 10 ppb) and isopropyl alcohol (purity ≥ 99.8%) in an ultra sonic

bath. This step finalizes the fabrication of the ion trap chips, which are then ready for

assembly.

3.3. Filter board

The voltage supply for each DC electrode is filtered in two steps to reduce electrical

noise near the trapped ions. The DC voltage is first filtered by an external low-pass

filter outside the vacuum chamber, which has a cutoff frequency of around 2π×50 kHz,

as described in section 4.1. A second step of filtering is done inside the vacuum chamber

close to the ion trap. It serves mostly to suppress the pick-up of the RF supply at

a frequency of 2π×33 MHz. This second filter is a simple RC low-pass filter with a

cutoff frequency of fc = 2π×8 MHz. Since each of the 32 DC electrode pairs needs to

be equipped with a filter, a total amount of 64 low-pass filters is assembled close to

the trap. This is achieved by arranging the electronic components around the trap on

a filter board as depicted in figure 3.9. The board is made of alumina and features a

laser machined opening in the center for the placement of the ion trap. The conducting

tracks are printed and sintered on the alumina12.

11polishing sheets for optical fibers
12fabricated at the Technische Universität Dresden: Fakultät Elektrotechnik und Informationstechnik.

Institut für Aufbau und Verbindungstechnik der Elektronik. Contact person: Marco Luniak
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3.3. Filter board

Figure 3.9.: Photograph of the filter board with the ion trap mounted in its center and
labels for all relevant electrodes. The outer dimensions of the board are 79.9 mm x
78.3 mm x 630 µm. Each of the four DC track arrays, which encompasses 16 individual
lines, is wired to a D-sub connection, that is mounted to the vacuum flange in the final
assembly. The RF electrodes of the top chip RFtop and the bottom chip RFbottom are
wired individually with cables of the exact same length – the wires are visible in the
very left of the image. On the right side of the filter board, a similar wire is used to
supply a large ground plane, which covers almost the entire backside of the filter board.
VIAs are fabricated to supply ground potential for the capacitances from this backside
ground plane – three VIAs are fabricated next to each other, close to the capacitances.
Next to the VIAs, a small square is placed – it provides the option to supply ground
potential to the electrodes RF compS and RF compN. However, we opted for supplying
these electrodes with individual wires. In the RF compS conducting track, a narrowing is
fabricated, which can absorb excess solder if the connection to the adjacent square were
chosen to be soldered. In the top region of the image, a gold pad is placed, which is used
for practicing of the wire bonding procedure.
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A printed resistance of 10 Ω and 2 nF row capacitors13 form the low-pass filter. The row

capacitors are connected to a ground electrode on the filter board with reflow soldering.

Wire bonding is later used to connect the gold surface of the row capacitors to the gold

surface on the ion trap. In order to simplify the wire bonding from the DC lines to the

row capacitors, the end of the DC conducting tracks feature small gold pads, where the

gold wire forms a durable connection to the gold surface.

3.4. Vacuum assembly

In this section, the assembly of the trap chips and the filter board is described as well

as the attachment of the filter board to the vacuum flange. The arrangement for the

trap chips is shown in figure 3.10, a cross section is provided in figure 3.11.

In a first step, the trap chips are assembled on the support layer using two titanium M1

screws14 with a thread diameter of 1 mm and a screw head diameter of 2.2 mm. Titanium

is chosen because magnetizable materials are to be avoided close to the magnetically

sensitive trapped ions. The screws are countered by titanium nuts15, which are placed

in a trench below the setup, such that they cannot move. The trench is part of a trap

assembly tool, which assists in the assembly and wire bonding procedure, see appendix D.

An earlier test procedure revealed, that the fragile chips can withstand a torque of at

least 3 N cm applied to the screws. This first assembly step is the most critical and

requires the most diligence, since the quality of chip alignment affects the symmetry of

the resulting trapping potentials and the amount of residual micromotion. Thus, the

alignment procedure is performed under a microscope while observing the trap chips

from the top. The precisely structured trap electrodes and the long trap slit are good

references for the procedure. As long as the screws are loose, it is helpful to block the

movement of the bottom trap chip. This is accomplished by carefully pushing against

the bottom chip from each of the four rims with fixed alumina spacer layers. Once this

situation is established, one of the screws can be tightened quite thoroughly, such that

the top trap chip can only move in the region of the second screw. Soft plastic pliers are

employed to move the top trap chip in the desired position. Once precise alignment is

13Compex row capacitor, CR/CM series: CR16-200-344.2X178X10-3-G-202-Z
14DIN912, inside hex head, scarce special dimensions, available at ’Der Schraubenladen’, Villingen,

Max-Planck-Straße 39, 78052 Villingen-Schwenningen, Germany
15DIN934
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3.4. Vacuum assembly

Figure 3.10.: Technical drawing of the ion trap assembly. The ion trap consists of the
two gold-coated ion trap chips, which are separated by a spacer layer with a thickness of
254 µm. Below the green transparent layer, which illustrates the filter board, an additional
alumina support layer is mounted with screws. In this drawing the layer is colored blue
for better visibility, its function is to allow for a modular assembly process. On top of
this layer resides another alumina layer right below the ion trap. The thickness of this
layer is the same as of the filter board. This arrangement positions the bottom layer at
the same height as the filter board, which facilitates the wire bonding procedure.

achieved under the microscope, both screws are tightened.

In the next step, the filter board is mounted on top of the support alumina layer with

four titanium M1.6 screws. The trap needs to be in the center of the opening, to

allow for good wire bonding from all sides. The assembly procedure is followed by

thorough cleaning of the whole filter board and ion trap in an ultra sonic bath at 40 ◦C

of iospropanol (purity ≥ 99.8%) for 15 minutes.

A ball bonding machine is then employed to create electrical connections between the

trap electrodes and the row capacitors as well as between the row capacitors and the

filter board DC tracks. Prior to wire bonding, the trap is heated to approximately 170 ◦C.

At the increased temperature, a small amount of foam is observed to protrude from

the surface of the row capacitors, which was not observed in earlier heat up procedures.
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filter board filter board
support layersupport layer

Figure 3.11.: Cross section of the ion trap assembly. The gold-coated ion trap chips are
separated by an alumina spacer. The support alumina layer is colored blue in the sketch
for better visibility. The washers adjacent to the nuts feature a small slit, in order to
vent the screw hole. All screws, nuts and washers are made of titanium. The thickness
of each assembled part is: support layer (630 µm), filter board (630 µm), alumina layer
between filterboard an bottom trap chip (630 µm), trap chips (143 µm), spacer (254 µm).

The setup is cooled down, the foam is rinsed with isopropyl alcohol (purity ≥ 99.8%)

and the setup is heated again until no further change is observed.

At least two wire bonds are made for each electrical connection, to make them fail-safe.

After the bonding procedure, all relevant electrical connections are measured using an

LCR meter16. The capacitances of the 64 DC connection pins at the attached D-sub

connector to the ground electrode of the filter board are measured17 to be around 2.5 nF

and the impedances are determined18 to about 200 Ω. The values are higher than from

the parts used for the low pass filter on the filter board, due to the attached cable

connections. It is desirable, that all of the 64 connections exhibit similar electrical

characteristics. Additionally, the capacitance between the RF electrodes to the ground

electrodes on the filter board is measured19 to be 26 pF for the RFtop and 25 pF for the

RFbottom electrode. Using the same measurement settings, the capacitance between

a random pin of a DC electrode at the D-sub connector and the RFtop electrode was

measured to be 25 pF and to the RFbottom electrode to be 22 pF. The similar values

for the RF and DC electrodes indicate decent electrical connections, such that the trap

16Hameg HM 8118
17measurement setting: C-D mode at 1 kHz
18measurement setting: R-X mode at 1 kHz
19measurement setting: C-D mode at 200 kHz
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is ready for vacuum assembly. In a final cleaning procedure, the wire-bonded trap and

filter board are cleaned in ultra sonic baths of isopropyl alcohol (purity ≥ 99.8%) and

finally ultra pure de-ionized water.

The filter board is mounted to an aluminum frame and the vacuum flange as shown

in figure 3.12. All electrodes are wired with kapton-coated copper cables to ultra high

vacuum compatible feedthroughs on the vacuum flange, the connections are shown in

appendix D.

Calcium ions are produced in the trap by ionizing a vapor of neutral atoms with a laser

beam, see section 4.2. The atomic vapor is generated by electric heating of calcium

granules in a small tube, which is denoted as the calcium oven [Rot03]. The particular

oven has been used in an ion trap setup before, thus the remaining calcium inside the

oven tube is carefully poured out. Calcium oxidizes when exposed to air and thus new

calcium granules are loosely filled in the oven tube. It is not advisable to use force when

filling the granules into the tube, as this can cause sudden eruptions of calcium onto the

sensitive ion trap surface.

Figure 3.12.: Left: Photograph of the filter board and the ion trap assembled to the
vacuum flange. The luster terminal serves as a star point ground for the ion trap. Right:
Photograph of the ion trap mounted inside the vacuum chamber. The thin wirebonds are
visible in this image on the outside of the ion trap chip. On the right the calcium oven is
mounted and points at a distance of about 1 cm at the ion trap.

The entire vacuum chamber is then exposed to a bake-out process in order to achieve

ultra high vacuum. At a rate of not more than 15 ◦C per hour, the chamber is heated to

180 ◦C and kept at this temperature for two weeks. The heat detaches contaminants

from the chamber walls, which are then removed by a temporarily attached vacuum

pump. Two permanent vacuum pumps are installed in the chamber: a passive getter
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pump20 and an ion pump21, which additionally contains a similar passive getter element.

Before the bake-out procedure, both getter elements are activated, which involves heating

them to around 500 ◦C for one hour. During the bake-out procedure, this activation

is repeated once per day at only 30% of the electrical power, which was used in the

initial activation. Once the bake-out is finished, another full activation is performed

at a temperature of around 90 ◦C during cooling down. It is also important, to supply

the calcium oven with current for a few hours during the bake-out process to remove

contaminants from the oven tube. The pressure inside the chamber needs to be carefully

monitored during these operations. At the end of the process, the ion pump is turned

on. Finally, a pressure on the order of 10−12 mbar is achieved after a few days, which

results in storage times of several days for the ions in the trap.

After the bake-out procedure, the surface of the trap chips changed visibly, a comparison

is shown in figure 3.13.

Figure 3.13.: Left: Photograph of the ion trap inside the vacuum chamber before bake-out.
The large RF compensation electrode was not electroplated, since it is far away from the
trapping region and thus looks different from the other electrodes. Near the two VIAs,
scratches are visible on this electrode which originate from the alignment process of the
trap chips with soft pliers. Right: Ion trap after the bake-out procedure. Both the
electroplated and the evaporated gold surface on the trap visibly changed surface color.
This transformation is found to be not detrimental to the performance of the ion trap.

It is unclear what the origin of this change is. The trap was covered in wax in the

fabrication process which might have left residues. Furthermore, a getter pump was

activated close to the ion trap for the first time, possibly this first activation spilled

contaminants over the chip surface. We exclude the calcium oven to be responsible,

20CapaciTorr® D 100, SAES Advanced Technologies SpA, Viale Italia, 77 20020 Lainate, Milan - Italy
21NEXTorr® D100-5, SAES Advanced Technologies SpA
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3.4. Vacuum assembly

since the surface also changed its color on the backside of the trap chips. The surface of

the trapping zone however is still in a supreme condition, since the motional heating of

the ions in the trap is low, see section 6.1.
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4
Apparatus

In this chapter, our apparatus for quantum information experiments is described. The

complete experimental setup including lasers and electronics to operate the ion trap is

shown in figure 4.1.
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Figure 4.1.: Experimental setup for the operation of the segmented ion trap. The trap
resides in the center of a shielded spherically-shaped vacuum chamber. DC and RF
supplies are necessary to confine the ion. A photo-multiplier tube (PMT) and a CCD
camera detect ion fluorescence. Seven laser sources are steered to the vacuum chamber
with optical fibers for laser cooling of the ions as well as performing quantum logic
operations. Except for the four acousto-optic modulators (AOMs) in the laser beam path
for the Raman transitions, all other AOMs are set up in a double-pass configuration.
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4. Apparatus

The diameter of the vacuum chamber is around 25 cm and the magnetic shielding

enclosure measures 51 cm x 62.5 cm x 62.5 cm . It is made of three layers: 2 mm µ-metal

– 6 mm aluminum – 2 mm µ-metal and provides attenuation factors in the range between

20 and 30 dB for signal frequencies between 50 Hz and 100 kHz [Rus16]. The enclosure

also provides passive thermal stability for the vacuum vessel and the optical elements

which guide the laser beams to the ion trap as well as the electric circuit that stabilizes

the RF trap drive. The pressure inside the vacuum vessel is determined to be on the

order of 10−12 mbar, which provides ion storage times of several days.

4.1. Experimental control

The experiments are controlled by a C++ program from the experimental control

computer (PC) which is connected to various devices. Data acquisition is typically

achieved by 100 experimental repetitions. Fluorescence detection is performed with

the PMT module1 within an exposure time of about 700 µs. A CCD camera2 is mainly

employed to observe the ions between the experiments.

Experimental sequences are transfered via ethernet to a FPGA-based fast multichannel

arbitrary waveform generator (M-AWG) [Wal12; Rus14]. The device supplies the DC

trap electrodes for ion shuttling operations and triggers laser pulses to conduct quantum

logic experiments. Digital outputs drive multiple RF switches via TTL logic and thus

switch the AOMs, respectively the laser beams, within a few hundred nanoseconds. One

source for the RF is a direct digital synthesizer3 (DDS), which is set to a frequency of

110 MHz. A second source is a versatile frequency generator4 (VFG) which is connected

to the control computer via USB and stores pulse sequences in an internal memory. Upon

an TTL trigger from the M-AWG the RF pulses are generated and fed to the AOMs.

The device is capable of phase coherent switching between multiple RF frequencies,

which is crucial for the quantum logic operations. The network for the RF switches is

shown in figure 4.2. Only the Raman and 729 nm laser beams – which coherently drive

atomic transitions – are controlled by this scheme. The AOMs for all other lasers are

supplied by voltage controlled oscillators and switched in a similar fashion.

In the experimental sequences, which are looped on the M-AWG, DC voltage updates

1Photon counting head H10682-210, Hamamatsu Photonics K.K.
2Andor iXon, Model No. DV860DCS-UVB
3R&S SML 01, ROHDE & SCHWARZ GmbH & Co. KG
4VFG-150, TOPTICA Photonics AG
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Figure 4.2.: RF switch network for the control of the Raman laser beams CC, R1, R2
and R4 and the 729 nm laser beam, which coherently drive atomic transitions. All TTL
signals are supplied by the M-AWG, the frequency at each AOM denotes the typical
operation frequency.

are supplied within 400 ns by the M-AWG in the range of ±10 V. The voltage supply

features low noise (10 nV . /
√

Hz at the trap frequency [Wal12]), which is filtered

by a low-pass filter on the vacuum flange and a low-pass filter inside the vacuum

chamber, see section 3.3. The low-pass Π-type filter on the vacuum flange features a

cutoff frequency of 2π×50 kHz and is comprised of two capacitances5 (47 nF) and one

inductance6 (220 µH) which is built in series with a precision resistor7 (69.8 Ω). The

inductance is electromagnetically shielded to reduce crosstalk to nearby signal wires.

4.2. Laser setup

The ion trap resides in a stainless steel vacuum chamber that features ultra high vacuum.

To interact with the atomic levels of the trapped calcium ions multiple lasers are employed

and described in this section. All laser beams, which interact with the ion, as well as

the imaging system are shown in figure 4.3. The ion trap resides in the center of the

chamber and the ion fluorescence light at 397 nm is split in two paths and detected by

5AVX 06035C473KAT2A, MLCC, X7R, 47NF, 50V
6Coilcraft 1812PS-224JLB 220UH, 0.47A, 5%, 7MHZ
7TE Connectivity 5-1879222-5, 69R8, 0.1%
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4. Apparatus

a PMT (90 %) and a CCD camera (10 %). A dichroic mirror (DM) and a specialized

imaging objective8 allow for the focusing of a 729 nm laser beam on the ion.

x

B
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90:10

729 nm

R2, 397 nm

opt. pumping
397 nm

R1, 397 nm
CC, 397 nm375 nm,

423 nm

R4, 397 nm

854 nm,
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Doppler cool.
397 nm

DM
BS

oven
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RF

RF

DC

DC

y

z

Figure 4.3.: Left: Top view of the vacuum vessel and the laser beams, which are focused
on the ion. Beams which are represented by a single arrow are guided to the chamber in
a single optical fiber. Lenses outside the chamber are used to focus the laser beams to a
waist of a few tens of µm on the ion position as indicated in the sketch on the right. The
beams enter the chamber through anti-reflection coated glass view ports. A magnetic
field of 0.37 mT is generated at the ion position by two green colored permanent magnets,
which are mounted on aluminum rings [Rus16]. Right: The two principle axes of the
trap in the radial y- and z-direction are orthogonal to the trap axis, which is denoted as
the x-direction.

The laser beams at 375 nm and 423 nm are utilized to ionize the atomic vapor, that

is generated by the calcium oven in a two step photo-ionization process. The first

excitation step from the 41S0 state to the 41P1 state in neutral calcium is driven by

a single mode laser9, which is stabilized to a wavemeter10 at around 422.7912 nm. A

subsequent excitation to the continuum is achieved by a free running laser11 at 375 nm.

The optical power of the 423 nm beam is typically around 1 mW, and the power of the

375 nm beam is set to 200 - 300 µW.

Doppler cooling and fluorescence detection of the trapped ions on the 42S1/2 ↔
42P1/2 cycling transition is established by a single mode laser12 at a wavelength of

8f ≈ 67 mm, S6ASS2241/045 SILL 132177, Sill Optics GmbH & Co. KG
9DL 100 Pro, TOPTICA Photonics AG

10Type WSU, HighFinesse Laser and Electronics Systems GmbH
11DL 100, TOPTICA Photonics AG
12DL 100 pro, TOPTICA Photonics AG
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4.2. Laser setup

397 nm. The laser is stabilized to 396.95900 nm by a Pound-Drever-Hall locking scheme

[Dre83; Pos10a]. An AOM is facilitated in a double-pass configuration to control the

intensity and frequency of the beam – it is red detuned with respect to the atomic

resonance by around 30 MHz and the optical power is typically around 40 µW.

The same laser source is used for optical pumping with a separate beam, which enters

the vacuum chamber in parallel to the magnetic field. The polarization of the beam

is set to circular polarization (corresponds to σ+) by a λ/4 wave plate. Thus, only

the |42S1/2,mJ = −1/2〉 ≡ |↓〉 to 42P1/2 transition is driven by this beam, which is

controlled by an AOM in a double-pass configuration. Typically 50 µW of optical power

are used for this beam.

Repumping on the 32D3/2 → 42P1/2 transition is realized by a single mode laser13 at

a wavelength of 866 nm. The laser is stabilized by the same scheme as the 397 nm laser

to a wavelength of 866.45160 nm. The typical laser intensity for this beam is around

20 µW and the polarization is set to be linear. An AOM in a double-pass configuration

controls the beam intensity.

Quenching on the 32D5/2 → 42P3/2 transition is achieved by a single mode laser14 at a

wavelength of 854 nm. The laser is stabilized to the wavemeter at around 854.4434 nm

and the laser intensity is controlled by an AOM in a double-pass configuration – typically

it is set to around 20 µW. We set the polarization of the beam to be linear. The

repumping laser and the quenching laser are coupled to the same optical single mode

fiber and guided to the vacuum vessel.

Electron shelving and optical pumping on the quadrupole 42S1/2 ↔ 32D5/2 tran-

sition are implemented by a single mode laser source15 near 729 nm. It is stabilized to

an ultra-stable cavity at 729.34730 nm and features a linewidth around 1 kHz [Mac12].

An AOM in a double-pass configuration is utilized to control the power and frequency

of the light, the laser intensity is usually in the range of a few mW. The polarization is

linear and is set to be in the plane of the optical table. Consequently, the coupling to

the ∆mj = ±2 transitions is enhanced [Roo00].

13DL 100, TOPTICA Photonics AG
14DL 100, TOPTICA Photonics AG
15Matisse TX, Sirah - Lasertechnik GmbH
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Qubit manipulation and ground state cooling are realized by stimulated Raman

transitions with a single mode laser16 near 397 nm, which drives the transition 42S1/2 ↔
42P1/2 respectively the transition between the Zeeman sublevels: |↓〉 ↔ |↑〉, see section

2.4. The laser is comprised of an amplified near-infrared laser diode, which is sent to a

bowtie cavity for second harmonics generation with an lithium triborate (LBO) crystal.

The cavity is used to stabilize the laser at a wavelength of around 397.12 nm, which

corresponds to a detuning of about ∆ = −2π × 290 GHz from the atomic resonance.

The detuning from the atomic resonance requires an increased optical power – the laser

is capable of producing 80-100 mW of light near 397 nm. The optical setup for the

control of the laser beams is displayed in figure 4.4. Initially, the light passes through

an EOM, which rotates the polarization of the beam depending on the supplied high

voltage. Subsequently, the light passes through a polarizing beam splitter and is coupled

to an optical fiber which guides the light to an interferometric setup. A photo diode

measures the intensity of the light after the fiber. The signal is fed back to a PID

controller17 and a fast high voltage amplifier18, which act on the EOM by adjusting the

supplied high voltage and thus stabilize the light intensity inside the interferometric

setup. The beam intensity is well stabilized, see results in section 6.5. In principle one

expects to observe an impeded coupling to the optical fibers from frequency i.e. beam

position changes in the AOM single-pass configuration. However, the effect is rather

small and since we only change the AOM frequencies within a few tens of kHz we do

not observe any disadvantage in the experiments. We use AOMs19, which feature a high

beam pointing stability and small turn-on effects. The diffraction efficiency of the AOMs

is around 65 % and the subsequent fiber coupling efficiency is about 70 %. Typically

frequencies around 2π×100 MHz at an input power of 2 W are used to drive the devices.

The radio frequency is generated by a direct digital synthesizer (DDS) and amplified by

a water-cooled RF power amplifier20.

At the ion trap position, the beams denoted by R1, R2 and R4 are horizontally polarized

with respect to the optical table and the beam denoted by CC is vertically polarized.

To drive coherent rotations between the qubit states |↓〉 ↔ |↑〉, without coupling

to the ion motion, the beams R1 and CC are employed, which both propagate orthog-

onally to the magnetic field. Thus, the beam R1 is π-polarized and drives ∆mJ = 0

16TA-SHG, TOPTICA Photonics AG
17NoiseEater 3V2, TEM Messtechnik GmbH
18HVA-F, TEM Messtechnik GmbH
19e.g. I-M110-3C10BB-3-GH27, Gooch & Housego
20ZHL-5W-1, Mini-Circuits®
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4.2. Laser setup

transitions whereas the beam CC features equally σ+ and σ− polarization component

and drives ∆mJ = ±1 transitions.

Resolved sideband cooling is established by coupling to the ion motion with an ef-

fective k-vector of two superimposed Raman beams. Cooling the axial mode of vibration

requires the beams R1 and R2 to be focused on the ion to form an effective k-vector

along the x-direction, i.e. the trap axis. The horizontally polarized R2 beam propagates

along the magnetic field and is thus equally composed of σ+ and σ− components. The

same holds for the R4 beam that propagates in the opposite direction. It is used to

form an effective k-vector orthogonal to the trap axis which couples to the radial y- and

z-direction when superimposed with the R1 or CC beam.
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Figure 4.4.: Beam path of the Raman laser setup, which is used for qubit manipulation and
ground state cooling. The beam is split into four individual beams, that are controlled
by AOMs in a single pass configuration. Only the first diffracted order is sketched here,
which is coupled to an optical fiber and guided to the ion trap. Each AOM is placed
in the focal plane of two lenses with a focal length of f = 300 mm. This configuration
ensures a robust coupling with respect to frequency adjustments in the AOM. Vertically
polarized light is supplied to each AOM by means of polarizing beam splitters or λ/2 wave
plates. A wave plate before each fiber ensures alignment to the polarization maintaining
direction of the single mode fibers. The beams R1 and CC are coupled to the same fiber
and are orthogonally polarized with respect to each other. A small fraction of light passes
through the first mirror in the enclosed setup and is detected by a photo diode to stabilize
the intensity. A TTL trigger from the M-AWG provides fast switching of the EOM.
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The geometric phase gate, that is employed to entangle the spins of two ions, is

either realized with the axial mode of vibration, by employing the beam pair R2 and

CC or with one of the radial modes by using the beam pair R4 and CC. In either case,

two beams in a linear ⊥ linear polarization are focused on the ion, which results in a

polarization standing wave. This moving periodic potential couples to the ion motion,

as explained in section 2.5. The optical power in each of the Raman beams on the ion

position is typically around 5 mW. Initial cooling of the motional mode, that is used for

the gate, close to its ground state is required to achieve a high fidelity.

All laser beams, except for photo-ionization and the 729 nm beam, are remotely controlled

from the outside of the magnetic shielding enclosure and precisely focused on the ions

via picomotor actuators21.

4.3. Stabilization of the radio frequency potential

The segmented ion trap is supplied with an RF voltage of about 300 V peak-to-peak at a

frequency of ωRF /2π = 33 MHz to confine the ions in the radial directions y and z. Axial

confinement along the x-direction is achieved by a DC voltage of typically −6 V. This

configuration gives rise to typical trap frequencies of ωx,y,z/2π = {1.5, 4.1, 4.9} MHz.

The radial motional modes are utilized for quantum logic operations, see section 2.5.2.

Thus, the corresponding trap frequencies need to be as stable as possible for high

operational performance and to reduce the calibration overhead. The RF voltage is

actively stabilized based on a scheme, that was applied in a similar setup [Dil14]. A

sketch of all components for the RF supply and stabilization is shown in figure 4.5. As

an RF source, a DDS22 with an 50 Ω output level of around −13 dBm at 2π×33 MHz is

employed. The signal is fed to a water-cooled RF power amplifier23 which features a high

gain of around 46 dB. Subsequently, a custom-made helical resonator transforms the RF

voltage to a higher amplitude and matches the 50 Ω output impedance of the amplifier

to the high-impedance load, consisting of the ion trap and the vacuum feedthroughs.

At the output of the helical resonator, a capacitive divider provides a high impedance

output of about one-hundredth of the signal level at 300 V peak-to-peak. A 1:10 probe at

the output of the capacitive divider measures the voltage and feeds it to an oscilloscope.

The largest fraction of the signal is fed to a stabilization circuit, which is comprised of a

21e.g. 8353 Tiny Picomotor actuator, Newport Corporation
22R&S® SMB100A, ROHDE & SCHWARZ GmbH & Co. KG
23ZHL-5W-1, Mini-Circuits®
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Figure 4.5.: Scheme for the ion trap RF supply and stabilization.

rectifier and a proportional-integral (PI) servo. In order to generate a suitable input

signal for the PI controller, the RF voltage of around 3 V peak-to-peak is converted to

DC by a half-wave rectifier with a time constant of about 10 µs. This DC voltage is

supplied to a custom made PI control circuit, both circuits are sketched in appendix D.

The error signal, for the PI controller, is generated from the difference of the rectified

impedance matched input signal, to a stable reference voltage source24, which can be

adjusted by a voltage divider. The proportional gain for the controller is set by adjusting

a trimpot resistor – increasing the resistance will raise the gain. Working parameters

were found by observing the system behaviour over a few hours, the time constant of

the PI circuit is around 2 µs.

The output of the controller serves as feedback to the amplitude modulation input of

the DDS, which generates the radio frequency. A modulation bandwidth of 2π×50 kHz

sets a limit to the speed of the control loop. Typically, the modulation depth of this

input is limited to 5% to prevent damage of the ion trap. The long-term stability of the

control loop is assessed in section 6.2 and found to be excellent. All BNC wires, which

carry the RF signal from the DDS to the amplifier and the helical resonator, are kept as

short and rigid as possible. For this purpose, the DDS and the amplifier are placed on

the optical table adjacently to the magnetic shielding around the vacuum chamber. This

configuration significantly improved the passive stability of the system over a previous

configuration where both components were placed below the optical table. For future

experiments it is advisable to provide active temperature stabilization to the diode in

the rectifier and the reference voltage source.

24REF01Z, +10 V output, typical temperature stability 3ppm/◦C
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Framework for Ion Crystal Separation

In this thesis a theoretical framework for the fast separation operation is developed

and published in [Kau14]. The process of separating two-ion crystals in segmented

Paul traps – i.e. the structural transition from two ions confined in a common well to

ions confined in separate wells – is investigated theoretically. A successful experimental

implementation of the results from this work is demonstrated in [Rus14].

The precise control of the separation process by application of suitable voltage ramps

to the trap segments is non-trivial, as the harmonic confinement transiently vanishes

during the process. This makes the ions strongly susceptible to background electric field

noise, and to static offset fields in the direction of the trap axis. We analyze the reasons

why large energy transfers can occur, which are impulsive acceleration, the presence

of residual background fields and enhanced anomalous heating. For the impulsive ac-

celeration, we identify the diabatic and adiabatic regimes, that are characterized by

different scaling behavior of the energy transfer with respect to time. We propose a

suitable control scheme based on experimentally accessible parameters. Simulations are

used to verify both the high sensitivity of the separation result and the performance of

our control scheme. Finally, we analyze the impact of trap geometry parameters on the

crystal separation process.

Essential shuttling operations are separation and merging of linear ion crystals. It

is important that they are fast on the typical timescale for quantum gates of 10-100µs,

and in order to allow for gate operations or readout after the separation, a low energy

transfer is required. Shuttling of trapped ions in segmented traps has been realized

within a few oscillation cycles of the harmonic trap by time-dependent control of the

trap voltages [Wal12; Bow12], at energy transfers below one motional quantum. Crystal

separation in a segmented trap was first demonstrated in [Row02], at energy transfers of

about 140 phonons within a separation time of 10 ms. With optimizations, separation
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has been included to the set of methods for quantum computing, e.g. for quantum

teleportation [Bar04] and entanglement purification [Rei06]. Currently, the best re-

ported result is a gain of about two vibrational quanta per ion at a time duration of

55 µs [Bow12]. Our work is intended to explain why the separation process is challenging

to control, and to provide a detailed methodology to overcome these challenges, also

for traps with less beneficial properties as the one used in [Bow12]. The experimental

challenge for the control of this process is given by the fact that the harmonic part of

the electrostatic trap potential has to change its sign during this process and therefore

has to cross zero. This situation of weak confinement reduces the attainable speed

and potentially increases the final motional excitation. In order to make the process

more robust and faster, it is desirable to achieve a large quartic component of the axial

trapping potential.

Trap geometries tailored to improve separation performance were investigated in [Hom06a].

In [Niz12], geometry parameters for optimized separation in surface electrode traps were

derived, and the role of enhanced anomalous heating due to transiently weak confinement

was analyzed. In [Ebl10], robust separation operations on slow timescales were carried

out by means of real-time observation of the ion positions and feedback on the segment

voltages.

In this thesis, we analyze the separation process with the aim of achieving low energy

transfers in segmented miniaturized Paul traps. We reduce our analysis to the process of

separation ion crystals, as the process of merging ion crystals is merely the time reversed

process. Furthermore, we restrict ourselves to the case of two ions. For separation and

merging processes with several ions, the general procedures and conclusions are still

valid.

In section 5.1, we introduce the formalism for describing the electrostatic potentials dur-

ing the separation operations and the equilibrium positions of the ions, and we analyze

the dependence of the equilibrium positions on the control parameters. In section 5.3,

we give a detailed explanation of the possible reasons for high energy transfers. Based

on these considerations, a procedure for the design of suitable voltage ramps is given

in section 5.4. In section 5.5, we analyze the performance of these ramps by numerical

simulations. Finally, in section 5.2, we compare typical examples for trap geometries

and discuss the implication for ion separation.
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5.1. Prerequisites for crystal separation

5.1. Prerequisites for crystal separation

5.1.1. Electrostatic trap potentials

We desire to separate a two-ion crystal residing at center segment C along the trap axis

x, to obtain two ions stored in separated potential wells at the position of the separation

segments S neighboring C, see figure 5.1.

OL SL C SR OR 

α > 0 

α = 0 

α < 0 

Single well

Critical point (CP)

Double well

a)

b)

c)

Figure 5.1.: The process of ion crystal separation. It is shown schematically how two ions
are moved from the initial center segment C to different destination segments SR,L by
changing a confining electrostatic potential from a) a strong harmonic confining potential
(α > 0) via b) a predominantly quartic potential (α ≈ 0) to c) a double-well potential
(α < 0). The external potential is determined by the voltages applied to the respective
electrodes. The equilibrium positions are sketched as dashed lines. The outer electrodes
O facilitate the separation process by increasing the transient quartic confinement and
offer the possibility to cancel a possible axial background field by application of a
differential voltage. The color coding of the segments and the corresponding voltages is
used throughout the manuscript.

Note that we consider only the spatial dimension along the trap axis, as we assume

that tight radial confinement persists throughout the process and the ions are always

located on the rf node of the trap. Typical distances between segments range between

50 and 500 µm, while the initial ion distance is 2-4 µm. The total external electrostatic

potential along the trap axis can be written as

Φ(x) ≈ β x4 + α x2 + γ x (5.1)
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where the coefficients α, β, γ are given by the the trap geometry and the voltages applied

to the trap segments. This Taylor approximation is valid as long as the the ions are

located sufficiently close to x = 0, which is the center of the C segment. Throughout the

separation process, the external potential is changing from a single well potential αi > 0

to a double well potential αf < 0, crossing the critical point (CP) at α = 0. Note that

β > 0 is required to guarantee confinement at α ≤ 0. The approximation of equation 5.1

holds for α ≥ 0 and for α . 0 as long as the separation of the two potential wells is

small compared to the width of segment C. When the distance of the ions from the

center of the C segment becomes comparable to the width of the segment, anharmonic

terms of order > 4 contribute significantly to the total potential. These are not taken

into account here since the outcome of the separation process is determined around the

CP, as will be pointed out in the following sections.

Beyond the CP, the equilibrium distance depends significantly on higher order terms

of the potentials. However, the distance of the separated wells is still increasing

monotonically for decreasing α as long as the variation β is sufficiently small, and the

corresponding trap frequencies in these wells are monotonically increasing. Thus, the

motion beyond the CP corresponds to an ordinary shuttling process of a stiff harmonic

trap. This suggests that the separation outcome should essentially not depend on higher

order terms, a finding which is supported by numerical calculations in section 5.5.

For studies which require precision beyond the CP, the higher order terms can be taken

into account numerically. A cubic term does not contribute to the potential if the trap

is sufficiently symmetric along the trap axis.

Including Coulomb repulsion, the total electrostatic potential of a two-ion crystal at a

center-of-mass position x0 and distance d is given by

Φtot(x0, d) = Φ(x0 + d/2) + Φ(x0 − d/2) +
κ

d
, (5.2)

with κ = e/4πε0. At the CP, the harmonic confinement vanishes, and a weak residual

confinement is maintained by the interplay between Coulomb repulsion and quartic part

of the external potential. It is therefore desirable to maximize β at the CP. For a given

trap geometry, the attainable β is limited by the voltage range which can be applied to

the trap electrodes 1.

1The maximum voltage is ultimately limited by the electric breakdown threshold. In practice, as
precisely controlled time-dependent voltage waveforms are to be applied to the trap segments, the
voltage range will be determined by the electrical design, where one faces a trade-off between voltage
range and output bandwidth [Bai13; Bow13].
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The coefficients of the potential equation 5.1 are given by the segment bias voltages and

the electrostatic properties of the trap:

α = UC αC + USαS + UOαO (5.3)

β = UC βC + USβS + UOβO (5.4)

γ = ∆USγS + ∆UOγO + γ′ (5.5)

An offset parameter γ′ is introduced for taking trap non-idealities – leading to a symmetry

breaking force along the trap axis – into account, see section 5.3.2. In contrast to the

symmetric quadratic and quartic contributions, the asymmetric tilt potential is controlled

by the differential voltages ∆US,O between the corresponding left and right electrodes

of the respective pair. The segment coefficients are given by Taylor expansions of the

standard potentials φn(x), which are the dimensionless electrostatic potentials along the

trap axis if a +1V bias is applied to segment n and all other segments are grounded [Bla11;

Sin10]:

φn,m(x) = φn|x(m)
0

+ φ′n|x(m)
0

δx+
1

2
φ′′n|x(m)

0

δx2 +
1

24
φ(4)
n |x(m)

0

δx4 +O
(
δx6
)
. (5.6)

with δx = x− x(m)
0 , i.e. the Taylor expansions are carried out at center of segment m,

x
(m)
0 . The coefficients for Eqs. 5.3, 5.4, 5.5 are obtained for m = C, n = C, S,O:

αn =
1

2
fnφ

′′
n,C(0), βn =

1

24
fnφ

(4)
n,C(0), γn = fnφ

′
n,C(0), (5.7)

with fC = 1 and fS,O = 2 accounting for two S,O segments acting symmetrically at

x = 0. Note that γC = 0 by definition.

In the following, for numerical calculations, we use the specific geometry parameters of

a three dimensional micro-structured segmented ion trap A as detailed in section 5.2.

There, other traps and their geometry parameters are listed and analyzed as well.

5.1.2. Equilibrium positions

We consider two ions of mass m and charge e, with their equilibrium positions given by

the center-of-mass x0 and the equilibrium distance d:

xL,R = x0 ± d/2, (5.8)
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5. Framework for Ion Crystal Separation

determined by minimizing of the total electrostatic potential, given by equation 5.2.
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Figure 5.2.: Ion equilibrium positions near the critical point. (a) shows the equilibrium
positions versus the harmonic parameter α. In the case of a perfectly compensated tilt
(blue), the ions separate symmetrically, in the case of a large tilt (red), both ions move
towards one side. Panels (b) and (c) show close-ups around the critical point for a
perfectly compensated tilt and a large tilt respectively. Additionally, the extrema of the
external potential are shown (dashed). In panel (d), we display equilibrium positions and
potential minima for tilt parameters slightly below (blue) and above (red) the critical
tilt parameter. In contrast to the corresponding curves in b), the equilibrium positions
exhibit cusps which lead to strongly enhanced acceleration.

The confinement is characterized by the local trap frequency, which is given by the

curvature of the external potential at the ion positions:

ω =

√
e

m
Φ′′(xL,R). (5.9)
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The extremal points of the external potential equation 5.1 are given by

x
(0)
0 =

α

31/3ζ
− ζ

2 · 32/3β
(5.10)

x
(±)
0 =

(i
√

3± 1)α

2 · 31/3ζ
+

(1∓ i
√

3)ζ

4 · 32/3β
(5.11)

(5.12)

where

ζ(α, β, γ) =
(

9β2γ +
√

3
√

8α3β3 + 27β4γ2
)1/3

. (5.13)

Initially, at α = αi, the confining harmonic part of the external potential and the

Coulomb repulsion are dominant, thus we can neglect the quartic potential. The trap

frequency is then given by ω2 = 2αe/m at an ion distance of d = (κ/α)1/3. At the CP,

α = 0, and without tilt, γ = 0, the ion distance is determined by quartic confinement

and Coulomb repulsion:

dCP = (2κ/β)1/5 . (5.14)

The Coulomb repulsion pushes the ions away from the trap center (where the curvature

of the external potential vanishes), such that a residual harmonic confinement persists

because of the quartic term. The minimum trap frequency during the separation process

is thus given by [Hom06a]

ωCP = β3/10 (3e/m)1/2 (2κ)1/5 . (5.15)

Near the CP, the equilibrium distance can be computed from a perturbative expression

up to second order:

d(α) ≈ dCP −
1

5

(
16

β4κ

)1/5

α+
2

25

(
4

β7κ3

)1/5

α2, (5.16)

for |α| � βd2
CP and |α| � κd−3

CP .

The center-of-mass position of the ion crystal near the critical point to first order in the

tilt parameter γ is:

x0(α, γ) ≈ γ

(
− 1

3 · 22/5β3/5κ2/5
− 21/5

45 · β6/5κ4/5
α+

26 · 24/5

675β9/5κ6/5
α2

)
(5.17)
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5. Framework for Ion Crystal Separation

If the ions are sufficiently separated, α� 0, the Coulomb repulsion can be neglected

and the equilibrium positions approximately coincide with the extrema of the external

potential:

df =
√
−2αf/β (5.18)

and the final trap frequency is given by ω2
f = −4αfe/m.

5.1.3. Critical tilt value

A static background force along the trap axis can tilt the external potential and thus

keep the ions confined in one common potential well throughout the separation process.

We make use of the external potential minima Eqs. 5.12 to obtain an estimate for the tilt

parameter γ̃, beyond which the separation ceases to work. In the following, we assume

γ > 0.

ΔVc 

X0,c
(-)  

X0,c
(0,+)

 

Xc
(+) ~

 

x

Φ(x)

Figure 5.3.: Critically tilted potential, see text such that the Coulomb repulsion fails to
push the right ion across the saddle point.

In the presence of a nonzero potential tilt, an imperfect bifurcation occurs, i.e. the

second potential well opens up at α̃ < 0, see figure 5.2 c). We obtain a scaling law

for γ̃ by calculating at which tilt parameter the original potential well is deep enough

to keep both mutually repelling ions confined, see figure 5.3. The saddle point where

the second potential well opens can be found by solving x
(0)
0,c = x

(+)
0,c for α̃, yielding

α̃ = −3
2β

1/3|γ|2/3. From this we obtain its position 2 to be x
(+,0)
0,c = 1

2 (γ/β)1/3. At α̃, the

left potential minimum is located at twice the distance from the origin x
(−)
0,c = − (γ/β)1/3.

2For γ ≥ 0, x
(0)
0 corresponds to the left potential minimum which always exists, and for α < α̃ < 0, x

(+)
0

corresponds to the right potential minimum and x
(−)
0 corresponds to the maximum of the separation
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The potential attains the same value as on the saddle point V (x
(+,0)
0,c ) at the position

x̃
(+)
c = −3

2 (γ/β)1/3. The depth of the potential well defined by the saddle point when

the right well opens is therefore

∆Vc = V (x
(−)
0,c )− V (x

(+,0)
0,c ) =

27

16

(
γ4

β

)1/3

. (5.19)

We can now define a criterion which determines whether the ions are actually separated by

comparing the Coulomb potential to the depth of the initial well at the CP, equation 5.19:

If the Coulomb repulsion pushes the right ion beyond the saddle point x
(+,0)
0,c , it will end

up in the right potential well, otherwise the two ions will stay in the left well. Thus, the

Coulomb energy at an ion distance of x
(+,0)
0,c − x̃(+)

c has to be larger than the well depth

∆Vc. These considerations lead to a critical tilt value of

γ̃ < ± Cγ
(
κ3β2

)1/5
. (5.20)

Despite the fact that the situation depicted figure 5.3 does not actually occur, as the

external force at the saddle point vanishes and therefore cannot balance the Coulomb

force, the obtained scaling behavior is confirmed by numerical calculations, revealing a

prefactor of Cγ =1.06.

The result equation 5.20 enables us to determine the required degree of precision by

which the background axial field has to be corrected. For this calculation, only the

geometry parameters βC,S,O are needed. Furthermore, the sensitivity decreases as β2/5,

which directly characterizes the gain in robustness when the accessible voltage range is

enhanced. For trap A (section 5.2), we derive a value of γ̃ ≈ 3V/m, corresponding to

the requirement to set ∆UO more accurately than about 9 mV.

5.2. Ion trap geometry optimization

We will show in section 5.3 that the outcome of a crystal separation operation is strongly

determined by magnitude of the quartic confinement coefficient at the CP βCP from

equation 5.34. We thus investigate the effect of the trap geometry on the coefficients

barrier. By contrast, for γ < 0, x
(0)
0 corresponds to the right potential minimum, and for α < 0 < α̃,

x
(+)
0 corresponds to the left minimum.
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5. Framework for Ion Crystal Separation

αn, βn, γn from Eqs. 5.7. We calculate the realistic potentials from electrostatic simula-

tions [Sin10] to infer the geometry parameters according to equation 5.7. In particular,

six different traps designs were studied, four of which are three-dimensional and two

are surface-electrode traps. The results are shown in Tab. 5.1. The calculations are

carried out for a generic simplified geometry shown in figure 5.4 d), which is essentially

determined by the segment width w, the slit height h and the spacer thickness d for

the three-dimensional traps. Trap A, B [Sch08] and C [Bla11] are similar segmented

micro-structured ion traps . Trap B is subdivided into a loading region of larger geometry,

B (wide), and a narrow processing region, B (narrow). The data for trap C pertains to

a wedge segment of w = 100µm surrounded by larger segments. Trap D is a segmented

planar ion trap [Nar11], the calculations are performed at a distance of 100 µm between

the ion and the surface. Trap D2 is a planar ion trap featuring a segmented ground

plane, otherwise identical to trap D. Trap A was used for all simulations in section 5.5.

Parameter Unit A B (wide) B (narrow) C D D2

w µm 200 250 125 100 200 200

h µm 400 500 250 200 - -

d µm 250 125 125 250 - -

αC µm−2 -3.0 -2.5 -9.1 -6.4 -1.4 -12.0

βC 10 µm−4 2.7 1.7 19.9 14.4 1.5 -6.5

αS µm−2 1.7 1.7 6.2 4.7 0.9 10.7

βS 10 µm−4 -3.0 -1.9 -22.1 -14.7 -1.7 5.6

γS 10−1 µm−1 11.0 9.3 19.2 21.6 4.1 17.8

αO µm−2 1.0 0.6 2.3 1.6 0.4 0.9

βO 10 µm−4 0.2 0.2 2.0 1.2 0.1 0.8

γO 10−1 µm−1 3.2 2.2 4.3 3.2 1.2 2.2

ωCP /2π MHz 0.18 0.14 0.29 0.26 0.14 0.11

Table 5.1.: Comparison of trap geometry parameters for different linear segmented Paul
traps. Letters A to D denote different traps which are operated at various institutes, see
text. Note that γC = 0 by definition. The trap frequency at the critical point is specified
for Ulim=10V and 40Ca+ ions.

For trap A and B (wide) we calculate similar parameters, however the minimum trap

frequency during the separation is larger for trap A. Trap B (narrow) exhibits the highest

minimum trap frequency of the six geometries as the total dimensions of this section of

the trap are rather small. The wedge segment in trap C helps to increase the minimum

trap frequency but choosing an overall smaller size seems to be a more favorable solution.
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5.2. Ion trap geometry optimization

The planar trap D has a similar minimum trap frequency as trap B (wide) and is also

suitable for separating ion crystals. The segmentation of the ground plane of this trap

(D2) offers an enhanced αC , i.e. a large trap frequency. The calculations show however

that for a segmentation of the center electrode, the potentials become more anharmonic

and the Taylor approximation equation 5.1 breaks down. Thus, the sign and magnitude

ordering of the coefficients might be different from the other geometries, therefore the

geometry parameters and the ion height above the surface should be carefully chosen to

allow for successful separation operations.
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Figure 5.4.: Calculated geometry parameters αn, βn, γn and the maximum βCP at the
critical point for a linear segmented Paul trap with dimensions h = 400 µm, d = 250 µm
as a function of the segment width w. The color code is as above: blue - C, red - S, green
- O. The limiting voltage for the electrodes is Ulim = 10V .

For trap A we calculated the geometry parameters for varying segment width w, the

result is shown in figure 5.4. We analyze the dependance of all potential coefficients on w

with parameters h and d held constant. For separation operations the optimum segment

width would be at about w = 125µm, while the actual segment width of the trap is

w = 200µm. We could therefore obtain a roughly twofold increase of βCP bought at the

expense of a reduced trap frequency for ion storage due to the reduced αC coefficient.
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5. Framework for Ion Crystal Separation

Finally, we investigate the dependence of βCP on the overall trap geometry size. We there-

fore pick trap parameters h and d from the range of typical values and determine the opti-

mum segment width w for these. Defining the effective trap size deff =
(
w2 + h2 + d2

)1/2
,

we find a scaling behavior of βCP ≈ 2.2 · 1024V · d−4
eff , i.e. the best attainable value for

the quartic confinement coefficient scales as the inverse fourth power with the effective

trap size, which is the similar to the presumed distance scaling law for anomalous

heating [Bro15]. We conclude that for a trap architecture aiming at shuttling-based

scalable quantum information, the considerations presented here should be incorporated

into the design process to facilitate crystal separation operations.

5.3. Intricacies of ion crystal separation

5.3.1. Impulsive acceleration at the critical point

In this section, we show that the energy transfer can be quantitatively described by a

simple model, which interpolates between impulsive acceleration for short times and

adiabatic behavior for long times. We first derive the impulsive approximation, and

then refine the model to include the onset of adiabaticity. We also confirm the validity

of our model by simulations.

A näıve approach towards crystal separation is the linear interpolation between two

voltage sets pertaining to a single well and a double well, leading to a constant variation

rate of the harmonic coefficient α. As this does not involve a dedicated control of the ion

distance, it is equivalent to a rapid sweep across a structural transition of the ion crystal.

This leads to an unfavorable power-law scaling of the energy transfer with respect to

the sweep time [Ulm13], which prevents attaining adiabaticity.

In the following, we derive an approximation for the energy transfer, assuming the

variation of α around the CP to be uniform. We consider the energy transfer to

be caused by impulsive displacement: At the CP, the equilibrium distance changes

most rapidly, while the confinement - and therefore the restoring forces - are reduced.

Figure 5.5 a) shows that the situation corresponds to a harmonic oscillator which

is suddenly dragged at uniform speed, causing displacement and therefore a gain in

potential energy.
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Figure 5.5.: Impulsive acceleration at the critical point. a) shows the equilibrium distance
(black) versus time. The red lines depict the approximate slopes ḋCP within time
τCP before and beyond the CP. They illustrate how the impulsive displacement δdCP
equation 5.23 is obtained from slope beyond the CP, and why the difference of the slopes,
i.e. the second derivative d̈CP , determines the onset of adiabaticity (see text). It is
also shown how the trap frequency (gray) varies strongly during the CP trap period.
b) compares the final excitation obtained from the simple approximation Eqs. 5.25
(dashed), 5.30 (solid) to simulation results (dots). The onset of adiabaticity χ = 1, is
marked with vertical bars. The calculations are carried out for a harmonic coefficients α(t)
linearly varying around the CP, and different constant values for the quartic coefficient β.

Within the characteristic timescale set by half a the trap oscillation cycle τCP /2 = π/ωCP ,

this yields the displacement:

δdCP ≈ ḋCP ξ τCP /2 (5.21)

≈ ∂d

∂α

∣∣∣∣
CP

α̇CP ξ τCP /2 (5.22)

≈
(
β4
CP κ

)−1/5
α̇CP ξ τCP /2, (5.23)

where equation 5.16 was used in the last line. The factor ξ < 1 accounts for a reduction of

the displacement, which is due to the fact that the trap frequency rapidly increases beyond

the CP. Thus, the restoring forces set in before τCP /2 and the resulting displacement

is reduced with respect to the dragged oscillator at constant frequency. This sudden
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5. Framework for Ion Crystal Separation

displacement mechanism is sketched in figure 5.5 a). The potential energy of an ion is

consequently increased by

δE =
1

2
mω2

CP (δdCP /2)2 (5.24)

=
π2

8
ξ2 m

(
β4
CP κ

)−2/5
α̇2
CP , (5.25)

which serves as an approximation of the final energy transfer.

For a sufficiently small |α̇|CP , adiabaticity sets in and the energy transfer scales exponen-

tially with the separation time. The reason for this is that the Coulomb repulsion serves

to push the ions outwards, providing smooth variation of the equilibrium distance as

compared to discontinuous behavior of the minima of the external potential, see figure 5.2

b). It therefore leads to rapid, but continuous variation of the equilibrium positions with

α. The onset of the adiabatic regime is identified by comparing displacement δdCP to

the change of the equilibrium distance within τCP below the CP (see figure 5.5 a)), which

means that the ion acceleration around the CP is sufficiently slow to prevent sudden

displacement. We therefore compare the acceleration d̈CP to the reference acceleration

dCPω
2
CP . Note that

d̈CP =
∂2d

∂α2

∣∣∣∣
CP

α̇2
CP +

∂d

∂α

∣∣∣∣
CP

α̈CP . (5.26)

For sufficiently uniform variation of α, the second term can generally be neglected, such

that by using equation 5.16, we obtain

d̈CP =
2

25

(
4

β7
CPκ

3

)1/5

α̇2
CP . (5.27)

This yields the adiabaticity parameter

χ =
d̈CP

dCPω2
CP

(5.28)

=
4

25

m

3e
2−1/5β

−9/5
CP κ−6/5α̇2

CP (5.29)

We empirically find the following model, which describes the exponential decrease of the

energy transfer in the adiabatic regime χ < 1:

δE′ ≈ δE exp

[
c
χ− 1

χ

]
, (5.30)
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5.3. Intricacies of ion crystal separation

where c is a scaling constant. Numerical simulations are carried out for different constant

values for β and a linear variation of α around the CP. The results are shown in figure 5.5

b). It can be seen that the approximations Eqs. 5.25,5.30 hold over a wide range of

separation times and quartic coefficients, and that large energy transfers in the regime

of 104-106 phonons are readily obtained. The simulations yield values of the model

parameters of ξ2 ≈0.1 and c2 ≈ 0.1. We conclude that in this regime, the energy transfer

depends only on the ion mass, the variation rate of α and the quartic confinement at the

CP. As can be seen from the simulation results, still large energy transfers are obtained

at the onset of adiabaticity, such that separation at energy transfers on the single phonon

level would require separation times on the order of several hundreds of µs.

As we will show in further sections, this problem can be overcome using ramps that

ensure a small ion acceleration d̈CP at the CP.

Thus, the energy transfer can be reduced by ensuring a small variation rate of α at the

CP.

5.3.2. Uncompensated potential tilt

A residual static force along the trap axis, expressed by the coefficient γ′ in equation 5.5,

can originate from stray charges, laser induced charging of the trap [Har10], trap geometry

imperfections or residual ponderomotive forces along the trap axis. The behavior of

the equilibrium positions in the presence of an imperfectly compensated tilt, shown in

figure 5.2, reveals a discontinuity for the critical γ̃, leading to diverging acceleration. The

divergence of the acceleration impedes us to perform the separation process adiabatically

for |γ| . γ̃, i.e. the voltages can not be changed sufficiently slow to suppress motional

excitation. Thus, one might encounter the situation that the tilt is sufficiently well

compensated to allow for separation, but sufficiently low excitations cannot be obtained

irrespectively of the separation time and other control parameters. For small tilt

parameters, |γ| � γ̃, we can employ the perturbative expressions Eqs. 5.16, 5.17 of the

equilibrium positions to obtain

∂2xR,L
∂α2

=
∂2x0

∂α2
± 1

2

∂2d

∂α2
= γ

52 · 24/5

675β9/5κ6/5
± 2

25

(
4

β7κ3

)1/5

(5.31)

We can estimate the tilt parameter at which the acceleration of one of the ions is

twice as large as the tilt-free case determined by equation 5.27 to be about 67% of the

critical tilt γ̃. Due to the divergence of the acceleration at γ̃, we can expect the actual

67



5. Framework for Ion Crystal Separation

acceleration at this tilt value to be substantially larger, we thus conclude that a residual

tilt |γ| � γ̃ is required to realize crystal separation at low motional excitation. A

possible experimental scheme for this has been demonstrated in [Ebl10]: The separation

process is performed on a slow (second) timescale under continuous Doppler cooling

and detection. The ion positions are extracted from the camera image, and a deviation

of the center-of-mass from the initial value is restored by automatic adjustment of the

outer electrode differential voltage ∆UO.

5.3.3. Anomalous heating at the critical point

Micro-structured ion traps exhibit anomalous heating, i.e. the mean phonon number

increases due to thermalization with the electrodes at a timescale much faster than

predicted by the assumption that only Johnson-Nyquist noise is present [Bro15]. This

process can be modeled as ˙̄n = Γh, with the heating rate Γh(ω) = SE(ω)e2/4m~ω
where the spectral electric-field-noise density SE depends on the trap frequency ω. A

polynomial decrease SE ∝ ω−a is often assumed, where experimentally determined

values for the exponent a range from 0.5 to 2.5. Additionally, peaked features might

arise in the noise spectrum which are caused by technical sources. Moreover, the absolute

values of the heating rates strongly depend on the properties of the electrode surfaces.

Typical values at trap frequencies in the 1 MHz regime range from 0.1 to tens of phonons

per millisecond. As the trap frequency is strongly decreased around the CP, we can

expect a significant amount of excess energy after the separation caused by anomalous

heating, increasing for longer separation durations [Niz12]. We model this contribution

by integrating over a time dependent heating rate:

∆n̄th =

∫ T

0
Γh (ω(t)) dt. (5.32)

For the simulations that follow we will employ an experimentally determined relation

for trap A (section 5.2) which is Γh(ω) ≈ 6.3 · (ω/2πMHz)−1.81ms−1. This does not

depend on the geometry of trap A but on the properties of our trap apparatus.

In the case of imperfect control of the ion distance around the CP, section 5.3.1, or in

the presence of an uncompensated tilt, section 5.3.2, one will attempt to reduce the

motional excitation by separating very slowly. This might however be unsuccessful

as anomalous heating will strongly contribute to the energy gain at large separation
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times. Experimental procedures for ensuring a sufficient degree of control are therefore

ultimately required.

5.4. Voltage ramp design

In this section we explain our scheme for designing voltage ramps for the separation

process. Our intention is to provide a scheme which can be applied to any given trap

geometry. We do explicitly not rely on the precise knowledge of the electrostatic trap

potentials, but rather on quantities which can be measured with reasonable effort.

Furthermore, we describe how a single voltage level can be used as a tuning parameter

to achieve the optimum result. Our scheme assumes that the tilt potential is perfectly

compensated, γ = 0. We proceed as follows: We first describe how the segment voltages

are supposed to vary with the harmonicity parameter α, where we simply fix voltage

levels on a small set of mesh points. We then show how this is used in conjunction

with a chosen distance-versus-time and available distance-versus-α information to obtain

time-domain voltage ramps which can be employed in the experiment.

5.4.1. Static voltage sets

The calculation of suitable voltage ramps relies on the signs and on the magnitude

ordering of the geometry parameters. In Table 5.1 we list values for several different

micro-structured traps. We assume that any reasonable segmented trap geometry will

exhibit similar characteristics. From the results of section 5.3, it is clear that we desire

a large positive value of βCP . We assume that the voltages which can be applied to the

segments are limited by hardware constraints to the symmetric maximum/minimum

values ±Ulim. To achieve the largest possible β at the CP, we begin the separation

protocol by ramping the O segments to +Ulim, keep them at constant bias during around

the CP, and ramp them back to zero bias after the separation.

The CP is defined by the condition α = 0, which is accomplished by suitable voltages

UC,S . This leaves one degree of freedom, which can be eliminated by maximizing βCP .

We solve equation 5.3 for UC :

UC =
1

αC
(α− αOUO − αSUS) . (5.33)
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The largest possible βCP is then given by inserting this result into equation 5.4 and

setting U
(CP )
O = +Ulim, U

(CP )
S = −Ulim:

max
UC ,US

βCP =

(
βO +

βC
αC

αS − βS −
βC
αC

αO

)
Ulim (5.34)

Static separation voltage sets are obtained by fixing the initial, CP and final voltage

configurations and interpolating between these. The procedure consists of the following

steps:

1. Determine the initial αi > 0 from equation 5.3 using the initial voltages U
(i)
C < 0 V,

U
(i)
S = U

(i)
O = 0 V.

2. Choose the voltages at the CP such that the maximum βCP is attained, by

setting U
(CP )
O = +Ulim, U

(CP )
S = −Ulim and U

(CP )
C from equation 5.33 for α = 0.

If the geometry parameters are such that U
(CP )
C exceeds ±Ulim, set U

(CP )
C =

−Ulim and obtain U
(CP )
S solving equation 5.3 for US rather than UC . A variable

offset ∆U
(CP )
C is added to U

(CP )
C , which serves to guarantee that the CP voltage

set actually corresponds to α = 0. It is therefore a tuning parameter which

allows for compensation of imperfections. A similar technique has been employed

experimentally in [Bow12]. 3.

3. Determine the desired final voltages. We choose U
(f)
C = 0 V, U

(f)
S = U

(CP )
S = −Ulim

and U
(f)
O = 0 V. This choice is convenient when U

(i)
C ≈ −Ulim and ensures that

the ions are finally kept close to the respective centers of the S segments with a

trap frequency similar to the initial one. Obtain αf from equation 5.3.

4. For approaching the CP, αi ≥ α > 0, set

US(α) =

(
1− α

αi

)
U

(CP )
S (5.35)

and

UO(α) =

2
(

1− α
αi

)
Ulim α > αi

2

Ulim α ≤ αi
2

(5.36)

and obtain UC(α) from equation 5.33.

3If the magnitude of U
(CP )
S is chosen smaller than Ulim, this leads to smaller values of βCP and a larger

ion separation at the CP. This offers the possibility for well-controlled studies of the dependence of
the separation process on the quartic confinement at the CP.
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5.4. Voltage ramp design

5. Beyond the CP, 0 ≥ α ≥ αf , set

US(α) = −Ulim (5.37)

and

UO(α) =

Ulim α >
αf

2

2
(

1− α
αf

)
Ulim α ≤ αf

2

(5.38)

and obtain UC(α) from equation 5.33.

5.4.2. Time domain ramps

We now show how to design suitable time-domain voltage ramps Un(t) that will assure

well-controlled separation. It has been shown in section 5.3.1 that a small value of the

acceleration at the CP, d̈CP , is required for achieving a low energy transfer. This in turn

is guaranteed by well-controlled variation of the distance d(t) throughout the separation

process. As d(α) is monotonically decreasing with α, it can be inverted to obtain α(d)

which is used to compute the final voltage ramp as Un(α(d(t))) (see figure 5.6.).

Possible choices for d(t) are a sine-squared ramp

d(t) = di + (df − di) sin2

(
πt

2T

)
(5.39)

or a polynomial ramp

d(t) = di + (di − df )

(
−10

t3

T 3
+ 15

t4

T 4
− 6

t5

T 5

)
(5.40)

Both ramps fulfill d(0) = di, d(T ) = df , ḋ(0) = ḋ(T ) = 0. The polynomial ramp, used in

the following, additionally fulfills d̈(0) = d̈(T ) = 0, while the second derivative of the

sine-squared ramp displays discontinuities. However, these features presumably play

no role in experiments, as the voltage ramps are generally subject to discretization and

filtering. Different methods can be employed for the determination of d(α):

• The equilibrium distance can be computed by employing realistic trap potentials

from simulation data, using the voltage configuration pertaining to a given α as

determined by the static voltage sets Un(α). This method requires the simulated

potentials to match the actual trap potential with great precision.
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Figure 5.6.: Voltage ramp transfer to the time domain. Note that all four axes pertain to
different quantities, and that the axis pointing downwards goes to increasing distances.
The reading direction is clockwise, starting in the bottom right corner: A predefined
time-to-distance function d(t) shown in panel a) is used in conjunction with α-to-distance
information α(d) shown in b) to determine the time-dependent electrode voltages Un(t)
using the static voltage sets Un(α) from panel c). The resulting ramps Un(t) are shown in
d). The dashed curves are corresponding to the case when the voltage ramps are calculated
according to the presented method, but realistic trap potentials from simulations are
used to determine df and d(α). The dashed arrows exemplify how a specific value UC is
obtained.

• The equilibrium distance can be computed using values from calibration measure-

ments for the coefficients αn, βn. This circumvents the need for simulations and

accounts for parameter drifts. It only yields valid values for distances which are

small compared to the electrode width, however we will show in section 5.5 that

this procedure yields useful voltage ramps.

• Ion distances can be measured by imaging the ion crystal on a camera, while

voltages configurations for decreasing α values are applied. This is the most direct

method, as the ion distance in image pixels can be gauged by measuring the trap

frequency from resolved sideband spectroscopy [Jec11]. The imaging magnification

is determined from the trap frequency by using d =
(

2eκ
mω2

)1/3
. This method

benefits from the accuracy of resolved sideband spectroscopy, which is typically

between 10 kHz and 100 Hz.
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5.5. Simulation results

5.5. Simulation results

In order to analyze the sensitivity of the separation process and the performance of our

ramp design protocol, we numerically solve the classical equations of motion. For the

time- and energy-scales and potential shapes under consideration, we expect quantum

effects to play no significant role. For the case of single-ion shuttling, the occurrence of

quantum effects is thoroughly discussed in [Für14].

We perform the simulations using either the Taylor approximation of the potentials or

the realistic potentials from electrostatic simulations [Sin10] for trap A, which is similar

to that described in [Sch08]. The voltage ramps Ui(t) are used in conjunction with the

potentials to yield the equations of motion for the ion positions x1 < x2. Employing the

Taylor approximation potential equation 5.1, these read

−mẍ1,2 = 4β(t)x3
1,2 + 2α(t)x1,2 + γ ± κ

(x2 − x1)2
, (5.41)

where the coefficients are given by using the voltage ramps in Eqs. 5.3, 5.4, 5.5. For

realistic trap potentials, we obtain

−mẍ1,2 =
∑

n=C,S,O

Un(t)
dφn
dx

∣∣∣∣
x1,2

± κ

(x2 − x1)2
(5.42)

The possibility to perform the simulations with approximate and realistic potentials

serves the purpose of verifying the performance of the voltage ramps. These are de-

termined purely by trap properties around the CP, which are conveniently accessible

by measurements. More precisely, the time-domain voltage ramps are based on a d(α)

dependency given by the Taylor approximation potential according to figure 5.6, while

the resulting energy transfer pertaining to these ramps can be obtained from simulations

using realistic potentials.

Note that a nonzero tilt can be present in the simulations based on the realistic potentials

by summing separately over electrodes OL and OR and adding the differential voltage

±∆UO given by γ/γO accordingly. The calculations presented here employ the mass of
40Ca+ ions which we use in our experiments, and all simulations were performed for a

limiting voltage range Ulim = 10 V.

Eqs. 5.41 or 5.42 are solved numerically using the NDSolve package from Mathematica,

with the ions starting at rest. The final oscillation of each ion around its equilibrium

position is analyzed and yields the energy transfer expressed as the mean phonon number
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5. Framework for Ion Crystal Separation

n̄ = ∆E/~ωf . We distinguish several regimes of laser-ion interaction: i) If the vibrational

excitation becomes so large that the average Doppler shift per oscillation cycle exceeds

the natural linewidth of a cycling transition, ion detection by counting resonance fluores-

cence photons will be impaired. ii) Measurement of the energy transfer i.e. by probing

on a stimulated Raman transition [Wal12] typically requires mean phonon numbers

below about 300. iii) The Lamb-Dicke regime of laser-ion interaction, where coherent

dynamics on resolved sidebands can be driven [Lei03a] is typically attained below about

10 phonons. The borders between these regimes depend on the trap frequency, ion mass

and the specific atomic transitions to be driven, thus the regimes are indicated as broad

gray bands in figure 5.7. Note that if final excitations in the measurable regime are ob-

tained, an electrical counter kick can be applied for bringing the oscillation to rest [Wal12].

5.5.1. Dependence on separation time

We first analyze the dependence of the energy transfer on the duration of the separation

process T , the result is shown in figure 5.7. The calculation is carried out for the ideal

case of perfectly compensated potential tilt. We see that the final excitation becomes

sufficiently low to remain in the Lamb-Dicke regime for typical laser-ion interaction

settings at times larger than about 40 µs, which clearly outperforms the näıve approach

of voltage interpolation from section 5.3.1.

We also take into account increased anomalous heating around the CP by employing the

averaged heating rate according to equation 5.32. We see that for our specific heating

rates, the limit of about one phonon per ion can not be overcome, but as the anomalous

heating contribution is scaling as T , the separation result becomes rather insensitive

with respect to the precise choice of the T for T & 50 µs.

The simulation results verify our approach of calculating the voltage ramps using the

Taylor approximated potentials. One recognizes that the resulting energy transfer in this

case is larger by a factor of about two throughout the entire range of separation durations.

This is due to the fact that the Taylor expansion leads to deviating voltages pertaining

to the CP, which are sufficiently strong to increase the acceleration as explained in

section 5.3.1. The discrepancy becomes irrelevant for separation times larger than

T = 60 µs. At around 60 to 70 µs the oscillatory excitation becomes smaller than

n̄ = 0.1, corresponding to the limit we can currently resolve in our experiment. The

slight inaccuracy for low phonon numbers is due to numerical artifacts. Even lower
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5.5. Simulation results

energy transfers at shorter T could possibly be achieved by ramp engineering, i.e. by

the application of shortcut-to-adiabaticity approaches [Für14; Pal13].
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Figure 5.7.: Energy transfer versus separation time: Oscillatory (red) and thermal ex-
citation (blue), and the sum of both (black) versus the separation duration T . The
solid lines correspond to the calculation using the Taylor approximation, the dashed
lines correspond to the full potential calculation, see text. Grey bands seperate different
regimes of laser-ion interaction, see text. The thermal excitation was deduced from
experimental heating rate data according to section 5.3.3. The inset shows the trap
frequency (black) and the corresponding heating rate (red) as a function of normalized
time during the separation process.

5.5.2. Sensitivity analysis

Two crucial parameters for the separation operation are the offset voltage at the CP

∆U
(CP )
C and the potential tilt γ. Small variations of these parameters lead to strong

coherent excitations as shown in figure 5.8.

The CP voltage offset ∆U
(CP )
C serves both for modeling and compensation of inaccuracies

of the trap potentials, leading to a wrongly determined CP voltage configuration and

therefore to increased acceleration. It is implemented into the simulations by just adding

it to U
(CP )
C as determined by equation 5.33 in the calculation of the static voltage sets.
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Figure 5.8.: Mean coherent excitation as a function of the offset voltage at the center
segment at the CP (a) and the tilt force γ (b). The tilt voltage +∆UO is applied to the
right outer segment and −∆UO is applied to the left outer segment. The mean phonon
number for the right ion is depicted by dashed lines and by solid lines for the left ion.
The curves correspond to different separation times: T = 60µs (green), T = 40µs (black),
T = 20µs (red). The critical tilt is at γ̃ = 3 V/m.

We see that even for sufficiently slow separation, the Lamb-Dicke regime can only be

attained if this voltage offset, and therefore the CP voltages in general, are correct

within a window of about 20 mV, on the other hand it becomes clear that this voltage

serves as convenient fine tuning parameter. The minimum excitation does not occur at

∆U
(CP )
C = 0, but is slightly shifted to positive values.

This can be understood by considering that |α̇|CP is increased for any ∆U
(CP )
C 6= 0, but

α̈CP is decreased for ∆U
(CP )
C > 0. With ∂d/∂α, the second term in equation 5.26 leads

to a reduced total acceleration for small positive ∆U
(CP )
C . Larger values again lead to

increased acceleration because of a smaller βCP value. All other calculations in this

work are done using ∆U
(CP )
C = 0.

For the case of an uncompensated tilt γ′, we observe an even stronger dependence of the

energy transfer. Fine tuning of the voltage difference on the outer segments ∆UO on

the sub-mV level is required to reach the single phonon regime. Moreover, we observe

that moderate uncompensated potential tilts reduce the energy transfer to one of the

ions, as its CP acceleration is reduced by a more smooth x(α) dependence. This might

be of interest for specific applications where only the energy transfer to one of the ions

is of importance.
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5.5. Simulation results

5.5.3. Dependence on the limiting voltage

Finally, we study the dependence of the energy transfer on the limiting voltage Ulim.

We find that by increasing the voltage limit, beyond Ulim = 10 V used so far, we can

obtain lower coherent excitations as shown in figure 5.9.
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Figure 5.9.: Dependence on the voltage limit: Oscillatory excitation as a function of
the maximum voltage on the outer segments with all other limiting voltages remaining
unchanged. The curves correspond to different separation times: T = 40µs (green),
T = 30µs (black), T = 20µs (red).

For this simulation, only the maximum voltage on the outer segments (max UO) is

increased and all other limits remain unchanged. We infer that by increasing the voltage

limit on these electrodes up to about 50 V, one can reduce the mean phonon number

by a factor of ≈ 8 for T = 60µs. For lower separation durations the enhancing factor

becomes slightly smaller.

Conclusion

We have pointed out the pitfalls for ion crystal separation: Uncontrolled separation and

uncompensated background fields lead to enhanced acceleration of the ions when the

single well potential is transformed into a double well, which would require separation

times in the millisecond range to keep the motional excitation near the single phonon

level. This in turn leads to strong anomalous heating due to the reduced confinement
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5. Framework for Ion Crystal Separation

during the separation process. We presented a framework to design voltage ramps which

allow for coping with these problems. The scheme does only rely on measured calibration

data which is obtained for the initial situation, where the ions are tightly confined in a

single potential well. We carried out simulations, which elucidate the energy transfer

mechanisms, and verify the performance of our scheme for the voltage ramp calculation.

We showed that excitations near the single phonon level can be obtained for the

specific trap apparatus we use. Furthermore, we analyzed the suitability of different trap

geometries for ion crystal separation by means of electrostatic simulations. We concluded

that crystal separation becomes easier for smaller trap structures, and that dedicated

optimization of the geometry can be helpful. In future work, we envisage to analyze how

crystal separation can be performed on faster timescales by using shortcut-to-adiabaticity

approaches, with an emphasis on robustness against experimental imperfections.
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6
Experiment Characterization

High fidelity quantum logic operations impose stringent requirements on noise suppression

and accurate control. As the entangling quantum gate for two ions is carried out on a

shuttling-insensitive radial mode of motion, the requirements on this particular mode are

high. In this chapter, the stability and control of the motional modes are investigated.

Specifically the ground state cooling, the heating rate, the long- and short-term stability

of the modes are characterized. Additionally the performance of the optical setup is

assessed.

6.1. Ground state cooling and motional heating

A trapped ion resembles a single elementary charge, which is typically located some tens

or hundreds of micrometers from the trap surface. Electric field fluctuations, generated

on the surface, can excite the motional modes of an ion – this effect is commonly

referred to as anomalous heating. Contrary to technical noise on the electrodes, which

originates from the electrical circuitry around the trap, the origin of anomalous heating

is not clear [Bro15; Hit13]. Contaminants on the surface are likely to be responsible for

the effect, as two research groups have demonstrated reduction of heating by in-situ

cleaning of the trap surface via ion bombardment [Hit12; Dan14]. Cooling the ion trap

to cryogenic temperatures can also substantially reduce the heating rate [Des06; Lab08].

Both approaches involve significant additional experimental effort. We aim at achieving

sufficiently low heating rates at decent technological overhead. In particular, our trap is

coated with a 8 µm layer of gold. This is empirically known to yield heating rates in the

few phonons per second regime for comparable traps [Bla10; Kie15].

A single ion is used as a probe for the anomalous heating on the three motional modes

ωx,y,z at frequencies 2π × {1.5, .3.7, 4.6} MHz. Initially, the ion is cooled close to the
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6. Experiment Characterization

ground state of motion by initial Doppler cooling and subsequent resolved sideband

cooling. Analysis of the mean phonon number n̄ is provided by a resolved-sideband

method, which is based on phonon-number-dependent coupling strengths of three

transitions, see section 2.3: carrier (car), blue sideband (bsb) and red sideband (rsb).

Probing these transitions with variable pulse time yields Rabi oscillations, which are

employed to deduce the mean phonon number from a fit, see appendix B.1. An example

for an axial motional mode, which is cooled close to the ground state by the laser beams

R1 and R2, is given in figure 6.1.
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Figure 6.1.: Rabi oscillation data for the axial mode of vibration and the correspond-
ing carrier transition of a single ground-state-cooled ion. Probing the bsb (blue), rsb
(red) and carrier (green) transition yields a mean phonon occupation number of only
n̄ = 0.014(2) from a fit (dashed line). The base Rabi frequency is determined to be
ΩR/2π = 67.8 kHz and the Lamb-Dicke parameter is η = 0.203. The axial trap frequency
is ωx/2π = 1.487 MHz. Each data point corresponds to 100 measurements, error bars
correspond to the standard error from binomial readout statistics.

Sideband cooling in this experiment is performed on the axial mode only, the radial

modes are Doppler cooled. The cooling sequence in this example is comprised of 110

cooling pulses, where the first 15 pulses are applied to the second red sideband right after

Doppler cooling to remove two phonons with a single pulse. The subsequent pulses are

applied on the first red sideband, and the pulse duration is increased for the last cooling

pulses as the mean Rabi frequency decreases with decreasing temperature. A single

cooling pulse takes on average 19 µs, after each pulse a 2 µs optical σ+ pumping pulse

is applied. Including short switching delays, the total time for the resolved sideband

cooling sequence in this case is 2.4 ms. The cooling sequence in this example is optimized

for a low mean phonon number, the duration is not optimized. However, we achieve
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6.1. Ground state cooling and motional heating

comparable results with mean phonon numbers n̄� 1, with less pulses. Thus, in future

experiments, the thermal occupation after initial Doppler cooling should be analyzed

and, if necessary, optimized. Furthermore, sideband cooling efficiency could be increased

by increasing the duration of concatenated cooling pulses continuously. Currently, the

pulse duration is increased in only three to four steps. A viable alternative to resolved

sideband cooling would be sympathetic electromagnetically-induced-transparency laser

cooling [Lin13].

For the shuttling-insensitive quantum gate, which is conducted on the radial modes of

motion, it is necessary to cool the radial modes close to the ground state, see figure 6.2.
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Figure 6.2.: Rabi oscillation data for the radial vibrational modes in the ground state
of motion – (a): ωy and (b): ωz. The carrier transition data (c) correspond to the ωy
measurement and is virtually identical for the ωz measurement where slightly different
cooling pulses are used. The frequency of the ωy-mode is 2π×3.739 MHz – a fit yields
a mean phonon number of n̄ = 0.023(6), a Lamb-Dicke parameter of η = 0.077 and
a base Rabi frequency of ΩR/2π = 99.1 kHz. For the ωz-mode at 2π×4.591 MHz, the
estimated mean phonon number n̄ = 0.012(4) is lower and the parameters η = 0.087 and
ΩR/2π = 97.9 kHz are similar. Each data point corresponds to 100 measurements, error
bars correspond to the standard error from binomial readout statistics.

The laser beams R1 and R4 are employed to create an effective k-vector in the radial

direction, which couples to both radial modes ωy and ωz. Thus, the Rabi oscillations on

each mode are affected by the temperature of the other spectator mode, see appendix B.1

for a theoretical description. To precisely determine the mean phonon number, both

radial modes are cooled with resolved sideband cooling. In the ωy-mode measurement,

cooling is performed with 70 cooling pulses on the probed mode and 20 pulses on the

spectator ωz-mode. The total duration of the cooling sequence is 2.5 ms. In the ωz-mode
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measurement, cooling is performed with 120 cooling pulses on the probed mode and 20

pulses on the spectator ωy-mode. The total duration of the cooling sequence is around

3.7 ms. As in the axial cooling sequence, the cooling duration is not optimized and can

be improved by the aforementioned measures. Compared to the axial mode, the radial

mode frequencies are substantially higher and the mean phonon number after initial

Doppler cooling is lower, see section 2.1.1. For the ωx,y,z-modes a theoretical Doppler

limit of n̄ = {7.3, 2.6, 2.0} is calculated. However, due to the smaller Lamb-Dicke factor

η, an increased laser intensity is required, compared to the axial modes of motion, to

achieve a similar base Rabi frequency.

To measure the heating rate, all lasers are switched off for a variable idle time once

a motional mode is prepared in the ground state. Subsequently, the increased mean

phonon number is determined with the described method. The result for the heating

rate measurement of the three center of mass modes is shown in figure 6.3.

In contrast to the axial mode, the radial modes are additionally excited by electric field

noise between the RF and DC electrodes, which originates from fluctuating voltages.

Therefore, the radial modes are more sensitive to technical noise, and careful wiring of the

experimental apparatus yields heating rates of the radial modes, which are comparable

to the low heating rate on the axial mode. Considerable effort was devoted to ensure

this, since the radial quantum gate is carried out on one of the radial modes of vibration.

The spectral density of electric field noise SE is computed from the heating rate ˙̄n by

the following relation [Bro15]

SE(ωi) = ˙̄n
4mI~ωi
e2

(6.1)

where mI is the mass of a 40Ca+ ion of 6.636× 10−26 kg, ωi is the angular frequency of

a motional mode and e is the elementary charge. By computing this quantity for our

results, we find, that the spectral density of electric field noise on the two modes ωx and

ωz is comparable. The spectral noise density on the ωy-mode is about five times higher

than on the other two modes, which is attributed to pronounced technical noise in the

y-direction (DC electrode direction).

We employ the spectral noise density, to compare our results to other experiments, where

different ion species and trap frequencies are used. An extensive review and analysis

of experimental data of anomalous heating in ion traps is provided in [Bro15]. The

heating rate of a trapped ion typically decreases with the temperature of the trap surface,

increases with a lower ion distance from the trap electrodes and decreases for higher

82



6.1. Ground state cooling and motional heating
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Figure 6.3.: Measured heating rate of the motional modes ωx,y,z in the laser interaction
zone (LIZ), which corresponds to electrode 20. The axial mode ωx corresponds to red
red data points, blue data points are measured on the radial ωy-mode and green data
points belong to the radial ωz-mode. Error bars correspond to the standard error of the
parameter estimate. A linear weighted least square fit yields the heating rate of each
mode, the results are summarized in table 6.1.

mode ω/2π (MHz) η n̄min ˙̄n (1/sec) SE (V2/m2Hz)

ωx 1.487 0.203 0.014(2) 7.9(2) 8.1(2)× 10−14

ωy 3.739 0.077 0.023(6) 19(2) 4.9(5)× 10−13

ωz 4.591 0.087 0.012(4) 2.9(7) 9(2)× 10−14

Table 6.1.: Characteristic data for the center of mass modes in the axial directions ωx
and the radial direction ωy,z. The measurements for the Lamb-Dicke parameter η and
the smallest obtained mean phonon number n̄min are shown in figure 6.1 and 6.2. A
spectroscopic measurement is utilized to determine the trap frequencies with precision
below 1 kHz. The heating rates ˙̄n and the spectral density of the electric field noise SE
are determined from a linear fit to the experimental data, see figure 6.3.

trapping frequencies. Different scaling laws for these parameters have been calculated

and observed in experiments, which support or rebut various proposed origins of the

noise. The topic is complex and multifaceted and thus requires further experimental

and theoretical investigation, to better understand the origin of the anomalous heating

in ion traps.

We compare our results to other ion traps operated at room temperature and comparable

trapping frequencies. The distance of a single ion in our trap from the trap electrodes is

230 µm. Compared to similarly sized traps the spectral noise density i.e. the heating rate

of the trap is very low. In fact, lower spectral noise densities at room temperature were

83



6. Experiment Characterization

only achieved in ion traps which are more than 3.4 times larger than our trap [Ben08;

Hom06b; Pou12]. In traps with small electrode-ion distances, low heating rates are

achieved by cryogenic setups [Nie14; Chi14] or in situ cleaning of the trap surface [Dan14;

McC15b].

The low heating rate of the ion trap allows for a long series of excitation-sensitive

quantum operations without additional experimental overhead.

6.2. Stability of the radial potential

The stability of the radial motional modes is crucial to our approach for a scalable

quantum computation architecture since one of these modes is used for the entangling

gate operation. Thus, the radio frequency supply voltage of the ion trap is actively

stabilized as described in section 4.3. The active regulation needs to provide decent

stability on a short timescale, for sufficient motional coherence – to allow for high fidelity

entangling gates, as investigated in section 6.3 – and on a long timescale to significantly

reduce the calibration overhead during the experiments. In this section, the long term

stability of a radial mode is characterized. To determine the frequency of the motional

transition more precisely than a conventional spectroscopic measurement, a Ramsey

spectroscopy experiment is carried out [Let04; Rus12].

Initially, the ion is cooled to the ground state of motion of both radial modes. A

π/2-pulse on the blue sideband, followed by a Ramsey delay time and a final π/2-pulse

(+90° phase shift) on the blue sideband comprise the experimental sequence. A second,

almost identical, experiment is conducted, where the phase shift of the final π/2-pulse is

−90°. The two experiments are executed alternately – the difference of the two signals

is proportional to a phase φ, when the detuning from resonance is small. The phase is

employed to determine the deviation from the resonance frequency ∆ωbsb = φ/T , where

T is the Ramsey delay time. Repeating this experiment over several minutes allows

us to analyze the stability of the mode. However, the measured quantity ∆ωbsb is also

affected by drifts of the carrier transition which are caused by drifts of the quantizing

magnetic field. To isolate this effect, a measurement of the carrier transition detuning

∆ωcar is carried out after each measurement of the blue sideband detuning. Calculating

the difference of the two measurements serves to determine the stability of the radial

secular mode ∆ωz(t) = ∆ωcar(t)−∆ωbsb(t).

The achievable measurement precision is limited by binomial shot-noise of the Ramsey
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6.2. Stability of the radial potential

measurements. Thus, it is desirable to use long Ramsey delay times, as the accumulated

phase is proportional to T and the measurement sensitivity is improved. However,

motional decoherence reduces the Ramsey contrast on the blue sideband for large delay

times, see section 6.3. To account for this, the phase is calculated by φ ≈ arcsin(b/c),

where b is the difference of the two measured signals (+90° and −90°-trace) and c is the

Ramsey contrast. Measurement errors are derived with Gaussian error propagation from

this relation. Consequently, a reduced contrast impairs the measurement sensitivity and

we use a delay time of 1 ms in this measurement.

The corresponding data for the entangling gate mode ωz with active stabilization is

shown in figure 6.4.
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Figure 6.4.: Measurement of the frequency stability of the radial secular mode ωz, at an
absolute frequency of ωz/2π = 4.434 MHz, with active RF voltage stabilization. The
data in the top panel shows red data points for ∆ωcar and blue data points for ∆ωbsb.
Black data points in the lower panel show the secular frequency deviation ∆ωz, which
is calculated from the difference of the data in the top panel, to correct for the drift of
the magnetic field that affects ∆ωcar. The Ramsey delay time for this measurement is
1 ms. Each data point corresponds to 2× 50 single measurements, where each of the two
Ramsey sequences is executed 50 times.
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6. Experiment Characterization

For a measurement time over three hours with active stabilization, the secular frequency

exhibits excellent stability. The measurement is not shot-noise limited and minor

frequency fluctuations are observed. The drift of the carrier transition frequency is

around 2π×40 Hz per hour, which is small, compared to the absolute Zeeman splitting

of about 2π×10.5 MHz. It is suspected to be caused by thermal fluctuations near the

permanent magnets, which generate the magnetic field. During all experiments, the

magnetic shielding is closed, to ensure thermal stability of the RF electronics, which are

close to the vacuum chamber.

To investigate the quality of the active RF stabilization further, a measurement without

stabilization is carried out – the results are illustrated in figure 6.5. The instabilities are
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Figure 6.5.: Measured frequency stability of the radial secular mode ∆ωz without active
stabilization (red data points). The trap frequency is ωz/2π = 4.878 MHz. Black data
points correspond to the data for ∆ωz with stabilization, as shown in figure 6.4, where
ωz/2π = 4.434 MHz. The measurement is performed in the same fashion, as with active
stabilization. The carrier frequency is drift free for the short time interval, thus only
the ∆ωz trace is shown. The Ramsey delay time in this measurement is 100 µs. Each
measurement corresponds to 2× 50 single measurements, where each of the two Ramsey
sequences is executed 50 times.

significantly larger, sudden drifts of around 6000 Hz within 2 minutes are observed.

To analyze the frequency stability of the ion oscillation, the overlapping Allan variance

is calculated [How81; Ril08]. From a set of M frequency measurements fi, which are

individually sampled from a time interval τ0, it is given by

σ2
y(τ) =

1

2m2(M − 2m+ 1)

M−2m+1∑
j=1

j+m−1∑
i=j

fi+m − fi

2

(6.2)
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6.2. Stability of the radial potential

with τ = τ0 ·m, where m is an integer and is denoted as averaging factor. Specifically, a

frequency measurement fi corresponds to a single measurement of ∆ω(t)/2π, which is

the mean of 100 single measurements – each with a Ramsey delay time of 1 ms. Thus, a

single measurement fi corresponds to a sample time interval of τ0 = 1 ms ·
√

100 = 10 ms.

However, it takes around 2.1 s in practice to carry out the 100 single measurements due

to state preparation, laser cooling and fluorescence readout. The corresponding data for

the Allan deviation
√
σ2
y(τ) is shown in figure 6.6.
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Figure 6.6.: Overlapping Allan deviation of the radial secular frequency measurement with
(left) and without (right) active RF level stabilization. Green data points correspond to
∆ωcar/2π, blue data points to ∆ωbsb/2π and red data points to the difference of both
∆ωz/2π. The data with stabilization is taken from a three hour measurement with 1 ms
Ramsey delay time, see figure 6.4. Data without stabilization is taken from a one hour
measurement with 0.1 ms Ramsey delay time, see figure 6.5.

As the carrier frequency measurement is shot-noise limited, it becomes more precise

for longer averaging, which corresponds to larger τ . After a minimum is reached

around 2π×4 Hz, the drift is clearly observable in the Allan deviation. The sideband

measurement is not shot-noise limited, thus the Allan deviation does not decrease for

increased averaging. For longer averaging times, the frequency drifts along with the

carrier frequency. For the difference signal, which corresponds to the radial secular trap

frequency ωz, no drift is observed. Thus, the drift of the blue sideband for τ > 1 s is

entirely caused by the carrier drift.

The radial frequency ωz is stable below 2π×20 Hz for long averaging times τ which

corresponds to a relative frequency stability of about 5 ppm over three hours. A similar

value is achieved when only evaluating one hour of the data to make it comparable to the

non-stabilized measurement. We consider the frequency stability of the RF electronics,
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6. Experiment Characterization

which drive the AOMs, to be better than the measured mode frequency stability.

Without stabilization, we estimate the motional frequency stability to be around

2π×1000 Hz. Since the radial secular frequency is proportional to the RF voltage,

we estimate the voltage amplitude fluctuations to be reduced by a factor of 50, which

corresponds to a 34 dB reduction in the level of trap frequency voltage noise and drift.

Comparable results are achieved in [Joh16]. In conclusion, the radio frequency potential

is sufficiently stabilized on long timescales, to allow for high fidelity entangling gates

with virtually no need for recalibration of the trap frequencies.

6.3. Motional coherence

For a high fidelity geometric phase gate, it is necessary to prevent motional dephasing

of the gate mode during the gate duration, when spin and motion are entangled. In

order to characterize the motional coherence time a Fock state Ramsey experiment

is conducted [Tur00], which produces a superposition state of the type |↓〉 (|n = 0〉 +

|n = 1〉). The motional coherence time of this state is limited by the inverse heating

rate. Additionally, fluctuations of secular trap frequencies lead to a faster decay.

The experiment is conducted as follows: Initially, a single ion is prepared in the ground

state of motion |↑〉 |n = 0〉 and transferred by a π/2-pulse on the carrier transition (R1,CC

laser beams) to the spin superposition state |↑〉 |n = 0〉+|↓〉 |n = 0〉, normalization factors

are omitted. A π-pulse on the red motional sideband produces the desired Fock state

superposition |↓〉 (|n = 0〉+ |n = 1〉). The state evolves freely during a given wait time

and then, the sequence is carried out in reversed order with a π-pulse on the red sideband,

followed by a π/2-pulse on the carrier transition. The phase of the final π/2-pulse is

scanned to produce a sinusoidal signal, which determines the Ramsey contrast and thus

the motional coherence between the states (|n = 0〉 and |n = 1〉). A reduced measurement

scheme allows us to obtain the contrast, by only measuring the phases 0 and π/2 which

corresponds to the operators σx and σy on the Hilbert space, spanned by |n = 0〉 and

|n = 1〉. The Ramsey contrast is then given by 2 ·
√

(σPx − 1
2)2 + (σPy − 1

2)2, where σPi
is the measured probability for the σi operator. Measurement errors are calculated via

Gaussian error propagation from this formula, where errors ∆σPx correspond to the

standard error from binomial readout statistics. The measurement results for all three

motional modes are shown in figure 6.7. For uncorrelated Gaussian phase noise, the

contrast exhibits an exponential decay [Tur00]. When correlated noise is introduced and
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Figure 6.7.: Measurement of the motional coherence of the axial mode ωx (a), the lower
radial mode ωy (b) and the higher radial mode ωz (c). The experiment is triggered to
the AC line for the measurements, data without triggering is shown in appendix A. The
red line corresponds to a weighted least square fit of the form f(t) = A exp(−γt− γ22t2),
the obtained parameters and coherence times are summarized in table 6.2. Each data
point corresponds to more than 2× 600 measurements.

the noise is not pure Gaussian noise, the decay function becomes more complex [Cyw08].

To account for correlated phase noise, the fit function is not a pure exponential decay

but is of the type e−γt−γ
2
2 t

2
. The coherence time τ1/e is determined from the crossing of

the weighted least square fit with the 1/e threshold and the uncertainty is determined

from the crossing of the 68% confidence bands of the fit function with that threshold.

The axial vibrational mode ωx features a long coherence time of around 60 ms, which

corresponds to about 60% of the theoretical limit given by the heating rate. Carrying

out the sequence without triggering to the AC line yields a comparable coherence time,

which leads to the conclusion that the axial mode is only marginally affected by 50 Hz

noise. We conclude, that the DC voltage supply is stable and features low noise.

In contrast, the radial modes ωy and ωz are affected by 50 Hz noise, since the coherence

time is increased by a factor of 20, when the experiment is triggered to the AC line. With

triggering, the coherence time of the ωy-mode is extended to 4.4 ms and the ωz-mode

to 6.5 ms. These values correspond to about 15% respectively 5% of the heating-rate-
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6. Experiment Characterization

induced limit.

The decay curves are more similar to a Gaussian decay which is an indicator for

correlations in the noise present in the system, rather than pure Gaussian uncorrelated

phase noise. Furthermore, the ratio between the Gaussian and exponential fit parameters

γ2/γ is 0 for the axial modes and around 2 for the radial modes. Thus, the pronounced

motional decoherence on the radial modes seems to be caused by correlated noise.

mode ωx ωx ωy ωy ωz ωz

ω/2π (MHz) 1.487 1.487 3.592 3.592 4.473 4.473

AC trigger - enabled - enabled - enabled

τmeas1/e (ms) 58.7(9) 58(1) 0.248(4) 4.39(6) 0.323(7) 6.47(7)

τ theo1/e (ms) 102 102 30 30 121 121

γ/103 (Hz) 0.017(1) 0.017(1) 1.5(2) 0.10(1) 1.0(2) 0.054(5)

γ2/103 (Hz) 0 0 3.2(1) 0.168(7) 2.5(1) 0.124(4)

γ2/γ 0 0 2.1 1.7 2.5 2.3

Table 6.2.: Coherence times τmeas1/e obtained from a fit to the experimental data. A

theoretically obtainable coherence time τ theo1/e is determined from the inverse heating rate
measured on that day. Fit parameters γ and γ2 belong to the nonlinear fit for the Ramsey
contrast f(t) = A exp(−γt− γ22t2).

Radial trap frequencies in our ion trap are less sensitive to relative RF voltage amplitude

fluctuations, than axial trap frequencies are sensitive to relative DC voltage amplitude

fluctuations. The RF amplitude is actively stabilized during the measurements. However,

generating a stable RF voltage with an amplifier and a helical resonator is challenging.

Stability on short timescales should be improved in the future, whereas the long-term

stability of the RF potential is excellent, as measured in section 6.2. The achieved

coherence time for the radial gate mode ωz is sufficient to perform a high fidelity quantum

gate on this mode, as demonstrated in section 8.4. However, a longer coherence time

will allow for higher gate fidelities, as calculated in appendix B.3.

6.4. Magnetic field gradient

For scalable quantum logic operations in our architecture, the ions are moved along

the trap axis. During these operations the qubits are often in spin superposition states
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6.4. Magnetic field gradient

of the type |↑〉+ eiφ |↓〉 – precise knowledge and control of the phase φ is crucial for a

high quality of concatenated quantum operations. Due to space limitations from the

magnetic shielding enclosure, the permanent magnet coils, which generate the magnetic

field, are not set up in a Helmholtz configuration. Thus, the absolute B-field is not

homogeneous along the trap axis. Qubits in a superposition state traveling through this

magnetic field will accumulate a phase, which needs to be characterized and corrected in

the experimental sequence. To measure the magnetic field along the trap axis, a Ramsey

experiment is carried out [Bla09]. A single ion is initialized in the laser interaction zone

(LIZ: electrode 20) by a π/2 pulse on the R1-CC carrier transition to a spin superposition

state and then moved along the trap axis to position x. A variable hold time leads to a

phase accumulation, which is proportional to the difference of the Zeeman splitting in the

LIZ and the local Zeeman splitting at the axial location x. Subsequent shuttling to the

LIZ followed by a π/2 with phase 0° for the σx operator or 90° for the σy operator allows

the determination of the accumulated phase. Details on this method and applications for
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Figure 6.8.: Measurement of the difference in Zeeman splitting ∆ωZeeman with respect to
the LIZ along the 32 DC trap electrodes. The magnetic field inhomogeneity is caused by
magnetic coils, which are not set up in a Helmholtz configuration. Error bars are too
small to be indicated in this image. Scalable quantum logic experiments presented in this
thesis are conducted by shuttling ions between electrodes 11 and 29.

precision magnetometry measurements, which are conducted in our setup, are published

in [Rus17]. The results for the measured magnetic field along the trap axis are shown in

figure 6.8. Frequency deviations of several kilohertz are observed within the relevant

position range for the quantum information experiments. Thus, even short storage times

in the quantum logic sections lead to a considerable phase accumulation, which needs to
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6. Experiment Characterization

be corrected, to maintain the quality of the concatenated quantum logic operations. A

detailed explanation on how this is applied in practice is provided in section 8.5.

6.5. Optical performance

Driving high fidelity single-qubit rotations requires a stable optical Raman laser beam

setup. Specifically, laser beam intensity, beam pointing, beam polarization and the rela-

tive optical phase between individual beams need to be precisely controlled. The optical

components are installed in a compact configuration in an enclosure – see section 4.2

– and the laser beams are sent via optical single mode fibers to the vacuum chamber,

which improves beam pointing stability with respect to a free space configuration. To

drive single-qubit rotations between the states |↑〉 and |↓〉 the co-propagating laser beams

R1 and CC are employed, which do not couple to the ion motion and thus do not require

ground state cooling. The results for driving many of these transitions are shown in

figure 6.9.
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Figure 6.9.: Single-qubit rotations driven by the co-propagating Raman laser beams R1
and CC. Integer numbers indicate full 2π rotations from 1 to 100. Each data point is
the mean of 100 single measurements, error bars correspond to the standard error from
binomial readout statistics. A weighted least square fit of the type A

2 · cos(ωt− π) + c
is applied and yields the fit parameters amplitude A = 1.0, center c = 0.5 and Rabi
frequency ω = 387.598(7) kHz which corresponds to a time of 8.1 µs for a single π-rotation.
The Raman detuning for the measurement is ∆ = 2π×3 THz and the optical power of
each laser beam is around 6 mW. Both beams are guided to the experiment through the
same optical fiber and are focused to a FWHM diameter of about 30 µm on the ion.

Due to the active laser intensity stabilization via an EOM, up to around 200 full π

rotations at a pulse time of 1.6 ms can be driven without loss of contrast with the optical
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6.5. Optical performance

setup. For longer pulse times, the contrast is maintained but deviations in the Rabi

frequency emerge, which correspond to intensity fluctuations of the laser light. The

measurement takes around one hour. Therefore, random fluctuations on the minute

time scale cannot be excluded. For long pulse times, we suspect thermal drifts from

continuous AOM operation to be responsible. Nevertheless, the quality of the optical

system is considered to be excellent and sufficient for our experiments.

The entangling gate sequence is a concatenation of single-qubit rotations and two-qubit

displacement pulses, see section 8.4. Single-qubit rotations are driven simultaneously

on two ions in the laser interaction zone. Thus, a high quality of these operations is

crucial to the entangling gate fidelity. As the typical distance of two ions is only around

4 µm and the laser beam waist is about ten times larger, the ions are equally illuminated

if the laser beam is aligned on the center of the two-ion crystal. The results of this

simultaneous driving are shown in figure 6.10.
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Figure 6.10.: Simultaneous single-qubit rotations on two ions driven by the co-propagating
Raman laser beams R1 and CC. Red data points belong to the first ion and blue data
points belong to the second ion. Integer numbers indicate full 2π rotations from 1 to
49. The measurement and fit procedure is identical to the single ion measurement – the
data for each ion is analyzed individually. The amplitude and center parameters are
identical for each ion but the Rabi frequency of the second ion is larger. For the first ion
a Rabi frequency of ω1 = 383.83(2) kHz is determined from the fit and for the second ion
ω2 = 384.78(2) kHz respectively.

For long pulse times a slightly asymmetric illumination of the two ions is observed.

The second ion features a Rabi frequency which is 0.24% higher compared to the Rabi

frequency of the first ion. In practice, the pulse time τπ for a single π rotation is

calibrated. The difference in the Rabi frequency directly translates to a difference in τπ

for the two ions. If the pulse time is considered to be set perfectly for ion one and 0.24%
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off for ion two, the single π-rotation on ion two will still achieve a population transfer

that corresponds to 99.9985% of the population transfer that is driven on ion one due to

the robustness of the sinusoidal shape. Thus, we conclude that single π-rotations can be

performed with a negligible asymmetry of only 1.5 · 10−5 simultaneously on two ions in

our setup. It needs to be emphasized that this value does not correspond to the absolute

quality of the single-qubit operation but only to the symmetry of the operation. The

absolute population transfer quality of single-qubit gates is investigated via randomized

benchmarking on a single ion in section 8.2.
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7
Fast Ion Crystal Rotation

We demonstrate a SWAP gate between laser-cooled ions in a segmented microtrap

via fast physical swapping of the ion positions. This operation is used in conjunction

with qubit initialization, manipulation and readout, and with other types of shuttling

operations such as linear transport and crystal separation and merging. Combining

these operations, we perform quantum process tomography of the SWAP gate. The

swap operation is demonstrated with motional excitations below 0.05(1) quanta for all

six collective modes of a two-ion crystal, for a process duration of 42 µs. Extending

these techniques to three ions, we reverse the order of a three-ion crystal and reconstruct

the truth table for this operation.

The results, which are presented in this chapter, are published in [Kau17a].

For universal quantum computation, two-qubit gates need to be performed between

arbitrary pairs of ions, such that reordering ion strings becomes necessary. Further-

more, if multiple ion species [Hom13] are employed for sympathetic cooling [Kie00] or

ancilla-based syndrome readout via inter-species gates [Bal15; Tan15], deterministic ion

reconfiguration is ultimately required.

To that end, ion traps bearing junctions with T [Hen06], X [Bla09; Wri13] or Y [Shu14]

geometry have been developed and tested. Junctions increase the trap design complexity

and allow only for sequential ion transport. Shuttling through junctions may yield

large motional excitations, precluding the execution of two-qubit gates. Within this

thesis, we demonstrate deterministic ion reordering via on-site swapping of ions through

application of suitable electric potentials. The advantages of this operation are that it

does not require sophisticated electrode structures, and that parallel multi-site swap

operations may be performed. In contrast to reordering via laser-driven SWAP gates,

physical ion swapping does not require laser beams and can therefore be performed at

any trap site. Furthermore, the physical SWAP operation does not affect the internal
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(qubit) states, such that virtually perfect operation fidelities are readily obtained. While

it was shown [Spl09] that segmented traps allow for ion swapping, we demonstrate this

process on fast timescales, comparable to qubit operation times. Motional excitation is

avoided, such that the ions stay within the Lamb-Dicke regime for all collective modes

of vibration of a two-ion crystal. To highlight that this operation is deterministic and

that it can be used in conjunction with other qubit operations, we integrate it within a

sequence of shuttling, separation [Bow12; Rus14; Kau14] and merging operations and

qubit manipulations to realize quantum process tomography of the SWAP gate. By

performing the swap operation on ground-state cooled ions and combining it with qubit

manipulations, we demonstrate its potential use for scalable quantum logic.

7.1. Fast SWAP operation

The on-site swapping process of a two-ion crystal is depicted in figure 7.1. We start with

the crystal axially confined by applying a voltage Uc to the trapping electrodes (blue

segments in figure 7.1). Control over the ion crystal rotation is achieved via a diagonal,

symmetry-breaking dc quadrupole potential, generated by ramping up a voltage +(−)Ud

to the electrodes neighboring the trap site, shown in green (red) in figure 7.1. The

polarity on the electrode pair left of the trapping site is inverted as compared to the

electrode pair to the right. With the diagonal potential applied, the trapping voltage Uc

is decreased, and a positive offset voltage Uo is ramped up at all neighboring segments.

The corresponding increase of the axial confinement drives the ion crystal through a

structural transition from horizontal to vertical alignment. Simultaneously, the diagonal

potential generated by Ud is ramped down to 0 V. With the ions vertically aligned, the

process is conducted in reverse order, with inverted polarity of the diagonal voltage Ud.

We optimize the voltage ramps by probing the final motional excitation on the vibrational

modes which are most affected, i.e. the axial stretch and the lower frequency radial

rocking mode. The motional excitation is measured by driving Rabi oscillations on the

red and blue motional sidebands pertaining to the respective modes of vibration, see

appendix B.1. Each mode is cooled close to the ground state via sideband cooling before

the swapping operation, reaching mean phonon numbers between 0.016(4) (axial stretch

mode) and 0.37(1) (lower frequency radial COM mode). Rabi oscillations are recorded

over pulse areas of up to 8π pertaining to the blue sideband ground-state Rabi frequency.

Fits assuming oscillatory excitation, i.e. a coherent state of the corresponding mode,
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Figure 7.1.: Ion swapping in a segmented trap. a) shows the relevant trap electrodes,
indicating how the trapping voltage Uc, diagonal voltage Ud and offset voltage Uo
controlling the process are applied. Panels b) and c) show the voltage ramps in the form
of discrete samples, as they are programmed to the arbitrary waveform generator. Here,
b) shows Ud and Uo, while c) shows the actual electrode voltages. Panel d) shows the
voltage ramps, measured after the low-pass filter, which leads to smoothing and delay of
the ramps. e) shows the relevant part of the level scheme of 40Ca+.

reveal the mean phonon number [Lei03b; Wal12; Rus14].

Initially, a trapping voltage Uc =-6 V yields horizontal crystal alignment at an axial

center-of-mass (COM) vibrational frequency of 2π× 1.488 MHz. The radial COM

frequencies are 2π× 1.927 MHz and 2π× 3.248 MHz. We define the dimensionless time

τ = t/T for the total swapping time T . The least motional excitation is found for

the following ramp parameters: The diagonal voltage Ud is ramped up rapidly within

τ =0.05, to an optimum value of 1.4 V. For driving the ion crystal into vertical alignment,

the axial COM frequency has to exceed the lower radial COM frequency. To that end, Uc

is ramped down to -9.5 V, while at the same time an additional offset voltage Uo = +4 V

is ramped up at all neighboring electrodes. Both Uc and Uo are ramped within τ =0.05

to τ =0.45. The polarity change of the diagonal voltage Ud happens during τ =0.45 to

τ =0.55. The resulting voltage ramps are depicted in figure 7.1.

The swapping operation was tested for increasing times T , until we found the shortest

time with negligible motional excitation of T =22 µs, which – including the 50 kHz
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low-pass filters – corresponds to an actual duration of 42 µs. We measure the mean

phonon number increase for all modes, and compare to reference measurements directly

after sideband cooling, see table 7.1.

motional mode
ω/2π

(MHz)
η n̄ n̄ increase

axial ωx c.o.m.
1.488

0.127 0.082(6) -
axial ωx c.o.m.
with SWAP

0.129 0.131(7) 0.049(9)

axial ωx stretch
2.578

0.100 0.016(4) -
axial ωx stretch
with SWAP

0.099 0.029(5) 0.013(6)

radial ωy c.o.m.
1.927

0.069 0.365(13) -
radial ωy c.o.m.
with SWAP

0.070 0.394(13) 0.029(18)

radial ωy rocking
1.195

0.090 0.14(10) -
radial ωy rocking
with SWAP

0.090 0.18(11) 0.041(15)

radial ωz c.o.m.
3.248

0.066 0.099(9) -
radial ωz c.o.m.
with SWAP

0.066 0.115(10) 0.015(14)

radial ωz rocking
2.875

0.072 0.069(8) -
radial ωz rocking
with SWAP

0.072 0.081(7) 0.012(10)

Table 7.1.: Measured phonon numbers on the six collective motional modes of a two
ion crystal with and without the swapping operation. The column n̄ increase is the
difference between a measurement with and without swapping and corresponds to the
motional excitation from the swapping. The Rabi oscillation data corresponding to these
measurements is shown in appendix A.

For the axial modes, we find mean phonon number increases of 0.05(1) on the COM mode

and 0.013(6) on the stretch mode. For the lower-frequency radial modes, corresponding

to the plane in which the crystal rotates, we obtain 0.03(2) on the COM mode and

0.04(2) on the rocking mode. The higher-frequency radial mode, which is least affected

from from the swapping, features 0.02(1) on the COM and 0.01(1) on the rocking mode.

Rabi oscillation data probed after swapping is shown in figure 7.2.

Linear transport of ions along the trap axis is performed by gradually reducing the

negative dc trapping voltage of Uc = -6 V at the initial segment to 0 V, while applying
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7.1. Fast SWAP operation
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Figure 7.2.: Rabi oscillation data probed after swapping for verification of low excitation:
a) shows data for the axial stretch mode, while b) shows data for the lower-frequency
radial rocking mode. In both panels, the blue (red) points correspond to the blue (red)
motional sideband, while the green points correspond to the carrier transition. The
dashed lines are fits using a model assuming oscillatory excitation. All curves indicate
the probability for having at least one of the ions’ state flipped to |↓〉. Note that the
time axis for the carrier data is scaled differently (upper axis ticks). Each data point
corresponds to 200 state interrogations, error bars correspond to the standard error from
binomial readout statistics.

a trapping voltage at the neighboring destination segment. We perform adiabatic

transport at a duration of 28 µs per trap segment pair, spaced by 200 µm. Transport

over more than one segment pair is performed by concatenation of these operations.

Separation and merging operations require switching between single- and double-well

potentials, where the transient low axial confinement causes excitation [Kau14]. We

employ tailored voltage waveforms and accurate cancellation of residual forces along the
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7. Fast Ion Crystal Rotation

trap axis, enabling separation/merging of two-ion crystals within 100 µs at excitations

of 5(2) phonons per ion [Rus14].

7.2. Process tomography of a two-ion SWAP operation

The sequence for process tomography is depicted in figure 7.3. First, the two-ion crystal

is prepared by Doppler cooling and pumping in the laser interaction zone (LIZ: electrode

20).

separate

tim
e

A B

AB

initialize A

initialize B

merge

SWAP

separate

rotate B

rotate A

shelve
merge

separate
readout B

readout A

LIZ

Figure 7.3.: Experimental quantum process tomography sequence for characterizing the
SWAP operation. Each of the qubits A and B is shuttled to the laser interaction zone for
initialization laser pulses, followed by a fast SWAP operation and subsequent individual
qubit rotations. The SWAP operation is realized in 42 µs. Finally, the state is read out
via electron shelving and fluorescence detection.

After separation, each qubit is individually shuttled into the LIZ, where one of the qubit

rotation operations {1, RX(π/2), RY (π/2), RX(π)} is applied to bring the respective
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7.2. Process tomography of a two-ion SWAP operation

qubit to the state {|↑〉 , |↑〉 − i |↓〉 , |↑〉 − |↓〉 , |↓〉}. The ions are merged in the LIZ,

where the swapping takes place. The crystal is again separated, and the ions are

individually exposed to the analysis pulses {1, RX(π/2), RY (π/2)} for measuring the

operators {σz, σy, σx}. After another merging operation in the LIZ, the population

transfer |↑〉 ↔ |D5/2〉 takes place. The ions are again separated and individually shuttled

to the LIZ, where state-dependent fluorescence is observed. Both qubits are shelved

before fluorescence detection, to avoid depolarization of a remotely stored qubit from

scattered light near 397 nm during the readout of the other qubit.

The analysis laser pulses have to be corrected for phases arising from axial ion movement

in the inhomogeneous magnetic field. Qubit i located at axial position xi(t) at time t

accumulates a phase which is determined by the deviation of the magnetic field from its

value at the LIZ, ∆B(x):

φi =
µBgJ
~

∫ t
(a)
i

t
(i)
i

∆B(xi(t))dt. (7.1)

Here, t
(i)
i denotes the instant of the state preparation for qubit i and t

(a)
i denotes the

instant of its analysis pulse. The magnetic field inhomogeneity along the trap axis

is mapped out by using a single ion as a probe: Initialized in a superposition state,

it is shuttled to the destination site x and kept on hold for a variable time t. After

shuttling back to the LIZ, a refocusing π-pulse is applied, followed by another wait

time of duration t with the ion placed at the LIZ. Finally, state tomography reveals

the accumulated phase φ(x, t) = µBgJ
~ ∆B(x) · t + φ0, where φ0 is a constant phase

accumulated during the shuttling. By performing such measurements for different phase

accumulation times t at different locations x, we map out the qubit frequency shift

across segments 18-22 with a mean accuracy of about 2π×1 Hz. With the positions xi(t)

computed from the sequence data and simulated electrostatic trap potentials [Sin10], the

phases φi can be also computed and used for correcting the phases of the analysis pulses.

For each of the 16 prepared states, 9 measurements are performed, each independently

repeated 1000 times. A density matrix is obtained via linear inversion for each input

state. From these density matrices, the process χ-matrix is reconstructed via a second

linear inversion. Computing the trace norm Tr
(
χ†measχideal

)
, we find a mean process

fidelity of 98.1(5)%. Performing process tomography without SWAP operation, we

obtain a mean process fidelity of 98.7(4)%. Thus, on the given level of accuracy, we

conclude that the SWAP operation does not significantly affect the measured process

fidelity, which is limited mainly by readout errors and systematic errors of the correction
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7. Fast Ion Crystal Rotation

phases. Readout errors have been independently measured using a sequence without the

SWAP operation, for details see appendix B.2. The errors are dominated by the limited

lifetime of the metastable D5/2 state, imperfect electron shelving and state initialization.

Applying correction for readout errors to the SWAP data, we obtain a mean process

fidelity of 99.5(5)%. The resulting χ-matrix is displayed in figure 7.4 and the numerical

data is shown in appendix A.
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Figure 7.4.: Reconstructed process χ-matrix for the SWAP operation. The absolute value
of each matrix element is represented by the bar height, the phase is indicated by the
color. The 16 elements which match the ideal absolute value of 0.25 have a controlled
phase of arg(χij) ≈ 0. All other elements are close to the ideal value of zero and have
random phases. Each of the 144 preparation/measurement settings is probed on average
1260 times.

7.3. Reordering of a three-ion crystal

The techniques described above are extended to three qubits, where we demonstrate

reordering from configuration ABC to configuration CBA. The experimental sequence

is sketched in figure 7.5, the full detailed sequence can be found in appendix C.1.

Rather than performing quantum process tomography, we restrict the measurements to

the logical (Z) basis, thus we reconstruct the truth table of the reordering operation.
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7.3. Reordering of a three-ion crystal

tim
e

A C

merge

SWAP

separate

LIZ 21 22 23 24 25 26191817161514

B

merge

SWAP

separate

merge

SWAP

separate

AC B

separate ion crystal

shuttle each ion to LIZ for state preparation

subsequent SWAP operations

shuttle each ion to LIZ for detection

recombine ion crystal

Figure 7.5.: Experimental sequence for the reordering of a three-ion crystal from configura-
tion ABC to configuration CBA by employing three consecutive SWAP operations. The
separation, merging, state preparation and state detection operations at the beginning
and the end of the sequence are omitted in this sketch, see full text for details.

Starting from a three-ion crystal ABC in the LIZ, we separate into AB and C by

performing the separation with a properly adjusted axial bias field [Bow12]. Ion C is

moved to segment 26, then ions AB are moved back into the LIZ, where separation

into A and B takes place. Then, A, B and C are subsequently moved into the LIZ

and initialized to either |↑〉 or |↓〉. Now, the ions are merged pairwise at the LIZ,

where swapping and subsequent separation take place. The respective third ion is

stored six segments away to the left or right, such that its trapping potential does not

affect the separation/merging and swapping operations. The three subsequent swaps

103



7. Fast Ion Crystal Rotation

AB → BA, AC → CA and BC → CB establish the desired order CBA. Then, the

ions are individually moved to the LIZ for shelving, and then individually moved to the

LIZ for fluorescence readout. We measure the final spin configuration for 8 different

input states. The resulting truth table is shown in figure 7.6 and the numerical data

is shown in appendix A. We obtain a mean fidelity of 98.47(9)% in the logical basis.

The mean fidelity with readout error correction is 99.96(13)%. The sequence consists

of three separation, three merging, three swapping and 30 linear transport operations.

The execution time of this process is 5.7 ms, where 93% of which is devoted to shuttling

operations.

Figure 7.6.: Measured truth table for three-ion reconfiguration from ABC to CBA, using
three consecutive two-ion SWAP operations. Each ion was prepared in either |↑〉 or |↓〉.
Each input state is probed on average 2500 times. The measured probability to detect a
particular state is represented by the height of the bars.
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Scalable Entanglement Generation

Our approach for a scalable quantum computer is based on ion shuttling operations in

conjunction with quantum logic gates [Kie02] – we have demonstrated the required fast

ion shuttling operations in micro-structured ion traps [Wal12; Rus14; Kau17a]. High

fidelity entangling gates can only be performed with low motional excitation of the

gate bus mode, thus it is necessary to execute fast ion shuttling operations with low

motional excitation. We use radial secular modes, which are less excited than axial

modes from shuttling operations, as bus modes for the two-qubit entangling gate. In this

chapter, it is demonstrated how fast ion shuttling operations are used in conjunction

with concatenated single- and two-qubit gates, to operate a programmable four qubit

quantum processor.

8.1. Cold shuttling operations

We desire to perform shuttling operations with low motional excitation in our quantum

processor, which allow for subsequent high fidelity entangling gates. Fast transport

operations have been realized with low axial motional excitation in a similar trap [Wal12;

Bow12]. The separation operation requires careful calibration [Kau14] and has been

realized in a similar ion trap [Rus14]. Since the entangling gate is performed on the

radial ωz mode, we focus on analyzing the motional excitation of the radial modes

from the shuttling operations in this section. The trap frequencies are ωx,y,z/2π =

{1.49, 4.08, 4.87} MHz in the experiments, which are presented in this section.
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8. Scalable Entanglement Generation

8.1.1. Cold ion transports

To investigate the motional excitation from ion transports, a single ion is cooled close to

the ground state with resolved sideband cooling in the LIZ. It is then shuttled to the

adjacent segment 19 within 30 µs. After an idle time of 30 µs on the electrode, the ion is

shuttled back to the LIZ and spends an additional 30 µs idle time in the LIZ. Idle times

are employed to account for distortions of the DC waveforms, caused by the low-pass

filters. The entire procedure is repeated 20 times, which results in a total amount of 40

transport operations and idle times of identical duration. Subsequently, the motional

excitation is determined by probing the red and blue sideband and the carrier transition.

A reference measurement – with a static single ion – is carried out to determine the

mean ground state population, which is around n̄ = 0.34(2) and n̄ = 0.08(1) for the

radial ωy mode and ωz mode respectively. The difference to this measurement yields

the motional excitation from the transport operations. We find a motional excitation

per transport of n̄ = 0.028(2) and n̄ = 0.025(1) for the radial ωy mode and ωz mode

respectively. A second reference measurement is carried out, where the ion spends half

the duration of the entire sequence in the LIZ, and the other half on segment 19. From

this measurement, it is found that the motional excitation is solely caused by motional

heating and no coherent excitation is observed. The anomalous heating during this

measurement day was at least by a factor of ten higher than in the results reported in

section 6.1. This is attributed to technical noise from changed electrical connections at

the apparatus. Thus, we estimate to reach significantly lower motional excitation per

transport, when the heating rates are reduced to the former values.

8.1.2. Cold ion crystal separation

We investigate the motional excitation from the separation operation of a two-ion crystal,

which is one of the fundamental shuttling operations in our quantum processor. To

investigate the motional excitation from the separation and recombination operation,

initially two ions are cooled in the LIZ close to the ground state of all four common radial

motional modes. Subsequently, the two-ion crystal is separated within 80 µs or 160 µs

and the individual ions are kept on the electrodes 19 and 21 for an idle time of 50 µs. The

ions are then recombined in the LIZ and a second identical idle time is applied before the

motional state is read out for all four radial motional modes. A reference measurement,
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8.1. Cold shuttling operations

which is carried out without the shuttling operations and idle times, allows to determine

the initial motional excitation. The difference to this measurement corresponds to the

excitation from the separation and recombination operation. The excitation from both

operations is assumed to be identical, since the ion movement is identical but in reversed

order. Thus, we divide the total excitation by two and derive the motional excitation

per separation or recombination operation – the results are listed in table 8.1.

secular mode
separation

duration (µs)
motional

excitation (n̄)
estimated

heating (n̄)

ωc.o.m.
y 80 0.00(1) 0.06

ωrocking
y 80 0.12(1) -

ωc.o.m.
z 80 0.03(1) 0.05

ωrocking
z 80 0.03(1) -

ωc.o.m.
y 160 0.06(1) 0.1

ωrocking
y 160 0.10(1) -

ωc.o.m.
z 160 0.12(1) 0.09

ωrocking
z 160 0.02(1) -

Table 8.1.: Measured motional excitation on the radial secular modes of a two-ion crystal,
from a single separation operation and a subsequent 50 µs idle time. The estimation
for the heating per separation duration is based on the results from the cold shuttling
operations, see above. The secular mode frequencies are: ωc.o.m.

y = 2π×4.08 MHz, ωrocking
y

= 2π×3.77 MHz, ωc.o.m.
z = 2π×4.87 MHz, ωrocking

z = 2π×4.61 MHz.

We find, that for the radial c.o.m. modes the excitation is dominated by motional

heating. The excitation of around n̄ = 0.1 for the ωy rocking mode is probably a

coherent excitation, since motional heating of the rocking modes is assumed to be

negligible. However, for a conclusive understanding of the motional excitation from the

separation operation, more advanced measurement and analysis schemes need to be

developed in future experiments.

In conclusion, we have demonstrated transport and separation operations, which add

small motional excitation to the radial vibrational modes. These shuttling operations

allow for concatenated entangling gate operations on the radial modes in our trapped-ion

quantum processor.
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8.2. Single-qubit gates

High fidelity single-qubit gates are a requirement for large scale fault tolerant quantum

computing. An error per gate below 10−4 is desirable [Lad10; Kni10]. To characterize the

performance of single qubit gates in our quantum processor a randomized benchmarking

technique is employed [Bro11]. Initially, a single ion is cooled with Doppler cooling and

initialized to the state |↑〉 via optical pumping. A sequence of single-qubit gates is then

performed on the ion with the co-propagating Raman laser beams R1 and CC. Specifically,

the sequence is comprised of a randomized concatenation of Ng computational gates.

Each computational gate is constituted of a Pauli gate, which corresponds to a π-pulse,

and a Clifford gate, which corresponds to a π/2-pulse. A Pauli gate is described by the

operator e−iπσp/2 where the matrix σp is randomly chosen from {±σx,±σy,±σz,±I}.
Clifford gates are described by e−iπσc/4 with a randomly chosen σc ∈ {±σx,±σy}. Pauli

gates are implemented by carefully calibrated laser pulses with a duration of 15.64 µs

and Clifford gates with individually calibrated pulses of duration 7.84 µs. In order to

calibrate the pulse duration of a π-pulse precisely, around 20 concatenated π-pulses

with variable duration are applied on the ion. The duration of a single π-pulse is then

determined by dividing the total pulse time on the 20th maximum or minimum of the

Rabi oscillations by 20. The identity operator ±I for the Pauli gate is implemented by

applying no laser pulse – the same holds for the ±σz operator, which is implemented

by shifting the qubit phase by imprinting a phase on subsequent gates. Thus, each

computational gate contains on average a pulse area of two π/2-pulses. The randomized

sequences are designed, so that at the end of every sequence the final qubit state is

either |↑〉 or |↓〉, which guarantees a higher detection accuracy than superposition states.

In the experiment, each sequence is repeated 500 times, the overlap of the detected

ion state either |↑〉 or |↓〉 with the expected outcome of the sequence is denoted gate

fidelity. Subsequently, a new entirely random sequence of equal length Ng is generated

and executed 500 times. At least 40 different sequences are measured for each Ng, which

amounts to more than 20000 single measurements per sequence length. Fluorescence

detection is performed after electron shelving within 1.2 ms with a PMT – the detection

time can readily be chosen in the 0.7 ms regime. However, for this experiment we aim

for excellent readout. The results of this measurement are shown in figure 8.1.

The state preparation and measurement quality derived from this measurement yields

an excellent value of 99.923(3)%. Our achieved fidelity of a single computational gate
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Figure 8.1.: Randomized benchmarking data for single-qubit gates – the mean fidelity is
shown as a function of the number of computational gates Ng, performed on a single static
ion. A weighted least squares fit gives a negative slope of 5.1(2) · 10−5 which corresponds
to the error per computational gate. The state preparation and measurement error is
determined from the y-axis intercept to be as low as 7.7(3) · 10−4. Error bars correspond
to the standard error of the mean fidelity for each number of computational gates. Each
data point corresponds to more than 20000 individual measurements.

of 99.9949(2)% is significantly above the threshold for fault-tolerant quantum compu-

tation and en par with state of the art laser driven gates performed by other research

groups [Gae16; Bal16].

The total probability to scatter a photon during a Raman π-pulse transition follow-

ing [Oze07] is given by:

Ptotal =
(γπ
ωf

)2∆2 + (∆− ωf )

∆(∆− ωf )
(8.1)

where γ is the natural decay rate of the P ↔ S transition of 2π×23.05 MHz [Het15],

ωf is the fine structure splitting of 2π×6.69 THz and ∆ is the Raman detuning of

+2π×3.1 THz, which is used for this experiment – each laser beam is operated at a power

of around 1 mW on the ion. The result is an error from photon scattering of 3.1 · 10−5,

which constitutes the largest fraction of the measured gate error. The remaining error is

attributed to imperfect pulse time calibration – on the order of 1 · 10−5 error per gate,

see section 6.5 – as well as fluctuations of the stabilized laser intensity.
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8.3. Four-qubit register operation

A scalable quantum computer needs to perform high fidelity operations on a large

number of qubits. We thus extend the randomized benchmarking of single-qubit gates,

which is presented in the previous section, to four ions. The experimental sequence is

sketched in figure 8.2.

tim
e

A

LIZ 21 22 23 24 25 26191817161514
B

separate ion crystals in the LIZ

shuttle ions to LIZ for Doppler cooling and state initialization

shuttle each ion to LIZ for shelving and fluorescence detection

27 28 29131211
D

subsequent quantum gate operations

C

recombine ion crystals A,B and C,D

0.6 mm

A B DC

Figure 8.2.: Simultaneous randomized benchmarking procedure for single-qubit gates on
four ions. The numbers from 11 to 29 indicate DC electrodes of the segmented ion trap,
which features in total 32 DC electrodes. Each ion is moved to the laser interaction zone
Nt-times where a number of Ng computational single-qubit gates is performed on the ion.
The full experimental sequence is shown in appendix C.2.

Initially, two ion pairs A,B and C,D are trapped at electrode 20 (LIZ) and 26. A

series of shuttling operations separates the pairs and transports each ion individually

to the LIZ where Doppler cooling is applied to each ion. Afterwards each ion is again

shuttled to the LIZ for state initialization to the state |↑〉 by optical pumping at 729 nm

– this step cannot be carried out immediately after Doppler cooling since the cooling

light at 397 nm would depolarize the spins of the other ions. Once all four ion spins

are initialized, each ion is shuttled to the LIZ repeatedly for single-qubit randomized
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8.3. Four-qubit register operation

benchmarking laser pulses, which are carried out as in the previous section. The ions

are moved in parallel, via concatenated segment-to-segment shuttling operations, where

each transport is executed within 60 µs. For state detection, we apply state selective

electron shelving, followed by fluorescence detection on each ion individually in the LIZ.

Finally, the ions are merged into pairs and the entire sequence is repeated. The Raman

laser parameters are the same as in section 8.2.

To characterize the performance of single-qubit gates in a four-ion register, we carry out

an experiment for Nt = 1. The results are shown in figure 8.3.
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Figure 8.3.: Simultaneous four-ion randomized benchmarking of single-qubit gates for
Nt = 1 (each ion is transported to the LIZ Nt-times) and a variable number of single-qubit
gates Ng on each ion. A linear weighted least squares fit gives the error per computational
gate for each ion and the state preparation and measurement error, see table 8.2. The
fidelity is calculated from the median, which is more robust than the mean value with
respect to outliers. Error bars correspond to the median absolute deviation. Each data
point is comprised of more than 20000 single measurements, except for Ng = 10, where
12500 measurements are taken.

In contrast to the static single ion measurement, more outliers for larger Ng are observed.

These are attributed to pulse area instabilities on the timescale of several minutes,

which are more pronounced from the longer overall experiment duration due to the

four-ion shuttling operations. In table 8.2 the errors per computational gate and the

state preparation and measurement errors are listed.

The low error per computational gate is similar for each ion, we thus conclude that

we can perform high fidelity single-qubit operations in the four qubit register without

crosstalk between the qubits. Overall, the error per computational gate is about a

factor of two higher, compared to the static single-qubit experiment. However, in
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ion error per gate (10−5) SPAM error (10−3)

A 10(1) 1.4(4)

B 10(2) 2.1(7)

C 12(2) 2.2(4)

D 9(1) 3.3(3)

Table 8.2.: Fit results from the simultaneous four-ion randomized benchmarking for Nt = 1
and a variable number of single-qubit computational gates Ng on each ion. The error per
computational single-qubit gate is determined from the slope of the linear fit. The SPAM
error denotes the state preparation and measurement error, which is determined from the
y-axis intercept of the fit.

this former experiment the calibration routines for the π and π/2-pulse times were

carried out extensively and reached a higher precision. Furthermore, during the four-ion

measurement, the measured fidelities fluctuate more than in the single-ion measurement.

This is attributed to pulse area fluctuations, due to the increased overall sequence

duration. We estimate that, with a comparable calibration of the pulse times and better

pulse area stability, a similar performance can be realized for the four-qubit register.

The state preparation and measurement error is also by a factor of two higher, compared

to the static single-qubit experiment, which is caused by the limited lifetime of the

metastable D5/2-state of around 1.2 s. After the shelving procedure is executed on ion

A for instance, all other ions are shuttled to the LIZ for shelving. Afterwards, ion A

is shuttled to the LIZ again for state detection with resonant 397 nm light. The time

between shelving and state detection for this ion is around 2.7 ms. Since the metastable

state decays exponentially an error of 2.2 · 10−3 arises from this idle time. This error

needs to be divided by two, since on average only half of the randomized benchmarking

experiments result in the state |↑〉, which is shelved to the metastable state. Thus, a

calculated error of 1.1 · 10−3 arises from the limited metastable state decay for ion A,

which is close to the experimentally determined SPAM error. For ions B,C and D

the error rises in this order since the time between shelving and detection is longer.

Before fluorescence detection of ion B is performed for instance, the detection of ion

A is executed within 1.2 ms and thus contributes significantly to the metastable state

decay of ion B. This effect can be reduced by shorter state detection times and faster

shuttling and shelving operations in future experiments.

In the four-ion experiment, which is presented above, each ion is moved to the LIZ only

once for the execution of computational gates, i.e. Nt = 1. As a consequence, each ion is
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8.3. Four-qubit register operation

either in the spin state |↑〉 or |↓〉 after application of the randomized gate sequence. Both

states are not sensitive to magnetic field fluctuations and a high fidelity is demonstrated.

In complex quantum information algorithms however, it can be necessary to increase

the number of shuttling operations, i.e. Nt > 1. This means that ions are shuttled

in spin superposition states along the trap axis. Thus, the states accumulate a phase

and are prone to magnetic field noise [Rus17]. The accumulated phase is calibrated

in a separate measurement and fed forward to subsequent computational gates – this

technique is already successfully demonstrated in section 7.2. It is desirable to perform

the gate pulses on a resonant carrier transition, to prevent further phase accumulation

from a detuned driving field. We thus stabilize the carrier frequency in the experiment.

After readout of all four ions, a single ion is used to measure the deviation of the carrier

frequency from the Zeeman splitting in a Ramsey experiment, i.e. the absolute magnetic

field. The deviation frequency is updated for subsequent measurement cycles, thus

compensating for small absolute magnetic field drifts. To investigate the performance of

the four-qubit register further, we choose Nt = Ng and execute only one computational

gate on each ion, when it is moved to the LIZ. The results of the measurement are shown

in figure 8.4.

The performance is worse than for Nt = 1 and we refrain from fitting the data. In this

measurement, the time between each computational gate on each ion is about 1.57 ms,

because the ions are shuttled alternately to the LIZ in between the gates. Within

this duration, the spin superposition states are prone to decoherence. For a sequence

length of six computational gates an idle time of 5×1.57 ms = 7.85 ms arises for each

ion. Compared to the coherence time of around 300 ms, this effect is non-negligible and

contributes to the gate error. If the gate pulses are applied with a detuned frequency,

spin superposition states accumulate a phase during the idle time, which is proportional

to the detuning from the resonance. Subsequent gate pulses are not corrected for this

phase and thus lead to impaired results. We actively stabilize the carrier frequency better

than 2π×10 Hz. However, a detuning of 2π×5 Hz already leads to an accumulated phase

of 0.05 rad in each idle time. To investigate if the gate errors are related to the shuttling

of the four ions we perform a reference measurement with a single static trapped ion

in the LIZ. The computational randomized gate sequence is identical to the four-ion

experiment. After each computational gate, an artificial idle time of 1.57 ms is installed,

to emulate the situation for a single ion in the four-ion measurement. The results of the

measurement are shown in figure 8.5.
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Figure 8.4.: Simultaneous four-ion randomized benchmarking of single-qubit gates for
Ng = Nt. When each ion is shuttled to the LIZ, only one computational gate is executed
on the ion. The fidelity is a mean fidelity, calculated from individual randomized
benchmarking experiments. Error bars correspond to the standard error of the mean
fidelity and each measurement is comprised of more than 11000 single measurements.
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Figure 8.5.: Randomized benchmarking of single-qubit gates on a single static ion with an
artificial idle time of 1.57 ms after each computational gate. This measurement serves
as a reference measurement to investigate the gate error in the four-ion experiment,
shown in figure 8.4. The fidelity is a mean fidelity, calculated from individual randomized
benchmarking experiments. Error bars correspond to the standard error of the mean
fidelity and each measurement is comprised of more than 11000 single measurements.
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8.4. Shuttling-insensitive entangling gate

The result is almost identical to the four-qubit register operation. We thus conclude,

that the gate error in the four-ion experiment is dominated by the idle time between the

computational gates on each ion. We find that the phase correction for the inhomogeneous

magnetic field – which is necessary as the ions travel in an inhomogenous magnetic

field, see section 7.2 – is performed with high accuracy and does not impede the gate

operations significantly.

In summary, we have demonstrated high fidelity single-qubit operations in a four-qubit

register, without crosstalk between the qubits. However, the results are impaired when

the number of shuttling operations between the operations is increased, due to significant

idle times. Decreasing these idle times, by performing faster shuttling operations, will

significantly reduce the gate errors in future experiments.

8.4. Shuttling-insensitive entangling gate

Creating entanglement between two qubits is a fundamental requirement for a universal

quantum computer [DiV00] and laser-driven geometric phase gates have been realized

with high fidelity on trapped ions [Gae16; Bal16]. We use this two-qubit gate type in

our setup to create entanglement between two trapped 40Ca+ ions. The gate requires

the vibrational mode of the ions, which is used as a bus mode, to be close to the ground

state of motion. Since we employ ion shuttling operations along the trap axis in our

architecture for a scalable quantum processor, small excitations of the axial mode of

motion are inevitable. We thus use one of the shuttling-insensitive radial vibrational

modes, the higher frequency ωc.o.m.
z -mode, as a gate bus mode. The negligible motional

excitation of this mode from the shuttling operations is demonstrated in section 8.1

and chapter 7. In this section, the shuttling-insensitive two-qubit gate operation is

demonstrated and the limiting factors are characterized.

Initially, two ions are cooled to the motional ground state of all four radial modes

(ωc.o.m.
y , ωrocking

y , ωc.o.m.
z and ωrocking

z ) with resolved sideband cooling by the Raman laser

beams R4 and R1. Then, both ions are initialized by optical pumping to the separable

quantum state |ψ〉 = |↑↑〉. A combination of single-qubit rotations and a geometric

phase gate is then used to entangle the spins of two ions – the maximally entangled

Bell state |ψ〉 = 1/
√

2(|↑↑〉+ i |↓↓〉) is created. The experimental sequence is shown in

figure 8.6.
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8. Scalable Entanglement Generation

Figure 8.6.: Quantum circuit of a two-loop geometric phase gate for the creation of a
Bell state. Solid numbers indicate the pulse area of single-qubit rotations whereas gray
numbers denote the phase of the respective pulses.

The combination of a two-ion entangling operation Ĝ = diag(1, i, i, 1) and the single-qubit

rotations constitutes the unitary operator

Û1 =
eiπ/4√

2


1 0 0 i

0 1 −i 0

0 −i 1 0

i 0 0 1

 . (8.2)

Single-qubit rotations are performed simultaneously on two ions by the laser beams

R1 and CC with high fidelity, as characterized in section 8.2. In order to perform

the geometric phase gate Ĝ, the laser beams R4 and CC create an optical traveling

standing wave in the radial direction which gives rise to an a.c. Stark shift. This wave

couples to the center of mass mode of the two ions ωz and establishes a spin-dependent

optical dipole force, which drives the two ions in phase space. The spin states are

driven along a closed loop in phase space, at the end of a loop the states are entangled.

We drive two closed loops in phase space – interrupted by a spin-echo π-pulse – to

decrease the sensitivity of the gate for qubit frequency errors and to reduce off-resonant

excitation [Lei03a]. A detailed explanation of the gate is provided in section 2.5. The

laser beams R4 and CC are detuned by ∆R4−CC = (ωz + δ)/2π where δ denotes the gate

detuning, which is much smaller than the secular trap frequency ωz. The path duration

of the spin states in phase space – i.e. half of the gate duration (tg/2) – is determined

by the inverse gate detuning, which corresponds to the oscillation frequency of the a.c.

Stark shift in the reference frame of the ions.

Once the Bell state is created, the two-ion crystal is separated and the ions are shuttled
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8.4. Shuttling-insensitive entangling gate

individually to the LIZ, in order to analyze the quantum state via full state tomography,

as described in section 7.2. The ions accumulate a phase between the Bell state creation

and analysis pulses due to the shuttling operations in the inhomogeneous magnetic field

along the trap axis. We demonstrated how this phase can be accounted for and corrected

in the phase of the analysis pulses. However, in this experiment, we only desire to assess

the fidelity of the produced Bell state, which is not affected by a global phase of the

state. Thus, we do not correct for the accumulated phase in this experiment. A density

matrix is reconstructed from the state tomography measurement – the result is shown

in figure 8.7.
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1.65 2.5 2.75 0.

|↑↑〉 |↑↓〉 |↓↑〉 |↓↓〉

|↑↑〉

|↑↓〉
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Arg (ρ) -π - π

2

π

20 π

Figure 8.7.: Density matrix ρ of a two-ion Bell state – reconstructed from full state
tomography including correction for readout errors. Each of the nine measurement
operators {σxσx, σxσy, ...} is measured more than 4200 times, in total 2× 38000 single
measurements are performed to determine a Bell state fidelity of F = 99.5(1)%. A
numerical representation of the data is available in appendix A.

A standardized measure for the overlap of two quantum states ρ = |ψ1〉 〈ψ1| and

σ = |ψ2〉 〈ψ2| is the fidelity

F(ρ, σ) =

(
Tr

[√√
ρ σ
√
ρ

])2

. (8.3)

To compute the fidelity of the experimentally created Bell state, we calculate the quantity

F(ρexp, ρideal) with the ideal Bell state |ψideal〉 = 1/
√

2(|↑↑〉+ eiφ |↓↓〉), where the global
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8. Scalable Entanglement Generation

phase φ is adjusted to generate the maximum overlap. In the same manner as in the two-

ion process tomography in section 7.2, a correction for readout errors is applied and the

confidence intervals for the mean fidelity are determined via parametric bootstrapping,

see appendix B.2. From more than 76000 single measurements, we achieve a fidelity

for the produced Bell state of F = 99.5(1)% with correction for readout errors and

F = 99.1(1)% without correction. The total gate duration is around 110 µs, where each of

the two loops in phase space takes around 50 µs, set by the gate detuning δ = 2π×20 kHz.

The duration of the gate laser pulses is thus tg = 100 µs. The detuning of the Raman

laser beams from the cycling transition is ∆ = −2π×750 GHz. Each of the Raman

laser beams is focused on the ions with an optical power of about 3 mW. A combination

of the RF level of 300 V peak-to-peak and the DC voltage of −6 V on the LIZ trapping

electrode generate the secular trap frequencies ωx,y,z/2π = {1.49, 3.83, 4.65} MHz. The

Lamb-Dicke parameter for the radial two-ion ωz gate mode is 0.062.

A detailed analysis of the error sources for the two-qubit gate in our experimental setup

is provided in the appendix B.3. The calculated sources of gate infidelity are listed in

table 8.3.

Error source Calculated fidelity error (%)

motional dephasing (τ1/e =6.5 ms) 0.46

Raman and Rayleigh photon scattering 0.13
gate parameter calibration < 0.1
motional heating ( ˙̄n = 2.9/s) 0.007
motional temperature (n̄ . 0.1) 0.001

total 0.7

Table 8.3.: Error budget for the two-qubit gate with gate time tg = 100 µs and Raman
detuning ∆ = −2π×750 GHz.

The total calculated gate fidelity error of 0.7% is consistent with the measured gate

fidelity of 99.5(1)% since the gate parameter calibration error of 0.1% is only an upper

bound. The gate fidelity is mainly limited by motional dephasing and photon scattering.

Reducing the motional dephasing of the gate mode ωz is a technical challenge, which

requires a thorough electrical configuration of the entire setup. A new laser source will

provide more optical power and thus reduce the scattering error significantly. Reducing

the gate parameter calibration error is feasible by employing fit routines to the calibration

measurements. Other error sources such as off-resonant excitation, unequal illumination

of the ions, spin dephasing from magnetic field noise, motional Kerr cross-coupling,

amplitude and phase noise in the Raman laser beams are either strongly suppressed by
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8.5. Scalable creation of long-lived multipartite entanglement

the spin-echo gate scheme and the shaping of the gate pulses, or completely negligible

and thus do not contribute significantly to the error budget.

In conclusion, we have demonstrated a shuttling insensitive two-qubit entangling gate,

that operates below the error threshold of ≈ 1% for fault tolerant quantum compu-

tation [Kni05; Rau07] and compatible with our architecture for a scalable quantum

processor. We have identified the dominant error sources, which can be reduced with

moderate experimental effort to achieve higher entangling gate fidelities.

8.5. Scalable creation of long-lived multipartite

entanglement

In the previous chapters, ion shuttling operations and laser-driven quantum logic gates in

a micro-structured ion trap are presented. We employ these experimental building blocks

to demonstrate the deterministic generation of multipartite entanglement. Four qubits

are sequentially entangled by laser-driven pairwise gate operations. Between these, the

qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals

are separated and merged, and ions are moved in and out of a fixed laser interaction

zone. A sequence consisting of three pairwise entangling gates yields a four-ion GHZ

state |ψ〉 = 1√
2

(|0000〉+ |1111〉), and full quantum state tomography reveals a Bell state

fidelity of 94.4(3)%. We analyze the decoherence of this state and employ dynamic

decoupling on the spatially distributed constituents to maintain 69(5)% coherence at a

storage time of 1.1 seconds.

The results, which are presented in this section, are published in [Kau17b].

As a benchmark for QC capabilities, the generation and properties of multipartite

entangled states have been studied intensively. On the one hand, generating and main-

taining such states lies at the heart of QC, on the other hand large multipartite entangled

states represent a resource for the measurement-based QC approach [Rau01; Lan13].

The first generation of a four-particle Greenberger-Horne-Zeilinger (GHZ) state has been

accomplished at a state fidelity of 57% by the NIST group [Sac00], while eight-qubit

W-states at 76% fidelity have been created later by the Innsbruck group [Häf05b].

Furthermore, GHZ states of up to 14 trapped ions have been created [Mon11b], and it

has been shown that these states are rather fragile in the presence of correlated noise.

While large-scale entanglement of thousands of optical modes [Yok13] or atoms [McC15a]
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has also been demonstrated, QC requires deterministic entanglement generation with

capabilities for storage and individual manipulation and readout of the qubits.

In this work, we demonstrate the scalable generation of GHZ states of up to four trapped

ions. Our method is based on single-qubit rotations, pairwise two-qubit entangling

gates and shuttling operations. Gate operations are driven by laser beams which are

directed to one fixed trap site, the laser interaction zone (LIZ). By shuttling only the

required ions to this trap site, crosstalk is strongly suppressed as compared to static

ion-crystal registers, as memory ions, which are not to be affected by gate operations,

are stored several hundreds of microns away from the LIZ. We also demonstrate that

GHZ coherence can be maintained over long storage times by dynamical decoupling on

the distributed components. Here, the constituent ions are kept in pairs and shuttled

repeatedly into the LIZ, where the decoupling rotations take place.

8.5.1. Experimental parameters and techniques

In the following, we summarize the experimental parameters and techniques, which are

used to perform a scalable quantum logic circuit in our setup:

• The trap is placed in a µ-metal enclosure for shielding of fluctuating ambient

magnetic fields, the quantizing magnetic field is generated by permanent magnets

and all experiments are synchronized to the ac power line frequency. This yields a

Ramsey coherence time of around 300 ms [Rus16] for a single qubit.

• The heating rates of the ion trap are on the order of a few Hz, as investigated in

section 6.1. The combination of low heating rates and long spin coherence times

allows for concatenated quantum gate operations.

• The secular trap frequencies in this experiment are ωx,y,z= 2π × {1.5, 4.1, 4.9} and

the voltage of the RF trap drive is about 320 V peak-to-peak at a frequency of

2π×33 MHz. We find the long-term relative secular trap frequency stability to be

about 5 ppm, see section 6.2

• The Zeeman sublevels |0〉 ≡ |↓〉 ≡ |S1/2,mJ = −1
2〉 and |1〉 ≡ |↑〉 ≡ |S1/2,mJ = +1

2〉
are separated by 2π×10.5 MHz.
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• The detuning for the stimulated Raman transitions in this experiment is

∆ = −2π×290 GHz.

• A single π-rotation is realized by a 10 µs pulse, see section 8.2 for the characteriza-

tion of single-qubit logic gates.

• A geometric phase gate is used for two-ion entanglement. At a detuning of

δ = 2π× 25 kHz from the higher frequency radial center-of-mass mode, the gate

operation (including single-qubit rotations) takes about 100 µs. We achieve a

Bell-state fidelity of 99.0(4)%, mainly limited by off-resonant photon scattering1.

• Since the entangling gate requires the ions to be close to the ground state of

motion, we apply resolved sideband cooling to all ions. A single cooling pulse takes

on average 15 µs. We either cool single ions or pairs of two ions and cool all radial

modes with about 40 pulses per mode.

• Each laser beam is directed at the LIZ, and all operations are robust with respect

to excitation of the axial ion motion: the entangling gate (driven on a radial

secular mode), single-qubit rotations (driven by co-propagating laser beams) and

electron shelving by 729 nm light (laser beam directed perpendicular to trap axis).

• Ion shuttling along the trap axis is performed by concatenated segment-to-segment

transports of 200 µm, where each operation takes 30 µs. In section 8.1, we measure

the motional excitation on the radial gate mode to be below 0.03 phonons per

transport.

• Separation of a two-ion crystal is realized by increasing the voltage on the trapping

segment and lowering the voltage on the adjacent segments [Kau14; Rus14] within

160 µs. The operation and its reversed counterpart – the recombination of two

individual ions – are only carried out in the LIZ as it requires careful calibration of

the electrode voltages. Separation and recombination operations lead to a motional

excitation of about 0.1 phonons on the gate mode, see section 8.1.

1In section 8.4, a higher two-qubit gate fidelity is presented. An increased Raman detuning is employed
to reduce the photon scattering error.
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The geometric phase gate Ĝ = diag(1, i, i, 1) is used, in conjunction with single-qubit

rotations, to generate the unitary Û1 for entanglement seeding and the C-NOT equivalent

unitary Û2, see figure 8.8:

Û1 =
eiπ/4√

2


1 0 0 i

0 1 −i 0

0 −i 1 0

i 0 0 1

 , Û2 =


0 1 0 0

−i 0 0 0

0 0 i 0

0 0 0 1

 . (8.4)

H

GHZ state preparation storage / decoupling analysis

seeding entanglement sequential C-NOT

shuttling induced phasegeometric phase gate

b) c)

a)

Figure 8.8.: (a) Quantum circuit for the creation, storage and analysis of a four-ion GHZ
state. The state is generated by three subsequent entangling gates. Evenly spaced
dynamical decoupling π-pulses are employed to achieve long coherence times, followed by
state tomography on the individual ions. The green (b) and blue (c) dashed boxes show
how the respective entangling gates are realized in the experiment – they correspond
to the unitary operators Û1 and Û2, from equation 8.4 . The black numbers for the
single-qubit operations represent the laser pulse areas, whereas gray numbers indicate
the phase of the respective pulse. Red boxes represent an additional phase, which arises
from the shuttling operations, see text.
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The sequential C-NOT Û2 requires shuttling of a single ion to the LIZ for a single-qubit

rotation, a subsequent recombination of two ions in the LIZ for an entangling gate,

followed by a separation operation and a final transport of a single ion to the LIZ for a

single-qubit rotation.

8.5.2. Four-ion entanglement

In order to generate multipartite entanglement, we employ a sequence of two-ion

entangling gates and single-qubit operations to create a GHZ state |Ψ〉 = 1/
√

2 (i |0000〉+
|1111〉). The experimental sequence, including the shuttling operations, is sketched in

figure 8.9 and in appendix C.3 the full experimental sequence is shown.

The sequence is comprised of five blocks: An initial cooling block prepares the ions close

to the ground state of motion of the radial secular modes, which is crucial for high-fidelity

gate operations in the subsequent quantum logic block. After state preparation, the

coherence can be maintained through an optional rephasing block. To analyze the final

state, quantum state tomography is performed in the analysis block. A final block

contains a magnetic field tracking measurement and an ion repositioning sequence, which

enables the next repetition of the entire sequence. In the following, we describe these

operational blocks.

Initially, ion pair A,B is stored at electrode 20 in the LIZ and ion pair C,D is stored at

electrode 26. Ion pair A,B is then shuttled to electrode 14 and pair C,D is shuttled to

the LIZ for a separation operation, which transfers ion C to electrode 19 and ion D to

electrode 21. Ion pair A,B and the single ions C and D are consecutively transported

to the LIZ for ground state cooling and spin initialization to |ψ〉 = |1111〉. Subsequently,

we perform quantum logic operations to generate the maximally entangled GHZ state

via the quantum circuit shown in figure 8.8, which is comprised of one- and two-qubit

quantum logic operations. Application of the unitary Û1 on the ion pair A,B in the LIZ

generates the state |ψ〉 = (i |0011〉+ |1111〉)/
√

2, where ions A and B are entangled. The

entanglement is extended to all qubits by subsequent application of the C-NOT unitary

Û2 on qubits B,C and C,D. This leads to the final state |ψ〉 = (i |0000〉+ |1111〉)/
√

2,

with the constituent qubits distributed over a macroscopic distance of 1.8 mm.

Since qubits in superposition states are shuttled along the trap axis, they accumulate a

phase φ due to the inhomogeneous magnetic field [Rus17]. In total, four of these phases

need to be considered in the quantum gate sequence.
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Figure 8.9.: Experimental shuttling sequence for the creation, storage and analysis of a
four-ion GHZ state. The state creation takes place above the dashed line. Laser driven
quantum operations, i.e. entangling gates Ĝ or single-qubit rotations R are carried out
in the laser interaction zone (LIZ). After the GHZ state is created, it can be stored for
hundreds of ms by dynamical decoupling. The ions are not stored in the LIZ to prevent
depolarization from residual light near the cycling transition. The full experimental
sequence is shown in appendix C.3.
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We find each of them to be constant over time and to be φ < ±0.6 rad. The phase

is compensated for by adjusting the phase of an adjacent single-qubit rotation, see

figure 8.8 c).

We perform quantum state tomography by subsequent shuttling of each of the ions to

the LIZ. For each ion, one of the analysis rotations {I, RX(π/2), RY (π/2)} is carried out

in order to measure the operators {σz, σy, σx}. As we are only interested in the GHZ

state fidelity irrespective of the relative phase (see below), the analysis pulses are not

corrected for additional phase accumulation.

After the application of tomography rotations, each ion is shuttled to the LIZ for

population transfer |↑〉 ↔ |D5/2〉 via electron shelving. The ions are again individually

shuttled to the LIZ, where state-dependent fluorescence is observed. All qubits are

shelved before fluorescence detection, to avoid depolarization of a remotely stored qubit

from scattered light near 397 nm.

After measurement, we carry out the magnetic field tracking block. Ion A, placed at the

LIZ, is used to measure the drift of the qubit frequency in two Ramsey experiments with

5 ms interrogation time, and 0° and 90° analysis phase, respectively. From these two

measurements, we infer the deviation from the actual qubit frequency, and correct it for

subsequent measurement cycles. Finally, the ions are merged into pairs and the entire

sequence is repeated. In order to obtain the fidelity of the prepared state, we reconstruct

density matrices ρ̂ from the measurement data and compute the state fidelity

F(ρ̂) = max
θ
〈Ψ(θ)| ρ̂ |Ψ(θ)〉 (8.5)

with respect to a GHZ state of arbitrary relative phase θ:

|Ψ(θ)〉 = 1√
2

(
|0000〉+ eiθ |1111〉

)
. (8.6)

We first perform linear inversion of the measurement data, which consists of 4×50900

measurements in total. This yields a density matrix, from which a fidelity of F =92.60%

is extracted. As a density matrix obtained from linear inversion can feature negative

eigenvalues due to statistical errors, the density matrix obtained from linear inversion is

not suitable for estimation of a confidence interval via parametric bootstrapping. We

additionally perform a maximum-likelihood (ML) state reconstruction [Řeh07]. Using

the physical density matrix from the ML reconstruction for parametric bootstrapping,

we estimate a fidelity of FML =92.50(37)%, such that linear inversion and ML estimation

yield consistent results.
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By running the sequence without quantum logic operations, we determine the readout

errors [Kau17a]. State preparation and measurement (SPAM) errors are dominated by

the limited lifetime of the D5/2 state of 1.2 s. For instance, for ion A, the time between

shelving and fluorescence detection is 2.7 ms, leading to an estimated decay-induced

SPAM error of 0.2%. An actual error of 0.4% is measured for ion A, the remaining

error is attributed to shuttling-induced motional excitation, which affects the shelving

efficiency. This is either due to residual coupling of 729 nm shelving laser to axial motion,

or due to residual radial excitation from shuttling. Including correction for SPAM errors,

the fidelity obtained from linear inversion is F =94.38%. The obtained density matrix

is displayed in figure 8.10.

0. 2.46 1.86 0.14 -2.08 0.56 -2.62 -1.56

-2.46 0. 3.08 1.5 2. 1.06 -0.51 2.47

-1.86 -3.08 0. -0.03 2.87 -2.4 2.18 2.61

-0.14 -1.5 0.03 0. 2.77 -2.78 -3.05 0.02

2.08 -2. -2.87 -2.77 3.14 -0.96 1.56 -2.19

-0.56 -1.06 2.4 2.78 0.96 3.14 -1.9 -3.13

2.62 0.51 -2.18 3.05 -1.56 1.9 3.14 0.78

1.56 -2.47 -2.61 -0.02 2.19 3.13 -0.78 0.

|↑↑↑〉|↑↑↓〉|↑↓↑〉|↑↓↓〉|↓↑↑〉|↓↑↓〉|↓↓↑〉|↓↓↓〉

|↑↑↑〉
|↑↑↓〉
|↑↓↑〉
|↑↓↓〉
|↓↑↑〉
|↓↑↓〉
|↓↓↑〉
|↓↓↓〉

Arg (ρ) -π -
π

2

π

20 π

Figure 8.10.: Reconstructed density matrix of a maximally entangled four-ion GHZ state
with correction for readout errors. Linear reconstruction with correction for SPAM errors
yields a state fidelity of F = 94.38%. The numerical data is shown in appendix A.

Here, ML estimation with parametric bootstrapping yields FML =94.28(30)%. Addition-

ally, we perform statistical tests based on Hoeffding’s tail inequality [Mor13], confirming

that the measurement data is statistically consistent with the state described by the

reconstructed density matrices.
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8.5. Scalable creation of long-lived multipartite entanglement

The theoretical fidelity limit for our setting is 97%, since the two-qubit entangling gate

is performed three times at a fidelity of 99.0(4)%. We attribute the discrepancy from

this result to imperfect calibration of the individually calibrated entangling gates and

the correction phases φ, as well as the finite accuracy of the magnetic field tracking

measurements. The entangling gates require individual calibration due to small motional

excitation – mainly from heating – which results in a reduced coupling to the driving

field and thus requires a slightly increased power for the entangling gate pulse.

The execution time for the creation of the GHZ state after sideband cooling is 3.1 ms,

where 11% is used for quantum gates and the remainder is dedicated to shuttling opera-

tions, see appendix C.3 for details. This illustrates that currently, the shuttling overhead

dominates the time budget of the quantum CCD operation. However, a significant leeway

for optimization of these operations via technological and methodological improvements

exists.

8.5.3. Dynamical decoupling

Magnetically sensitive multi-qubit GHZ states are prone to super-decoherence, which is

caused by correlated local magnetic field noise [Mon11b]. We measure the coherence

time of a four-ion GHZ state and employ dynamical decoupling to achieve extended

lifetimes. Here, repeated π-flips of the qubits serve to effectively cancel the coupling of

the qubits to a drifting offset magnetic field [Van05]. Once the GHZ state is created,

the four individually trapped ions are merged to ion pairs A,B and C,D to reduce the

amount of shuttling operations in the rephasing block. After storing the ion pairs at

segments 19 and 23, they are alternately shuttled to the LIZ and subjected to π-pulses.

The pulses are evenly spaced within the storage time, thus only an odd number of

pulses is suitable for decoupling. After the rephasing block, the ion pairs are separated

into individually trapped ions for state analysis. We utilize a reduced measurement

scheme, by measuring the operators {σ(A)
x σ

(B)
x σ

(C)
x σ

(D)
x } and {σ(A)

x σ
(B)
x σ

(C)
x σ

(D)
y }. To

infer the GHZ coherence of the state, each of the two operators is measured at least 200

times. The parity contrast and its statistical measurement error are determined from

the measurement results via ML parameter estimation [Rus17]. The results of these

measurements are shown in figure 8.11. The coherence time of the GHZ state without

rephasing pulses is about 20 ms. By applying Nπ = 15 rephasing pulses on each ion

pair, we achieve coherence times exceeding one second. As can be seen from figure 8.11,

the coherence decay is not described by a simple model. We attribute this to noise
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8. Scalable Entanglement Generation

at frequencies that match the inverse time difference between subsequent decoupling

pulses [Kot11].
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Figure 8.11.: Preservation of the parity contrast of a four-ion GHZ state by dynamical
decoupling. Green triangles for short times correspond to a measurement without the
execution of the rephasing block. Blue circles represent a measurement with Nπ = 15
rephasing pulses on each qubit, while red squares correspond to Nπ = 3. The dotted black
line represents a Gaussian decay, whereas the gray dashed line represents an exponential
decay. The data shown is not corrected for SPAM errors.

8.6. Lifetime of entangled states

We have demonstrated the scalable generation of long-lived entangled states of up to four

ions in the previous section. Maintaining the coherence of such states is important to

the measurement based approach to quantum computing [Rau01; Lan13] and quantum

error correction [Nig14; Lin16]. For GHZ states, consisting up to N = 14 qubits, a

1/N2 scaling law was found for the coherence time [Mon11a]. The magnetically sensitive

states are prone to superdecoherence, which is caused by correlated Gaussian phase

noise of the magnetic field. The influence of decoherence on the entanglement dynamics

of a four-ion GHZ state has been investigated experimentally [Bar10].

Here, we measure the coherence of up to four entangled ions in our setup and compare

the results to the findings of other research groups. Specifically, we create the entangled

quantum states |Ψ2〉 = 1/
√

2(|00〉+ eiφ |11〉), |Ψ3〉 = 1/
√

2(|000〉+ eiφ |111〉) and |Ψ4〉 =

1/
√

2(|0000〉+ eiφ |1111〉). The three-ion entangled state |Ψ3〉 was created in the same

fashion as the four-ion state |Ψ4〉.
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8.6. Lifetime of entangled states

Results for the single ion superposition state |Ψ1〉 = 1/
√

2(|0〉+ eiφ |1〉) are published

in [Rus16] and are measured in the same setup. We plot the obtained 1/
√
e coherence

times of the states versus the number of the qubits in figure 8.12.
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Figure 8.12.: Measured coherence times of N entangled qubits. Left: Data with a variable
storage time after state generation. Right: A single spin-echo π-pulse, in the center of
the variable storage time, extends the coherence times. For N = 3, 4 the state is a GHZ
state, for N = 2 a Bell state and for N = 1 a spin superposition state. The red line is an
exponential weighted least square fit of the form Ce−kN . The decay factor according to
the fit is k = 1.9(1) for the data without rephasing and k = 1.75(6) for the data with a
spin-echo pulse.

The data needs to be interpreted with care, as the quantity of data sets is rather low

and the measurements were taken over the course of several months, as explained in

the following. Nevertheless, the coherence of the entangled states seems to be affected

by correlated Gaussian phase noise, which results in a ∝ 1/N2 scaling of the GHZ

state lifetime [Mon11a]. The authors use magnetic coils to generate the magnetic field

– in our setup, the field is generated by permanent magnets [Rus16]. We emphasize

that the coherence times and the error bars are estimates, as the data is affected by

non-stationary magnetic field fluctuations. The corresponding data for |Ψ1〉 is shown

in [Rus16] and for |Ψ2〉 , |Ψ3〉 , |Ψ4〉 in appendix A and section 8.5. The measurements

for |Ψ1〉 were taken in April 2016, whereas |Ψ2〉 and |Ψ3〉 were measured in August 2016

and |Ψ4〉 was measured in September 2016. Since no changes were made to the setup

during this time span, we consider the data sets to be consistent. The measurement

for |Ψ2〉 was executed with both ions stored in the LIZ, all other measurements were

carried out with ions stored on individual electrodes, separated by 600 µm.

For future investigations of the decoherence mechanisms in our system, it would be desir-

able to perform the measurements within a few days, in order to increase comparability
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8. Scalable Entanglement Generation

between the data sets. Furthermore, the quantity of data sets should be increased, to

obtain the coherence times with a higher precision. Our apparatus also enables us to

observe the spatial dependence of the coherence of entangled states, by storing the ions

in distant locations, similarly to [Rus17].
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Towards Quantum Simulation

Multiple cold trapped ions form crystals, when confined in a common harmonic potential

due to the Coulomb repulsion, as described in section 2.2. Two-dimensional zigzag

crystals offer the possibility of exploring quantum many-body physics, for instance

frustrated quantum Ising models [Kim10; Ber12]. Essentially, an analogue quantum

simulator [Fey82] can be constructed from such a physical system. In figure 9.1, an

exemplary fluorescence image of a planar seven-ion crystal is shown.

z [µm]

y*
 [µ

m
]

Figure 9.1.: Exemplary fluorescence image of a planar seven-ion crystal. In this image,
the trap axis is aligned in the z-direction. Image taken from [Kau12a].

The key ingredient for the proposed experiments are state-dependent optical dipole

forces [Mon96; Lei03a] on planar ion crystals. A spin-dependent force – created by

two superposed Raman laser beams – is used two entangle the spins of two ions in our

experiments, see section 8.4. The force is applied on a common motional mode of the

ion crystal, which needs to be cooled close to the motional ground state before the force

is applied. A planar ion crystal, which consists of N ions, features in total 3N motional

modes. Out of these, 2N modes are aligned in the plane of the crystal. Coupling to

the modes with laser beams is more challenging than in a one-dimensional ion crystal,
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9. Towards Quantum Simulation

since the Lamb-Dicke factors are reduced [Ber12]. Furthermore, in a one-dimensional

crystal, it is possible to overlap the effective wave vector precisely with the motional mode

vectors. Thus, the laser beams couple only to N modes of the ion crystal and overlapping

motional mode frequencies do not play a role. However, in a planar ion crystal, the 2N

motional mode frequencies need to be well separated to allow for individual addressing

of the mode.

9.1. Three-ion planar crystal

Motional mode vectors of zigzag modes in two-dimensional ion crystals point in various

directions [Kau12b; Kau12a]. In the experiment, we couple to two of these modes of a

three-ion zigzag crystal, which are shown in figure 9.2.

xx

y

Figure 9.2.: Motional mode vectors of two zigzag modes of a three-ion planar crystal,
which is confined in the x-y plane. The mode in the left panel is henceforth denoted as
the squish mode and the mode in the right panel is denoted as the vortex mode. Along
the trap axis x, the distance between the ions is 3 µm – along the radial y-direction, it is
1.8 µm. The effective wave vector of the coupling Raman laser beams is aligned in the
x-direction.

The three-ion crystal is trapped in a harmonic potential, which is generated by a single

electrode DC voltage of −7.4 V and an RF voltage of about 280 V peak-to-peak. These

voltages give rise to the secular trap frequencies ωx,y,z = 2π × {1.652, 2.424, 3.795} MHz

– the resulting anisotropy parameter is α = ω2
x/ω

2
y = 0.464. For the squish mode, a

frequency of 2π×1.15 MHz is determined from a spectroscopic measurement – for the

vortex mode we measure 2π×1.39 MHz. There are two additional zigzag modes in the

crystal plane at higher frequencies [Kau12b]. We restrict our measurements to the lower

frequency modes, because linear combinations of motional modes can overlap near the

zigzag mode frequencies.
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9.2. Ground state cooling of zigzag modes

9.2. Ground state cooling of zigzag modes

We apply laser pulses to cool the modes to the motional ground state. The beam waist

of all laser beams is sufficiently large to couple equally well to all three ions. Initially, the

three ions are cooled via Doppler cooling. Afterwards, a sequence of resolved sideband

cooling laser pulses is executed on one of the zigzag modes – we use the laser beams

R1 and R2 to generate an effective wave vector in the axial x-direction. Specifically,

we use 60 red sideband cooling pulses of 6 µs duration, followed by 60 pulses of 12 µs

duration, concluded by 60 pulses of 18 µs duration. Subsequently, the spins of the three

ions are initialized to the |↑↑↑〉 state via optical pumping. The motional excitation is

then probed with a laser pulse of variable duration on the red and blue sideband of

the zigzag mode. Electron shelving and fluorescence readout are used, to read out the

spin state. We detect the fluorescence of all three ions simultaneously with a PMT. A

detection time of 10 ms is used to distinguish between the four possible outcomes of the

total amount of fluorescence – zero, one, two or three ions in the spin state |↓〉. We

observe the population of the initialized state |↑↑↑〉 as a function of the probe pulse

duration to estimate the motional excitation of the probed motional mode. The resulting

Rabi oscillation data on the squish mode is shown in figure 9.3 and the result for the

vortex mode is shown in appendix A.
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Figure 9.3.: Ground state cooling of the zigzag squish mode of a three-ion zigzag crystal.
Left: Rabi oscillation data on the red sideband (red triangles) and the blue sideband
(blue circles) of the squish mode, after Doppler cooling. Right: Rabi oscillation data
after resolved sideband cooling of the squish mode. Each data point corresponds to
100 measurements, error bars correspond to the standard error from binomial readout
statistics.
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9. Towards Quantum Simulation

After Doppler cooling, the red and blue sideband are indistinguishable, which indicates

a mean phonon occupation number of n̄ & 7. After resolved sideband cooling however,

the red and blue sidebands are distinguishable and we estimate, that both zigzag modes

are cooled to n̄ < 1.

9.3. Spin-dependent force on a zigzag mode

From the low motional excitation, we infer that the two zigzag modes are in the Lamb-

Dicke regime, which allows for coherent displacements in phase space via spin-dependent

forces [Mon96; Lei03a]. During the displacement operations, spin and motion of the

ions are entangled – the phase space trajectory of a single ion has been observed

experimentally [Pos10b].

We perform Doppler cooling and resolved sideband cooling on the squish mode, followed

by spin state initialization to |↑↑↑〉 |n ≈ 000〉. Subsequently, we execute the light shift

gate pulse sequence on the three ions simultaneously, which is sketched in figure 8.6 – it

corresponds to a spin-echo sequence with initial and final single-qubit π/2-rotations and

two spin-dependent light-shift force pulses, which are separated by a rephasing π-pulse.

We vary the duration of the spin-dependent force pulses to observe the population

dynamics. State readout is performed in the same fashion, as in the sideband cooling

experiment. The single-qubit rotations are carried out with the laser beams R1 and CC

and the spin-dependent light force pulses are driven by the beams R2 and CC, which

create an effective wave vector along the axial x-direction. The frequencies of the laser

beams R2 and CC generate a moving standing wave, see section 2.5 – they are detuned

by δf = ωL−ωsquish, where ωL ≡ ωR2−ωCC and ωsquish is the motional frequency of the

squish mode of 2π×1.15 MHz. We choose a force detuning of δf = 2π×100 kHz and the

detuning of the Raman laser beams from the cycling transition is ∆ = −2π×130 GHz.

The light force pulse of variable duration t corresponds to a displacement α(t) in phase

space (see equation 2.20). After a duration of t = 2πK/δf , where K ∈ N, a loop in

phase space is closed and we expect the coherent state to return to its initial position

|↑↑↑〉 |n ≈ 000〉. The result of the experiment is shown in figure 9.4.

We observe spin population dynamics, which are similar to the results for a transverse

modes in a linear three-ion crystal [Kim09]. The fringe decay is more pronounced,

compared to these experiments, since only one zigzag mode is cooled to the motional

134



9.3. Spin-dependent force on a zigzag mode
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Figure 9.4.: Optical dipole force on the zigzag squish mode. The spin state population of a
three-ion zigzag crystal is shown as a function of the displacement laser pulse duration on
the zigzag squish mode. The dashed red line corresponds to a weighted least squares fit
of the form P|↑↑↑〉(t) = A cos(2πνt)e−γt + C, where t is the displacement pulse duration,
γ is an empirical decay factor and A,C are constants. The fit yields the parameters:
ν =96 kHz, γ =60 kHz, A = 0.3 and C = 0.69. The result for the oscillation frequency ν
is in good agreement with the experimentally set laser detuning from the squish mode
δf = 2π×100 kHz. Each measurement is repeated 100 times, error bars correspond to the
standard error from binomial readout statistics.

ground state. The other five common motional modes in the crystal plane, which couple

to the driving laser field, are cooled via Doppler cooling and thus outside the Lamb-Dicke

regime. The fringe contrast can also be impaired by additional decoherence effects, such

as motional heating [Tur00], photon scattering [Oze07] or quantum jumps [DF00]. We

consider these effects to be negligible for the observed decay in our experiment, and

attribute the fringe decay to the motional excitation of the spectator modes.

In the proposal for a trapped-ion quantum simulator [Ber12], which is based on planar

crystals, the effective wave vector of the coupling laser field is aligned almost parallel to

the z-direction. This allows for the coupling to the N transverse modes of the planar

crystal, rather than to the 2N planar modes, as conducted in our experiment. In our

setup, a similar configuration can be achieved by employing the laser beams R4 and CC,

rather than the beams R2 and CC. Additionally, the radial trap axes y and z should

be rotated by around 40°, to align the crystal plane almost vertically to the coupling

wave vector. A rotation of the radial trap axes can be achieved by applying an offset

voltage to all DC electrodes. Furthermore, the laser beams could be tilted with respect

to the radial trap axes to require a smaller offset voltage. The timescale of the proposed
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quantum simulator [Ber12] for the spin-spin interactions is in the millisecond regime.

Given the characterization of the experiment (chapter 6), we are optimistic that relevant

decoherence mechanisms would be small enough to allow for operations in this regime.

Ions in planar crystals experience pronounced micromotion. Our results show, that

sideband cooling and quantum gates are not inhibited by this effect.

To our knowledge, this is the first realization of ground state cooling and a spin-

dependent dipole force on a zigzag mode of a planar ion crystal. We are confident,

that our experimental system will allow for the investigation of frustrated quantum

Ising models, via spin-spin interactions, in small two-dimensional ion crystals – the

demonstrated spin-dependent optical dipole force on a zigzag mode is an important step

towards a trapped-ion quantum simulator.
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Outlook

In this work, the fabrication and operation of a scalable trapped-ion quantum processor

is presented. The device is a reconfigurable quantum register, which is also known as

quantum charge-coupled device [Kie02]. Ion qubits are moved between linear Paul traps

to a laser interaction zone, where few-qubit quantum logic gates are executed. Our

device performs single- and two-qubit logic operations above the threshold for fault

tolerant quantum computing. A scalable quantum logic circuit, which is comprised

of such operations, is performed on four qubits, to generate a maximally entangled

Greenberger-Horne-Zeilinger state |ψ〉 = 1√
2
(|0000〉 + |1111〉) with a state fidelity of

94.4(3)%. The four constituent entangled ions are spatially separated over a distance of

1.8 mm. A dynamical decoupling technique is employed, to maintain 69(5)% coherence

at a storage time of 1.1 seconds. We therefore demonstrate the deterministic generation

of a multipartite entangled state, with its constituents distributed over a macroscopic

range, which persists for an unprecedented long storage time.

In this chapter, we propose experimental advancement, to improve the performance

of complex quantum logic circuits in our device. We desire to scale our system to an

N > 10 qubit processor, as sketched in figure 10.1.

To realize such multi-qubit algorithms in our setup, it is also necessary to implement

advanced control schemes for the conjunction of shuttling operations and quantum

logic gates. This is equivalent to a quantum compiler and an operating system for the

quantum processor. Conclusively, we give an outlook on future experiments in our device

and assess the current status, with respect to the realization of a logical qubit [Ber17],

which is comprised of several entangled physical qubits [Sho95; Ste96].
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Figure 10.1.: Envisioned quantum register size for future experiments.

10.1. Experimental advancement

We drive single and two-qubit quantum logic gates with stimulated Raman transitions

near 397 nm. The performance of both gates is beyond the threshold for fault tolerant

quantum computation, but can still be improved by reducing the photon scattering rate

during the gate operation. This requires a larger detuning from the atomic resonance,

and thus increased optical power. A new frequency-doubled titanium sapphire laser

source will be operational soon and deliver a twentyfold increased optical intensity, which

will reduce the photon scattering error significantly. This will enable us to reduce the

two-qubit gate duration by one order of magnitude to below 10 µs, while maintaining a

high gate fidelity.

We perform the two-ion entangling gate on a radial secular mode and the gate fidelity is

currently limited by electrical noise between the RF and DC electrodes. Eliminating

this noise requires a thoroughly designed electrical configuration of the apparatus, which

provides sufficient shielding and simultaneously avoids multiple ground connections.

Due to a higher gate speed in the future, this noise will contribute significantly less to

the gate error. However, reducing the gate speed by orders of magnitude will require

advanced experimental schemes [GR03; Cam10; Rom12].

To increase the operational speed of our quantum processor, it is imperative to speed up

the shuttling operations. This can be realized by changing the low-pass filter between trap

electrodes and voltage supply, which currently limits electrode-to-electrode transports

to around 30 µs. However, a new filter should still provide decent noise suppression at
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the low transient axial trap frequencies during the separation operation.

For long-distance transports between multiple electrodes, we currently use concatenated

electrode-to-electrode transports, where ions are accelerated and decelerated multiple

times. This method should be altered to a scheme, that updates all involved electrodes

simultaneously and enables a faster transport over multiple electrodes with only one

acceleration and one deceleration phase, that is capable of creating coherent excitation.

The stability of the quantizing magnetic field, which is generated by permanent magnets,

is important to single-qubit rotations in the quantum logic circuits. We observed, that

small field drifts correlate with the temperature of the magnets. Therefore, the qubit

frequency stability would benefit from temperature-stabilized magnets. Alternatively, the

magnets could be combined with other magnets with a different temperature dependence,

to make them more robust with respect to temperature changes.

The capabilities of our quantum processor could be increased by a second laser interaction

zone in the future, which would allow for a higher degree of parallelization. Furthermore,

a second ion species for sympathetic recooling would be desirable, to remove residual

motional excitation of the ions without disturbing the qubit state. Ground state cooling

could be performed with sympathetic electromagnetically-induced-transparency laser

cooling [Lin13]. A second ion species would also increase the versatility of our device, as

information can be stored and measured in such a qubit, without disturbing the qubits

of another species.

In quantum circuits, such as the quantum teleportation circuit, conditional measurement

operations are used. The result of a projective measurement on one qubit, determines

the parameters for operations on another qubit. In our setup, this would require a tight

focusing of the cycling transition laser beam near 397 nm, such that distant qubits are not

depolarized. Additionally, the result of the photo-multiplier measurement would need to

be processed in real time and fed forward to subsequent quantum logic operations.

10.2. Control advancement

Our quantum processor is capable of performing more complex quantum logic circuits,

than the four-qubit entanglement circuit, which is presented in this thesis. We aim to

scale the operations up to more than ten qubits in the future. Our universal set of gate

operations is comprised of only two gates – single-qubit rotations and an entangling

geometric phase gate. The four-qubit GHZ state circuit is comprised of these operations

139



10. Outlook

and was developed and optimized by hand. Optimizing the circuit followed the paradigm,

to use as few shuttling operations and logic gates as possible. More complex algorithms

however, will require an automated optimization as in [Neb09; Mar16], because the

parameter space is too large for manual optimization. Such an optimization routine is

also referred to as quantum compiler.

The quantum processor also requires an operating system, which is currently under

development. The system will reduce the programming time for quantum algorithms

significantly. Programming of experimental sequences currently requires careful attention,

as ion trajectories need to be tracked manually in the code. The new operating system

will offer preprogrammed blocks of shuttling and logic operations. It will also optimize

the electric DC potential along the trap axis to allow for fast shuttling operations with

a large qubit register.

Low-pass filters between DC supply and trap electrodes distort the waveforms, which are

designed in the control computer. By measuring the transfer function of the filters, it is

possible to account for this distortion in the voltage ramp design, and thus un-distort

the waveforms. This procedure will result in a higher degree of control over the ion

motion. We estimate, that shuttling operations can be realized significantly faster with

this technique, featuring less motional excitation.

10.3. Quantum error correction

A fault-tolerant quantum computer requires quantum error correction (QEC), to correct

for detrimental coupling to the outside world. Error correction is not as simple, as

in a classical computer, due to a number of reasons. A single qubit is often in a

superposition state, consequently a continuum of errors can occur on it. If we measure a

qubit, we destroy the quantum information, which it contains and due to the no-cloning

theorem [Woo82], it is not possible to create redundant copies of the qubit information.

However, there exist QEC schemes, which encode the information of a single logical qubit,

in an entangled state of multiple physical qubits [Sho95; Ste96]. If, for instance, a bit flip

error occurs, the QEC code can detect this error and correct for it without a projective

measurement of the logical qubit. An experimental realization of a QEC algorithm

is demonstrated in [Nig14] with a linear ion string. The authors encode one logical

qubit in seven physical ion qubits and are able to ”...detect one bit flip error, one phase

flip error, or a combined error of both, regardless on which of the qubits they occur.”
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Their encoding scheme is the topological seven-qubit color code [Bom06], which features

an important property, called transversality – if one desires to perform a single-qubit

rotation on the logical qubit, it suffices to perform this operation simultaneously on the

seven physical qubits.

A comprehensive analysis of QEC schemes for trapped ion systems is provided in [Ber17].

The authors develop concrete QEC schemes and assess their performance with numerical

simulations.

In the following, we introduce one scheme that could be realized in our setup in future

experiments, see figure 10.2. The basic idea is, to map an error syndrome to an ancillary

qubit and read out its state. The result of the measurement determines, whether an

error occurred to the logical qubit and needs to be corrected. Subsequently, the ancillary

qubit is reinitialized and used for additional error syndrome readout.

A variety of experimental building blocks is required to successfully implement this

sequence. Reordering of a three-ion crystal, with three sequential two-ion rotation

operations, was successfully demonstrated in our setup and could be straightforwardly

extended to a four-ion crystal [Kau17a]. We estimate, that the operation could also be

performed simultaneously on a string of more than two ions. The remaining required

shuttling operations have been demonstrated in our setups in [Wal12; Rus14] and in this

thesis. Some experimental development will be necessary to separate a four-ion crystal

into a two-ion pair and two single ions, within a short time and without significant

motional excitation. In the current situation, we do not have a second ion species available

for sympathetic recooling. An execution of the sequence at a reduced performance

should still be feasible, before the experimental hardware for a second ion species is

installed. The sequence requires measurement and real time feedback operations, which

are currently not available in our setup. However, we plan to implement this functionality

soon. The sequence also requires single-qubit and two-qubit quantum logic gates, which

have been demonstrated in a scalable scheme at high fidelity in this thesis.

Extensive numerical simulations are carried out, by the authors of [Ber17]. They find,

that repeated runs of the presented scheme can extend the coherence time of a logical

qubit by a factor of two, compared to an unprotected physical qubit. However, the

experimental parameters, which are used in their simulation, are anticipated future

values. For instance, the infidelity of a two-qubit gate is anticipated to be 2 · 10−4. This

is one order of magnitude better, than the best gate infidelity of 5 · 10−3 in our setup,

and a factor of four better than the best reported infidelity for a two-qubit gate [Gae16].
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10. Outlook

Figure 10.2.: Envisioned quantum error correction scheme for a segmented ion trap. Image
taken from [Ber17]. Ions are shuttled along the horizontal direction between five different
ion trap zones M1,S1,M2,S2 and S3. The time axis for the operations is top down. Blue
ions are data ions and a red ion represents an ancillary ion of the same species, such
as 40Ca+. A green ion, which could be 88Sr+, is used for sympathetic recooling. Red
ellipses indicate two-ion entangling gates and blue rectangles show sympathetic recooling
operations.
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10.4. Large-scale quantum computing

The performance of single-qubit gates in our setup would need to improve by a factor of

five to meet the anticipated parameters. We expect to approach the required parameter

regime for quantum logic gates by implementing the planned experimental improvements,

which are described in section 10.1. For shuttling operations, an improvement of duration

and motional excitation by a factor of about 2-3 is required. We estimate that such

improvement can be realized, by employing a filter-un-distortion technique, as described

in section 10.2. State discrimination via fluorescence detection is anticipated to be

performed within 30 µs, which is an order of magnitude faster, than in our current setup.

Improving the photon collection efficiency will probably require an optical setup with

increased numerical aperture to observe the ions.

To conclude, we estimate that the envisioned scheme could be realized in our apparatus,

when a second ion species and conditional measurement operations are added to our

experiment. With the current experimental performance of quantum logic gates, shuttling

operations and state discrimination, the regime of beneficial QEC would not be reached,

according to numerical simulations. Therefore, the performance of the experimental

building blocks requires continuous development to reach the goal of keeping an encoded

qubit alive.

10.4. Large-scale quantum computing

A large-scale trapped-ion quantum computer will probably require photonic intercon-

nects between individual ion trap computation modules [Mon14; Inl17], see figure 10.3.

The idea is, to guarantee a high degree of control for few-qubit quantum registers.

Probabilistic photonic interfaces between separate registers could be used to create

entanglement between distant ion traps [Moe07; Olm09].

We have demonstrated scalable quantum logic operations in our apparatus and our

research group is currently working on the realization of a quantum CCD with a photonic

interface, see figure 10.3.

The goal is, to use the device for the realization of a quantum repeater node, which

allows for the transmission of quantum information over large distances [Pfi16]. The

envisioned protocol is based on creating entanglement between ions in different quantum

repeater nodes, by coupling them to photons in a cavity.

143



10. Outlook

Figure 10.3.: Photonic interconnects for quantum information processing. Left: Proposed
large-scale modular quantum computer with individual computation modules (ELU),
connected by optical fibers. Each of the modules should contain 10-100 atomic ion qubits.
Image taken from [Mon14]. Right: Micro-structured ion trap with an integrated optical
fiber cavity. The dimensions of the ion trap are similar to the trap, which is presented in
this thesis. Image taken from [Pfi16].

Aside from the ion-light coupling, shuttling and quantum logic operations are required

to realize the protocol. With further technical development, similar devices could be

used for a large-scale modular quantum computer.

144



A
Appendix – Measurement Data

Motional coherence data without AC trigger (section 6.3)
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Figure A.1.: Measurement of the motional coherence of the axial mode ωx (a), the lower
radial mode ωy (b) and the higher radial mode ωz (c) without triggering to the AC line.
The red line corresponds to a weighted least square fit of the form f(t) = A exp(−γt−γ22t2),
the obtained parameters and coherence times are summarized in table 6.2. Each data
point corresponds to 2× 600 measurements.
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A. Appendix – Measurement Data

Motional excitation from the swapping operation

(section 7.1)
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Figure A.2.: Rabi oscillation data from two ground state cooled ions A and B to investigate
the motional excitation from the swapping operation – results are listed in table 7.1. The
data without the swap operation features a wait time, that is equal to the swapping
duration, to make the measurements comparable. For each mode the carrier transition is
measured additionally to the red and blue sideband. The dashed line corresponds to a
fit, see section 7.1. Each data point corresponds to 200 state interrogations, error bars
correspond to the standard error from binomial readout statistics.
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Figure A.3.: Rabi oscillation data from two ground state cooled ions A and B to investigate
the motional excitation from the swapping operation – results are listed in table 7.1.
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A. Appendix – Measurement Data
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Figure A.4.: Rabi oscillation data from two ground state cooled ions A and B to investigate
the motional excitation from the swapping operation – results are listed in table 7.1.
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Figure A.5.: Rabi oscillation data from two ground state cooled ions A and B to investigate
the motional excitation from the swapping operation – results are listed in table 7.1.
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A. Appendix – Measurement Data

χ-matrix determined from quantum process tomography

(section 7.2)
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Figure A.6.: Real and imaginary part of the χ-matrix, which was obtained in the quantum
process tomography shown in figure 7.4 of the main text. The absolute value of empty
fields is smaller than 0.01.
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Three-ion truth table (section 7.3)
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Figure A.7.: Measured three-ion truth table corresponding to the reconfiguration of a
three-ion crystal. Small negative values arise due to the readout error correction.

Bell state density matrix (section 8.4)
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Figure A.8.: Real and imaginary part of the experimentally reconstructed density matrix
ρ of a two-qubit Bell state, as shown in figure 8.7. The data is corrected for readout
errors.
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A. Appendix – Measurement Data

Four-ion GHZ state density matrix (section 8.5.2)
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Figure A.9.: Real part of the experimentally reconstructed density matrix ρ of a four-qubit
GHZ state, including correction for readout errors.
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Figure A.10.: Imaginary part of the experimentally reconstructed density matrix ρ of a
four-qubit GHZ state, including correction for readout errors.
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A. Appendix – Measurement Data

Lifetime of entangled states (section 8.6)

Here, the lifetime measurement data from section 8.6 is shown. The parity contrast is

determined from a reduced measurement scheme and corresponds to the coherence of

the entangled state, see section 8.5. A maximum likelihood method is used to compute

the contrast and the error bars [Rus16].
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Figure A.11.: Lifetime measurement of a two-ion Bell state |Ψ2〉 = 1/
√

2(|00〉+ eiφ |11〉).
In this measurement, both ions are stored in the LIZ during the storage time. Both
measurements are identical – in the left panel, each data point corresponds to 2× 200
measurements and in the right panel, each data point corresponds to 2×40 measurements
to increase robustness with respect to magnetic field drifts. We estimate a 1/

√
e coherence

time of 100(30) ms from this data.
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Figure A.12.: Lifetime measurement of a three-ion GHZ state |Ψ3〉 = 1/
√

2(|000〉 +
eiφ |111〉). Each data point corresponds to 2× 600 measurements, we estimate a 1/

√
e

coherence time of 60(30) ms from this data.
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Figure A.13.: Lifetime measurement of a two-ion Bell state |Ψ2〉 = 1/
√

2(|00〉+ eiφ |11〉)
with a rephasing spin-echo π-pulse. In this measurement, both ions are stored in
the LIZ during the storage time. Each data point corresponds to 2× 200 measurements,
we estimate a 1/

√
e coherence time of 600(100) ms from this data.
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Figure A.14.: Lifetime measurement of a
three-ion GHZ state |Ψ3〉 = 1/

√
2(|000〉+

eiφ |111〉) with a rephasing spin-echo
π-pulse. Each data point corresponds
to 2× 600 measurements, we estimate a
1/
√
e coherence time of 300(50) ms from

this data.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.2

0.4

0.6

0.8

1.0

storage time (sec)

pa
rit
y
co
nt
ra
st

Figure A.15.: Lifetime measurement of a
four-ion GHZ state |Ψ4〉 = 1/

√
2(|0000〉+

eiφ |1111〉) with a rephasing spin-
echo π-pulse. Each data point cor-
responds to 2 × 200 measurements, we
estimate a 1/

√
e coherence time of

250(100) ms from this data.
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Ground state cooling of the zigzag vortex mode (section 9.2)
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Figure A.16.: Ground state cooling of the zigzag vortex mode of a three-ion zigzag crystal.
Left: Rabi oscillation data on the red sideband (red triangles) and the blue sideband
(blue circles) of the vortex mode after Doppler cooling. Right: Rabi oscillation data after
resolved sideband cooling of the vortex mode. Results of ground state cooling on the squish
mode are shown in chapter 9. Each data point corresponds to 100 single measurements,
error bars correspond to the standard error from binomial readout statistics.
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B.1. Motional state readout

Here, we provide details on the motional state readout, see section 7.1 of the main text.

To investigate the motional excitation from the swapping operation, we cool each of the

six secular modes of the two ion crystal close to the motional ground state via resolved

sideband cooling on the stimulated Raman transition. We either perform the swapping

operation or wait for the respective duration to obtain reference data. Subsequently, we

drive Rabi oscillations on the stimulated Raman transition, either the carrier (phonon

number change ∆n = 0), red (∆n = −1) or blue (∆n = +1) sideband transition of the

particular secular mode to be measured on both ions for a variable time t. The ions are

jointly shelved to the metastable state for spin readout, then the ion crystal is separated,

and state-dependent fluorescence is observed individually for each ion. We thus obtain

single ion data for sideband Rabi oscillations of the secular modes of the two ion crystal.

The data for all secular modes is shown in figures A.2 through A.5.

We jointly fit the measurement data for carrier and sidebands to a model describing Rabi

oscillations of two homogeneously driven ions on arbitrary sideband transitions, valid

also outside the Lamb-Dicke regime. We consider an initial number state characterized

by the phonon number n on mode i, and a phonon number difference per spin flip ∆n,

where ∆n = +(−)1 for the first blue (red) sideband. The light-motion coupling for

a given secular mode i is described by the carrier Rabi frequency Ω, the Lamb-Dicke

factor ηi, and the matrix elements

m1 = Mn,n+∆n (A-1)

m2 = Mn+∆n,n+2∆n,

157



B. Appendix – Methods And Data Analysis

where Mn,n+∆n is given by equation 2.15. By analytically solving the time-dependent

Schrödinger equation, we obtain the following expressions for the probabilities to find

both ions in |↓〉, P↓↓, both ions in |↑〉, P↑↑, and both ions in different spin states,

P↑↓ = P↓↑:

P↑↑,∆n,ηi(t) =

(
1

m2
1 +m2

2

)2

×
[
m4

2 + 2m2
1m

2
2e
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(A-2)

where n is the initial quantum number, ∆n is the phonon number change per single

spin flip, and t is the time of exposure to the driving field. We assume all secular modes

of the ion crystal to be in a coherent (Glauber) state after the swapping operation.

This assumption is justified, as the duration of the swapping is small compared to

the inverse heating rates (typically 0.3 s per phonon on the axial COM mode), and

the initial state is rather close to the ground state. Thermal and coherent excitation

on spectator modes leads to dephasing of the Rabi oscillations, which is described

empirically by the additional decay factors e−γt. For each spin configuration s1s2, we

describe the measured signals by averaging over Ps1s2,n,∆n,ηi(t) and weighting with the

phonon number distribution for a coherent state with mean phonon number n̄i:

Ps1s2,n̄i,∆n,ηi(t) =
N∑
n=0

e−n̄i
n̄ni
n!
Ps1s2,n,∆n,ηi(t), (A-3)

where N is a cutoff phonon number. We use a fit to the first red and blue sidebands as

well as the carrier transition to determine the average phonon number of each motional

mode. For each fit, the floating parameters are Ω, ηi and n̄i. The obtained phonon

numbers are listed in table 7.1.

As the fluorescence readout is performed separately for the two ions, the recorded signals
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correspond to the probability of finding ion 1 in |↓〉 (P↓↓,n̄i,∆n,ηi(t) + P↓↑,n̄i,∆n,ηi(t)) and

of finding ion 2 in |↓〉 (P↓↓,n̄i,∆n,ηi(t) + P↑↓,n̄i,∆n,ηi(t)). In the main part of this work,

the average of these probabilities, 1
2 (P↓↑,n̄i,∆n,ηi(t) + P↑↓,n̄i,∆n,ηi(t) + 2P↓↓,n̄i,∆n,ηi(t)) is

shown in figure 7.2.

B.2. Readout error correction for quantum process

tomography

Here, we provide details on readout error correction, see section 7.2 of the main text.

For the measurements on full process tomography for two ions, 16 different settings for

preparation s = {s1, s2} with si ∈ {|↑〉 , |↑〉 − i |↓〉 , |↑〉 − |↓〉 , |↓〉} and 9 different setting

for detection d = {d1, d2} with di ∈ {Z, Y,X} are probed. Each setting (s, d) is probed

on average N times. Small fluctuations of the measurement numbers between different

settings arise from postselection removal of events where ions are lost or crystal melting

occurs, these fluctuations are ignored in the following. For each setting, N
(s,d)
f events

out of N detections yield the fluorescence result f = {f1, f2}, where fi = {dark,bright}.
From this data, event frequencies P

(s,d)
f = N

(s,d)
f /N are calculated. For a given prepa-

ration setting s , these frequencies are used for linear inversion to obtain the resulting

density matrix ρ(s). The set of 16 resulting density matrices is used for a second linear

inversion to obtain the resulting process matrix χmeas. The process fidelity F with

respect to the ideal process χideal is then given by the trace norm F = Tr(χ†idealχmeas).

We estimate confidence intervals for the mean process fidelity via parametric boot-

strapping. For this, we generate 500 instances of random measurement data. For

each instance, we use the event frequencies P
(s,d)
f to generate multivariate random

integers Ñ
(s,d)
f , drawn from a multinomial distribution f({Ñ (s,d)

f }, {P (s,d)
f }), where∑

f Ñ
(s,d)
f = N and

∑
f P

(s,d)
f = 1. These random event numbers serve to calculate

random event frequencies P̃
(s,d)
f , which are used in turn to generate random process

matrices χ̃meas. Averaging over the 500 instances, we obtain the mean process fidelity

along with a confidence interval.

In order to correct for readout errors, we perform the same procedure without SWAP

operation, obtaining the event frequencies P̄
(s,d)
f , the density matrices ρ̄(s) and the

process matrix χ̄meas. We restrict ourselves to the prepared spin configurations which

are eigenstates of the Zi operators, s′ ∈ {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}. The diagonal elements
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of the reconstructed density matrices ρ̄
(s′)
kk indicate the conditional probabilities to detect

fluorescence result fk for preparation setting s′ and detection setting d = Z1Z2. Under

the assumption of uncorrelated readout errors, these probabilities ρ̄
(s′)
kk are products of

the probabilities to detect dark/bright events for the ion in |↑〉/|↓〉 for each ion i:

ρ̄
(s′)
kk = P

(s′,Z1Z2)
fk

= p1(fk,1|s′1) · p2(fk,2|s′2), (A-4)

This holds under the assumption of perfect state preparation. It further holds that

pi(darki| ↑i) . 1

pi(brighti| ↑i) & 0

pi(darki| ↓i) & 0

pi(brighti| ↓i) . 1

pi(darki| ↑i) + pi(brighti| ↑i) = 1

pi(darki| ↓i) + pi(brighti| ↓i) = 1 (A-5)

We calculate the readout probabilities pi(fk,i|si) by using the former normalization,

e.g.

p1(dark1| ↑1) = 1
2P

(↑1↑2,Z1Z2)
dark1dark2

+ 1
2P

(↑1↑2,Z1Z2)
dark1bright2

+ 1
2P

(↑1↓2,Z1Z2)
dark1dark2

+ 1
2P

(↑1↓2,Z1Z2)
dark1bright2

(A-6)

These readout probabilities are used to form the readout probability matrix M ,

Mjk = p1(fj,1|s′k,1) · p2(fj,2|s′k,2). (A-7)

This matrix determines the observed event frequencies including readout errors P̄
(s,d)
f

from the event frequencies ˆ̄P
(s,d)
f determined by the density matrix describing the state

before readout:

P̄
(s,d)
f = M · ˆ̄P

(s,d)
f , (A-8)
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where the index f is running over the different observable fluorescence results. Thus, we

can obtain the corrected event frequencies from

ˆ̄P
(s,d)
f = M−1 · P̄ (s,d)

f . (A-9)

The corrected event frequencies can then be used for obtaining the process matrix as

above, and parametric bootstrapping can be applied. From the fidelities obtained from

parametric bootstrapping with the identity operation, we indeed obtain unit fidelity

within the statistical error. This confirms the validity of the assumptions that the errors

of preparation and single-qubit rotations are insignificant as compared to readout errors,

and that the readout errors are uncorrelated.

We can thus apply the readout error correction to the tomography data for the SWAP

gate:

P̂
(s,d)
f = M−1 · P (s,d)

f . (A-10)

Performing parametric bootstrapping for this case, we also generate a random instance

of the identity data along with the random instance of the SWAP data, such that both

M−1 and P̃
(s,d)
f are random quantities. This way, we take the statistical errors of the

readout correction into account.

From the identity measurement, we infer the following readout probabilities:

p1(dark1| ↑1) = 0.9941(7)

p2(dark2| ↑2) = 0.9924(9)

p1(bright1| ↓1) = 0.9888(10)

p2(bright2| ↓2) = 0.9945(7) (A-11)

The resulting corrected process χ-matrix is visualized in figure 7.4 of the main text. We

additionally present the numerical data in figure A.6.

For the three-ion measurements, we proceed in a similar way. There are however only 8

preparation settings, only one detection setting (Z) and 8 fluorescence combinations.

The observed event frequencies can be directly interpreted as elements of the process

matrix in the truncated basis, such that no linear inversions are carried out and the

readout correction can be directly applied. For the process fidelity in the truncated

basis, we report the fidelities with significantly reduced statistical error, despite the fact

that roughly the same number of measurements are used for each preparation setting.
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The reason for this is that we prepare and detect only in the logical basis in this case,

which leads to detection event probabilities always close to either 0 or 1. This leads to

reduced shot noise.

B.3. Two-qubit gate error estimation

In the following, the experimental error sources and limitations of the two-qubit gate

fidelity (section 8.4 of the main text) are analyzed analogously to [Bal14; Bal16], where

good agreement between error model and experimentally realized high fidelity quantum

gates is found.

Photon scattering error

During the entangling gate operation, the ions travel along a closed loop in phase

space driven by strong Raman laser beams. Photons can be scattered inelastically in

this process due to Raman scattering, which changes the internal state of the ions.

Elastic scattering events – Rayleigh scattering – also occur and disturb the phase space

trajectory with photon recoil events. To quantify this negative effect on the entangling

gate fidelity, we employ the total probability Ptotal to scatter a photon during a Raman

π-pulse as given by equation 8.1. In contrast to the single ion experiments, the Raman

detuning ∆ is about ten times smaller due to limited laser power. The duration for a

single π-pulse is around 8 µs whereas the gate time tg is 100 µs. We thus calculate the

error from scattering to be (100 µs/8 µs) ·Ptotal = 1.3 · 10−3. We emphasize, that this

estimation is based on the assumption that the single-qubit rotation, which is driven by

the R1 and CC laser beams, operates at a similar optical power as the beams that drive

the gate R4 and CC.

Motional dephasing error

While the ion spin and motion are entangled, the trap frequency ωz must remain

stable, otherwise the entangling gate fidelity is affected by the motional dephasing

as characterized in section 6.3. Following [Bal16], the gate error caused by motional

dephasing is determined by 0.297 · tg
τ1/e

, which results from integrating a master equation
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with a suitable Lindblad operator. The motional coherence time with triggering to the

AC line of the ωz gate mode is τ1/e = 6.5 ms. The error from motional dephasing is

thus estimated to be 4.6 · 10−3.

Systematic errors

The duration tg and the intensity of the gate laser pulses for the standing wave are

calibrated individually in the experiment. For the calibration of the gate duration, the

gate detuning is set to a fixed value. The entangling gate is then executed with variable

gate time and the spin populations P↑↑(tg), P↓↑(tg), P↑↓(tg), P↓↓(tg) are measured. To

set the gate duration correctly, we choose a duration where the sum of the population

of the odd spin states is close to zero, i.e. P↓↑(tg) + P↑↓(tg) ≈ 0. We estimate to achieve

< 1% inaccuracy in this calibration, which results in a gate fidelity error of < 1.4 · 10−3

given by (∆δ · tg)2[1 + 2K(1 + 2n̄)]/16K2 following [Bal14], where ∆δ < 2π·200 Hz is

the absolute error in the gate detuning, tg = 100 µs is the gate duration, K = 2 is the

number of loops in phase space and n̄ ≈ 0.1 is the temperature of the gate mode.

Once the gate time is set, a calibration measurement for the intensity of the laser pulses

– denoted as gate power Pg – is executed. The gate is driven by the laser beams R4 and

CC. However, we only vary the intensity of the CC laser light. The calibration procedure

corresponds to the execution of an entangling gate with fixed gate time and variable

gate power Pg. Each of the spin populations P↑↑(Pg), P↓↓(Pg) is then balanced as well

as possible to 1/2 on an accuracy level of around 1% which results in a systematic error

≈ 1 · 10−4, analogously to [Bal14].

Since the error from an incorrectly set gate time can be corrected to a certain degree by

a correctly chosen gate power, we estimate the systematic errors from calibration of the

gate parameters to be < 1 · 10−3.

Other sources of error

The entangling gate can be affected by other sources of error, which contribute an error

below 10−4 in our setup and thus only contribute marginally to the error budget. In

this section, we quantify and discuss the error sources following [Bal16].

During the gate operation where spin and motion are entangled, any undesired motional

transitions due to motional heating will affect the gate fidelity. Since the motional
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heating of the ions in our setup is small, this error is negligible. For a heating rate of

the gate mode of ˙̄n = 2.9/s a fidelity error of ˙̄n · tg/(2K) = 7 · 10−5 is calculated [Bal14],

where K = 2 is the number of loops in phase space and tg = 100 µs the gate duration.

Thermal occupation of motional modes results in a larger ion wave-packet size. Con-

sequently, the coupling strength of the ions to the driving laser field is reduced, which

ultimately reduces the gate fidelity. Contrary to quantum gates on the axial mode of

vibration, where the lasers couple only to two motional modes, the effective Raman

k-vector couples to four vibrational radial modes. Thus, one needs to consider three

spectator modes when the gate is executed on the radial ωc.o.m.
z -mode. All modes are

cooled with resolved sideband cooling to a mean phonon occupation number n̄ . 0.1. An

analytical model is developed in [Bal16], which describes the fidelity error from thermally

occupied motional modes by π4η4n̄(2n̄+ 1)/4, where η is the Lamb-Dicke parameter of a

motional mode and n̄ is the mean phonon occupation number of the mode. The authors

use a numerical simulation to verify that this model describes the error contribution for

both spectator modes and the gate mode accurately for low phonon numbers n̄ < 1. In

our experiment, the Lamb-Dicke parameters for the radial modes are for the ωy c.o.m.

and rocking mode ηy = 0.05 and for the ωz c.o.m. and rocking mode ηz = 0.06. The

combined error from motional excitation on the vibrational modes is thus estimated to

be around 1 · 10−5.

Since the gate is executed with a spin-echo pulse, the ions spend an equal amount of

time in the spin states |↑〉 and |↓〉. Therefore, an unequal illumination of the two ions

by the Raman beams does not contribute to the gate error budget.

Errors from off-resonant excitation of the carrier transition and the spectator modes are

strongly suppressed due to smoothing of the turn-on and turn-off transients of the gate

pulses.

Errors from spin dephasing from magnetic field noise are negligible, since our apparatus

features long spin coherence times as demonstrated in [Rus16]. The error is further

reduced since the gate is executed in a spin-echo scheme.

Motional modes that involve relative motion of the ions such as the axial breathing

mode or the two radial rocking modes experience anharmonic effects due to the Coulomb

repulsion. Thus, motional Kerr cross-coupling between these modes can lead to a

reduction of the gate fidelity if one of them is used as a gate mode. Since we execute

the gate on the radial ωc.o.m.
z -mode, the gate fidelity is not impaired by this effect.

An estimation of the gate error from amplitude and phase noise in the Raman laser
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beams requires thorough characterization measurements and is expected to be negligible.

Since our gate fidelity is dominated by other effects we neglect this error contribution.
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C.1. Three-ion crystal reconfiguration

Here, we describe in detail how the reordering of the three-ion crystal ABC to CBA

is accomplished, which is presented in section 7.3 of the main text. The experimental

sequence is sketched in figure C.1. The sequence starts with a three-ion crystal, trapped

in a harmonic potential at electrode 20, which is called laser interaction zone (LIZ) since

all lasers are targeted at this electrode. The sequence is partitioned in three sequences:

pre-sequence, main-sequence and post-sequence. First, the pre-sequence is executed.

Then, the main-sequence is executed and repeated 90 times. After the final repetition of

the main sequence, the post-sequence is executed.

Pre-sequence: At the beginning of the pre-sequence, the three-ion crystal is Doppler

cooled with a 397 nm laser. The crystal is then separated by applying the separation

voltage ramps with an additional calibrated axial bias field, such that the two ions A

and B deterministically move to the left and ion C moves to the far right. The two-ion

crystal AB is then shuttled to the LIZ, where Doppler cooling is applied. A potential

well at electrode 14 is generated, which is of the same depth as on electrode 26, such that

the potential well at the LIZ is properly centered and symmetric. The two-ion crystal

AB is then separated, and each of the three ions A,B and C is shuttled individually

to the LIZ for Doppler cooling and detection of ion loss events. In this part of the

sequence, only sequential transports are used, where one transport corresponds to

the movement of one ion from one electrode to a neighboring electrode, while the other

ions remain at their position.
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Figure C.1.: Full experimental sequence for the reconfiguration of a three-ion crystal from
ABC to CBA by using three consecutive two-ion SWAP operations. Black potential wells
or barriers are applied to achieve a symmetric potential along the trap axis, thus placing
the ions in the center of the laser beams.
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Main sequence: In the main sequence, each ion is shuttled individually to the LIZ

for Doppler cooling. Afterwards, each ion is optically pumped at the LIZ for state

initialization to either |↑〉 or |↓〉. The total state of the three ions is then initialized to

one of eight possible configurations. Thus, the entire sequence is performed for each of

the eight possible input states.

Subsequently, the reordering of the three ions via two-ion swap operations is carried out.

At first, the ions A and B are merged in the LIZ and the crystal swapping operation

is executed. Thus, the order of the ions along the trap axis is changed to BAC. The

two-ion crystal is then separated and the ions A and C are shuttled to the LIZ and

merged together. Another swap operation is conducted, such that the order of the ions

is changed to BCA. After that, the ions B and C are merged at the LIZ for a final swap

operation to yield the desired order of CBA.

Afterwards, each ion is shuttled to the LIZ for electron shelving and subsequent detection

of the spin state. It is important to perform the shelving operation on the ions before

the detection operation takes place. The latter is done by illumination with 397 nm

laser light, as residual stray light on an un-shelved ion can depolarize the internal state,

even if the ion is located several electrodes away.

In the main sequence, parallel transports are used, where all three separately trapped

ions move simultaneously from one site to another. One parallel transport operation

corresponds to the simultaneous movement of each of the ions from their initial electrode

to one neighboring electrode.

Post-sequence: In the post-sequence, the individually trapped ions C,B and A are

shuttled to the LIZ for post-selection of ion loss events. Afterwards, the ions A and B

are merged, followed by a recombination of the ion C to the two-ion crystal BA, thus

yielding the three-ion crystal CBA.

The duration of the entire sequence amounts to 109.8 ms, while the most relevant part -

the main sequence - takes 38.6 ms. The tables B - E show more details on the shuttling

operations which are employed. The shuttling operations require 23 % of the total

duration of the main-sequence. In the following, we explain the reason for this overhead

and how to reduce it.
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shuttling operation duration (µs) quantity

separation 260 5

recombination 260 5

sequential transport 120 70

parallel transport (3 ions) 100 48

SWAP 42 3

total shuttling operation time 15.9 ms

total sequence duration 109.8 ms

percentage of shuttling operations 14.5 %

Table A.: Shuttling operations and timings used in the entire sequence.

shuttling operation duration (µs) quantity

separation 260 2

sequential transport 120 31

total shuttling operation time 4.2 ms

total sequence duration 39.7 ms

percentage of shuttling operations 10.6 %

Table B.: Operations used in the pre-sequence.

operation duration (µs) quantity

separation 260 3

recombination 260 3

sequential transport 120 30

parallel transport (3 ions) 100 48

SWAP 42 3

Doppler cooling 2500 17

fluorescence detection 1200 6

shelving 600 3

other operations (spin init., dwell
times, compensation pot. ramps)

1700 -

total shuttling operation time 10.1 ms

total sequence duration 63.5 ms

percentage of shuttling operations 15.9 %

Table C.: Shuttling operations used in the main-sequence.
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The swapping operations require trap operation at a rather low RF level to make the

swapping operation feasible, as the DC supply is limited to ±10 V, and the axial confine-

ment has to exceed the radial confinement in one direction during the swap operation.

The low-frequency radial mode is only at ω/2π = 1.93 MHz. While we have verified that

the excitation from the swapping operation is negligible, the linear transport operations

add a slight amount of excitation if executed at low RF trap-drive amplitude. In the

two-ion process tomography, this effect is negligible since only a few shuttling operations

are used. By contrast, for the three-ion crystal reconfiguration, the amount of transport

operations is much larger, such that we need to execute some of the shuttling operations

more slowly for optimum readout fidelity.

In contrast to the two-ion measurements, the separation and recombination operations

are executed slower: 260µs as compared to 100µs. Also, the sequential transports are

slower: 120µs as compared to 28µs. This will be improved in future experiments, such

that swapping can be executed at higher RF levels.

shuttling operation duration (µs) quantity

recombination 260 2

sequential transport 120 9

total shuttling operation time 1.6 ms

total sequence duration 6.6 ms

percentage of shuttling operations 24.3 %

Table D.: Shuttling operations used in the post-sequence.

operation duration (µs) quantity

separation 260 3

recombination 260 3

sequential transport 120 30

SWAP 42 3

other operations (dwell times,
compensation pot. ramps)

400 -

total shuttling operation time 5.3 ms

total section duration 5.7 ms

Table E.: Shuttling operations used in the SWAP-section.
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C.2. Four-qubit randomized benchmarking

In the following, a sketch of the full experimental sequence of the four-qubit randomized

benchmarking experiment is provided, which is presented in section 8.3 of the main text.
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LIZ19181716 21 22 23 24

Doppler Cooling

2515 2614 27 28 29131211

Doppler Cooling

Doppler cooling

Doppler cooling

shelve A

 shelve B

 shelve C

 shelve D

detect A

detect B

detect C

detect D, postselection D

postselection C

postselection B

postselection A, 
magnetic �eld measurement

Doppler cooling

Doppler cooling

Doppler cooling

A B C D

A B C D

Doppler cooling

Doppler cooling

single-qubit pulse A

single-qubit pulse B

single-qubit pulse C

single-qubit pulse D{repeat
N -times

Doppler cooling

Doppler cooling

Doppler cooling, 
spin initialization

spin initialization

spin initialization

spin initialization

t

Figure C.2.: Full experimental sequence for the simultaneous single-qubit randomized
benchmarking on four ions. Black potential wells or barriers are applied to achieve a
symmetric potential along the trap axis, thus placing the ions in the center of the laser
beams.
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C.3. Four-qubit entanglement

In the following, details on the four-ion entanglement sequence are provided, which is

presented in section 8.5 of the main text. In figure C.3 a sketch of the full experimental

sequence is shown.

The sequence comprised of five blocks: cooling block, quantum logic block, rephasing

block, analysis block, final block. The timing tables for all five blocks are presented

separately.

The swing-off time is an artificially introduced idle time after shuttling operations. It is

employed to account for DC waveform distortions by external low-pass filters. Symmetry

potentials are used to establish a symmetric potential along the trap axis, thus placing

the ions in the center of the laser beams. The duration, which is needed to ramp the

voltage for that potential up or down is specified by apply symmetry potential.

operation duration (µs) Nop total duration (µs)

Doppler cooling 1201 11 13206
fluorescence detection 1501 8 12004
magnetic field measurement 8224 1 8224
sideband cooling 7773 1 7773
parallel transport 60 69 4140
sequential transport 30 81 2430
electron shelving 401 4 1605
apply symmetry potential 24 62 1488
swing-off time 50 28 1400
separation/recombination 160 8 1280
LIZ potential change 48 24 1152
geometric phase gate 102 3 306
spin initialization 53 5 266
π/2-pulse 4 8 32
switch intensity stabilization 10 2 20
analysis pulse 4 4 16

Table F.: Timing table for the entire four-ion entanglement sequence without rephasing.
The integer number Nop denotes how often an operation of a particular duration is
performed. The entire sequence is performed within 55.3 ms. The duration for the
magnetic field measurement and for sideband cooling are aggregated from their constituent
single operation durations.
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operation duration (µs) Nop total duration (µs)

sequential transport 30 24 720
parallel transport 60 18 1080
apply symmetry potential 24 17 408
LIZ potential change 48 14 672
swing off time 50 7 350
separation/recombination 160 1 160
Doppler cooling 1201 7 8404
sideband cooling 7773 1 7773
spin initialization 53 5 266
switch intensity stabilization 10 1 10

Table G.: Timing table for the cooling block in the four-ion entanglement sequence. The
block is performed within 19.8 ms, which corresponds to 35.9% of the entire sequence
duration.

operation duration (µs) Nop total duration (µs)

sequential transport 30 33 990
apply symmetry potential 24 9 216
LIZ potential change 48 5 240
swing-off time 50 11 550
separation/recombination 160 5 800
π/2-pulse 4 8 32
geometric phase gate 102 3 306

Table H.: Timing table for the quantum logic block in the four-ion entanglement
sequence. The block is performed within 3.1 ms, which corresponds to 5.7% of the entire
sequence duration.

operation duration (µs) Nop total duration (µs)

sequential transport 30 21 630
parallel transport 60 18 1080
apply symmetry potential 24 14 336
LIZ potential change 48 12 576
swing-off time 50 10 500
separation/recombination 160 4 640
π-pulse 10 2 20
switch intensity stabilization 10 6 60

Table I.: Timing table for the rephasing block in the four-ion entanglement sequence.
The block is performed within 3.8 ms.
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operation duration (µs) Nop total duration (µs)

parallel transport 60 36 2160
apply symmetry potential 24 24 576
swing-off time 50 6 300
electron shelving 401 4 1605
fluorescence detection 1501 4 6002
analysis pulse 4 4 16

Table J.: Timing table for the analysis block in the four-ion entanglement sequence. The
block is performed within 10.7 ms, which corresponds to 19.3% of the entire sequence
duration.

operation duration (µs) Nop total duration (µs)

sequential transport 30 24 720
parallel transport 60 15 900
apply symmetry potential 24 12 288
LIZ potential change 48 5 240
swing-off time 50 4 200
separation/recombination 160 2 320
Doppler cooling 1200,5 4 4802
fluorescence detection 1501 4 6002
magnetic field measurement 8224 1 8224
switch intensity stabilization 10 1 10

Table K.: Timing table for the final block in the four-ion entanglement sequence. The
block is performed within 21.7 ms, which corresponds to 39.2% of the entire sequence
duration.
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2019181716 21 22 23 24
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post selection A, magnetic �eld meas.

Doppler cooling
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A B C D
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WAIT, hide from Doppler

Rephase A,B

Rephase C,D
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analysis D

rephasing block
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quantum logic
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Figure C.3.: Full experimental sequence for the creation of a four-ion GHZ state.
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Figure D.1.: Electrical connections on the vacuum flange.
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M1.6 trench

M1 trench

opening for 
wires 

opening for 
wires 

mount to filter 
board

mount to wire 
bonding socket

mount to filter 
board

cable management
during wire bonding,
clearance holes

Figure D.2.: Custom-made trap assembly tool, which is used to assemble the alumina layers
and during wire bonding. The tool is a solid aluminum plate with outside dimensions
100 mm x 170 mm x 4 mm. For the trap assembly, M1 and M1.6 nuts are placed in the
corresponding trenches to prevent movement of the nuts. After trap alignment the filter
board is mounted to the support layer, which is placed below the trap. Subsequently,
wire bonding is executed and the assembly tool is fixed by corresponding screw holes to
the heated wire bonding socket. The filter board is then fixed to the assembly tool by
screws which are countered with nuts from the back side. Several openings and clearance
holes allow for proper cable management of the numerous DC and RF supply wires.
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BAT41 
Schottky 
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Figure D.3.: Circuit diagram of the rectifier and the PI regulator, that is used to stabilize
the RF voltage supply for the ion trap. The circuit was developed according to [Dil14]
and slightly modified in this thesis: a 12 kΩ resistor was added to the non-inverting input
of the PI regulator operational amplifier to compensate current offsets, an inverter was
added before the output to the DDS.
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T. Zhang, and H. Häffner. Implications of surface noise for the motional coherence

of trapped ions. In: Phys. Rev. A 93, 043415 (2016)

187



List of Figures

• C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and

F. Schmidt-Kaler. Transfer of optical orbital angular momentum to a bound

electron. In: Nat. Commun. 7, 12998 (2016)

• M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy,
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einer segmentierten Paul-Falle. In: Master’s thesis, Johannes Gutenberg-Universität

Mainz (2014) (cit. on pp. 50, 181).

[Dre83] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley,

and H. Ward. Laser phase and frequency stabilization using an optical resonator. In:

Applied Physics B 31, 97–105 (1983) (cit. on p. 47).

[Dür99] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller. Quantum repeaters based on

entanglement purification. In: Phys. Rev. A 59, 169–181 (1999) (cit. on p. 5).

[Ebl10] J. Eble, S. Ulm, P. Zahariev, F. Schmidt-Kaler, and K. Singer. Feedback-optimized

operations with linear ion crystals. In: Journal of the Optical Society of America B

27, A99–A104 (2010) (cit. on pp. 54, 68).

[Ein35] A. Einstein, B. Podolsky, and N. Rosen. Can Quantum-Mechanical Description of

Physical Reality Be Considered Complete? In: Phys. Rev. 47, 777–780 (1935)

(cit. on p. 2).

[Enz00] D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter,

P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa,

A. G. White, R. J. Hughes, and D. F. V. James. Observation of Power-Law Scaling

for Phase Transitions in Linear Trapped Ion Crystals. In: Phys. Rev. Lett. 85,

2466–2469 (2000) (cit. on p. 16).

[Far01] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. A

Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an

NP-Complete Problem. In: Science 292, 472–475 (2001) (cit. on p. 3).

[Fey82] R. P. Feynman. Simulating physics with computers. In: International Journal of

Theoretical Physics 21, 467–488 (1982) (cit. on pp. 1, 2, 131).

[Fey86] R. P. Feynman. Quantum mechanical computers. In: Foundations of Physics 16,

507–531 (1986) (cit. on p. 2).

193



Bibliography

[Fow12] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. Surface codes:

Towards practical large-scale quantum computation. In: Phys. Rev. A 86, 032324

(2012) (cit. on p. 6).

[Für14] H. A. Fürst, M. H. Goerz, U. G. Poschinger, M. Murphy, S. Montangero,

T. Calarco, F. Schmidt-Kaler, K. Singer, and C. P. Koch. Controlling the transport

of an ion: classical and quantum mechanical solutions. In: New Journal of Physics

16, 075007 (2014) (cit. on pp. 73, 75).
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[Řeh07] J. Řeháček, Z. Hradil, E. Knill, and A. I. Lvovsky. Diluted maximum-likelihood

algorithm for quantum tomography. In: Phys. Rev. A 75, 042108 (2007) (cit. on

p. 125).

205



Bibliography

206



Danksagung
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