
 

Shuttling of Rydberg Ions for Fast Entangling Operations

J. Vogel,1,* W. Li,2,3 A. Mokhberi,1 I. Lesanovsky,2,3,5 and F. Schmidt-Kaler1,4
1QUANTUM, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz, Germany

2School of Physics and Astronomy, Nottingham NG7 2RD, United Kingdom
3Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, Nottingham NG7 2RD, United Kingdom

4Helmholtz-Institut Mainz, Staudinger Weg 18, 55128 Mainz, Germany
5Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany

(Received 14 May 2019; published 11 October 2019)

We introduce a scheme to entangle Rydberg ions in a linear ion crystal, using the high electric
polarizability of the Rydberg electronic states in combination with mutual Coulomb coupling of ions that
establishes common modes of motion. After laser initialization of ions to a superposition of ground and
Rydberg states, the entanglement operation is driven purely by applying a voltage pulse that shuttles the ion
crystal back and forth. This operation can achieve entanglement on a sub-μs timescale, more than 2 orders
of magnitude faster than typical gate operations driven by continuous-wave lasers. Our analysis shows that
the fidelity achieved with this protocol can exceed 99.9% with experimentally achievable parameters.
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In Rydberg states of an atom a valence electron is excited
to a state with a high principal quantum number, leading to
extraordinary large polarizabilities [1] and making them
extremely susceptible to electric fields. Such high electric
field susceptibility was employed for electric field sensing
[2–4] and quantum information processing [5]. For pairs, or
arrays of atoms, a mutual electrical dipolar interaction of
Rydberg states may lead to a blockade mechanism, which
was proposed for generating entanglement [6]. Pioneering
experiments realized blockade driven entanglement with
pairs of Rydberg atoms in optical tweezers [7,8]. Lately,
arrays of Rydberg atoms [9] or atoms in reconfigurable
optical tweezer potentials [10,11] have been used and
allowed for remarkable progress in quantum simulation [12].
More recently, trapped ions excited to Rydberg states

[13–15] have been investigated for exploring their unique
features. The large electric polarizability has been charac-
terized by spectroscopy and electric field mapping was
exploited to position a single ion precisely inside the
electric trap [13,16]. Moreover, it has been shown that
transitions to Rydberg states can be driven coherently from
low-lying electronic states [17]. A gate operation to
entangle trapped Rydberg ions via a dipole-dipole inter-
action has been proposed, and realized very recently [18]
but requires microwave dressing of Rydberg states to
cancel their polarizability [19,20].
Here, we propose a scheme for entangling a pair of

trapped ions, where we utilize unique features of these
Coulomb crystals in Rydberg states: the electric polar-
izability and the corresponding energy shift of Rydberg
states by an impulsive electric field. We design electric field
waveforms that kick the two-ion crystal and impose
a state-dependent force on common modes of motion.

The shuttling of the crystal [21,22] leads to a geometric
phase, which can be controlled using the Rydberg principle
quantum number n, the trap parameters, and the shape of
the kick. This entanglement operation is driven solely
electrically and its duration may be as short as a few
hundred ns, much faster than typical light-driven gates for
ions [23–26] and competing with gate operation times
driven by pulsed laser sources [27]. It resembles laserless
ion entanglement operations driven by either static [28] or
dynamic magnetic gradients [29–31] on the spin states of
ions; however, driving large electric field gradients and
performing strong electric kicks is an established techno-
logy in Paul traps.
In the following, we sketch the state-dependent force for

a single kicked ion and fully discuss the case of a two-ion
crystal. We continue with the description of an entangling
operation for a two-ion crystal. Furthermore, we describe
the dominating sources of imperfections and optimize the
shape of the electric kick. We conclude with a feasibility
study, taking into account typical experimental parameters.
Spin-dependent electric kick.—We consider a single

ion in a linear Paul trap, where a combination of radio-
frequency and static electric fields generate a three-
dimensional harmonic confinement. We are interested in
the motion of the ion along the trap axis, the axis of weakest
confinement, which is described by a harmonic oscillator
with frequency ω. Exciting an ion to a high-lying Rydberg
state modifies the effective confinement due to the high
polarizability [17]—one may think of modifying its effec-
tive mass—such that the trap frequency ωα becomes state-
dependent, where α ¼ f↑;↓g denotes Rydberg state or
ground state, respectively. Applying an electric kick dis-
places the ion out of its equilibrium position, introduces
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contributions from the induced electric dipole force but also
drives the harmonic oscillator into vibrational excitation.
A state-dependent phase is accumulated, see Fig. 1. The
coherently excited motion can be reduced to the initial state
by properly choosing the pulse amplitude fðtÞ and pulse
duration T. A phase difference between Rydberg state and
ground state is acquired.
Entanglement operation.—For two ions we control the

phase of the electronic basis states jαβi ¼ fj↓↓i; j↓↑i;
j↑↓i; j↑↑ig. The Coulomb interaction between the ions
leads to state-dependent collective frequencies ωαβ

j with the
mode index j ¼ 1, 2 where αβ denotes the internal states of
both individual ions, either in ground state or Rydberg state
(see Supplemental Material [32]):
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Rydberg excitations in the ion crystal will affect the electric
potential on neighboring ions, which leads to asymmetrical
vibration around the center of mass due to a difference of
effective masses [33]. The potential energy is expressed in
terms of the state-dependent creation ã†j ¼ ðaαβj Þ† and

annihilation ãj ¼ aαβj operators (ℏ ¼ 1).

Hp ¼
X

αβ¼↑;↓

�X2
j¼1

ωαβ
j ã†j ãj þ Vαβ

0

�
Παβ ð2Þ

Vαβ
0 depends on the equilibrium positions of the ions,

Παβ ¼ jαi1hαj1 ⊗ jβi2hβj2 is the projection operator.
Fast switching of an additional electric field fðtÞ kicks

the ions out of their equilibrium positions and drives the
harmonic oscillator. The interaction of the electric field
with the ion crystal can be described by a state-dependent
kick Fαβ

j ðtÞ ¼ fðtÞlαβj ½cos θαβ − ð−1Þj sin θαβ� acting on

the vibrational mode with oscillator length lαβj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωαβ

j Þ
q

[34–36]. Specifically, for ion crystals con-

taining Rydberg excitations, we obtain the driving
Hamiltonian

HdðtÞ ¼
X
αβ

�X2
j¼1

ðFαβ
j ðtÞãj þ H:c:Þ þ fðtÞZαβ

c

�
Παβ: ð3Þ

The second term of Eq. (3) is proportional to the crystal
center Zαβ

c and only affects the phase evolution of ion
crystals with one Rydberg excitation, see Supplemental
Material [32]. The analytic time evolution operator UI for
the driven harmonic oscillator is obtained using a Magnus
expansion [37].

UIðtÞ ¼
X
αβ
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j¼1
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× exp

�
i
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�
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The first term describes coherently generated vibrational
mode excitation Aαβ

j using the displacement operator

DðAαβ
j Þ ¼ expðAαβ

j ã†j − H:c:Þ. The total phase ϕαβ ≔
φαβ
1 þ φαβ

2 þΦαβ
e that is accumulated by each of the four

basis states contains contributions from the vibrational
modes and the crystal center displacement, respectively.
Assuming a constant driving fðtÞ ¼ f0 for time t ∈ ½0; T�,
we obtain quantities from Eq. (4):
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j ; TÞ ¼ f0
lαβj
ωαβ
j

ðe−iωαβ
j T − 1Þ

× ½cos θαβ − ð−1Þj sin θαβ�; ð5Þ

φαβ
j ðf0;ωαβ

j ; TÞ ¼ f20

�
lαβj
ωαβ
j

�2

½ωαβ
j T − sin ðωαβ

j TÞ�

× ½cos θαβ − ð−1Þj sin θαβ�2; ð6Þ

Φαβ
e ðf0;ωαβ

j ; TÞ ¼ ðf0Zαβ
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0 ÞT: ð7Þ

The significance of the analytical equations [Eqs. (5)–(7)]
is that the entanglement operation is controlled only by the

FIG. 1. Scheme for shuttle-based state-dependent phase accu-
mulation. Time evolution (from left to right) of the ionwave packet
in the presence of a fast electric kick with field-sensitive internal
states. Confinement for the ion in Rydberg state ω↑ (red) is
modified as compared to electronic ground state ω↓ (gray). Ion
displacement out of its equilibrium position by fast electric kick
(green). Accumulated state-dependent phase difference (dark red)
betweenRydberg state andground state, hereπ. Coherentmotional
excitation (blue) can be reduced to zero by adapting the pulse.
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kick shape (f0, T) and the common mode frequencies ωαβ
j .

Therefore, arbitrary phase rotations and entanglement
generation can be realized. For a controlled phase gate
with two ions, we consider a phase difference ϕ↑↑ − ϕ↓↓ ¼
π while ϕ↓↓ ¼ ϕ↑↓ ¼ ϕ↓↑ and no residual excitation in
phonon modes, thus Aαβ

j ¼ 0.
Case study and experimental feasibility for 40Caþ ions.—

In the case study, we consider Rydberg nP1=2 states with
a scalar polarizability P ∝ n7. The state-dependent
trap frequency is ω↑ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω↓Þ2 þ Δω2

p
with Δω2 ¼

−16γ2P=m [20,38] and ω↓ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
eγ=m

p
, where e is the

electric unit charge and γ the field gradient of the Paul trap.
The trap frequencies are modified by the interaction
between the highly excited electron with the core charge
of the other ion and the large field sensitivity of Rydberg
ions. Note that the relative frequency differences are
≤ 10−4, such that the excitation of the center-of-mass
modes dominates, with a small excitation of the stretching
mode for state j↑↓i. For each vibrational mode, Aαβ

j is
periodic and can be minimized by choosing a gate time
τ ¼ 2π=ωαβ

j , see Fig. 2. Taking n ¼ 64 and ω↑↑
1 ¼

2π × 0.71 MHz we realize a controlled phase gate at
τ ¼ 1.4 μs and 3τ ¼ 4.2 μs (indicated by black arrows)
with mitigated coherent excitation in the center-of-mass
mode for state j↑↑i and correct relative phases.
Varying the vibrational frequency by the field gradient of

the Paul trap, the relative phase of π between states j↑↑i
and j↑↓i is modified, see Fig. 3(a). With a specific
combination of electric kick time and amplitude, we
achieve a phase difference ϕ↑↑ − ϕ↓↓ ¼ π, and minimize
the coherent excitation of modes. Rydberg states with
higher principal quantum number and larger polarizability

require smaller electric kick amplitude f0 to accomplish the
desired phase evolution.
To characterize the entanglement operation, we analyze

the state fidelity F as the square of the overlap between a
superposition jΨð0Þi ¼ 1=2½ðj↓i þ j↑iÞ ⊗ ðj↓i þ j↑iÞ�,
initialized in the motional ground state and evolved under
Eq. (4), with the ideal target state. Fulfilling the phase
conditions as indicated by the vertical dashed lines, the
fidelity is limited by residual phonons due to the chosen
electric kick. Optimizing the kick strength, kick duration,
and the ion confinement, a fidelity of 99.9% can be
achieved see Fig. 3(b). For the 36P state the required
electric kick strength is EðtÞ ¼ ðℏ=eÞfðtÞ ¼ 28.75 V=m
with a field gradient of the Paul trap of γ ¼ 1.32 ×
106 V=m2 and a vibrational mode frequency of ω↑↑

1 ¼
2π × 0.57 MHz, experimentally feasible with trapped
Rydberg ions [13,14]. Thereby, the ion crystal would be
displaced along the trap axis by 10.9 μm for a total
operation time of τ ¼ 1.76 μs [21,22]. The method comes
with the advantage, that effects due to micromotion are
mitigated, as the ion crystal moves along the trap axis. In
principle, one might also employ a combination of axial
and radial displacements for the gate; however, this will
require synchronizing the electric kicking and oscillating

FIG. 2. Case study for controlled phase gate. Coherent motional
excitation measured as the number of phonons (blue) and relative
phase accumulation (red) as a function of gate duration for
Rydberg state 64P in 40Caþ. Kick shape is chosen to minimize
residual motional excitation and generate phase differences of
odd multiples of π for state j↑↑i as compared to the states j↓↓i
(dark red, dashed line) and j↑↓i (orange, dot-dashed line, scaled
by 0.2) at gate times indicated by arrows.

FIG. 3. Differential phase and fidelity. (a) Relative phase
between states j↑↑i and j↑↓i, and (b) infidelity dependent on
the field gradient of the Paul trap for different principal quantum
numbers of the Rydberg state. For every field gradient of the Paul
trap the electric kick shape is chosen to realize ϕ↑↑ − ϕ↓↓ ¼ π
(dashed dark red line), and minimize residual phonons.
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radio-frequency field for the Paul trap as experimentally
demonstrated in Ref. [39]. The parasitic Stark shift from the
applied electric field is estimated to be about 4 orders of
magnitude smaller as compared to the separation of
Rydberg energy levels; thus we do not anticipate state
mixing and fidelity reduction.
Lifetime limitation and optimized kicks.—A significant

reduction of fidelity will arise from the finite Rydberg state
lifetime, about 30 μs to 100 μs [40], see dashed lines in
Fig. 4(a). Operation times above 1 μs limit the fidelity to
90%–99% depending on the Rydberg state. However, a
bang-bang interaction by three consecutive kicks fðtÞ ¼
ff0;−f0; f0g at times t ¼ f0; T=4; 3T=4g leads to a
fidelity of 99.9%, see Figs. 4(a)–4(c). We emphasize the
importance of multikick sequences, in this example com-
posed out of three kicks, as compared to the single constant
pulse, see Fig. 4(c). Note, that electric bang-bang control of
single ions has been demonstratedwith up to 10 000 phonons
and displacement pulses of sub-ns resolution [41], exper-
imental parameters that even exceed the requirements for our
proposed operation. Aiming for faster operations with higher
fidelity, we will explore more complex phase trajectories of
the wave packet. The additional benefit of such schemes is a
robustness against imperfections of the driving kick wave-
form. Such approaches have been discussed, however, in the
context of the laser-driven Mølmer-Sørensen interaction

[42,43] and might readily be adapted to our electric scheme.
Alternatively, optimal control theory may deliver optimized
electric field waveforms [44–46].
Conclusion and outlook.—In this work, we proposed a

new scheme for fast entanglement operations based on
electric kicks applied to trapped Rydberg ions in a linear
Paul trap. Crucial to the successful implementation of this
scheme is the high polarizability of nP Rydberg states that
leads to a modification of the ion confinement and state-
dependent vibrational modes. By tuning the field gradient
of the Paul trap and shaping the electric kick, we optimize
the scheme for entanglement operations of two ions. The
parameter values required are well within regimes acces-
sible by state-of-the-art experiments.
In the future we may extend the scheme to linear ion

crystals entangling more than two ions, or investigate spin-
spin interactions in two-dimensional ion crystals [47] by
state-dependent electric forces. In this context, we will
study operations at finite temperature of the ion crystal,
motional dephasing, and heating by electric noise. The
presented scheme may be adapted to the platform of neutral
Rydberg atoms trapped in arrays of optical tweezers
[10,11,48]. A set of common motions, analogous to the
normal modes of vibration for the ion crystal, is established
by the dipole-dipole interaction. State dependent forces
between different Rydberg states can be implemented by a
fast shuttling of the tweezer centers [49] such that the
trapped Rydberg atoms explore the ac-Stark shift from
the tweezer potential, similar as the ion crystal explores the
axial kick via its polarizability. In the array of Rydberg
atoms the emerging collective energy shifts may then be
exploited to generate entanglement. We believe that exper-
imental and theoretical work building on our ideas will be
of relevance across a broad set of fields, such as multi-
particle quantum systems with collective spin-motion
coupling, quantum simulation, and quantum information.
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M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).

[7] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage,
T. A. Johnson, T. G. Walker, and M. Saffman, Phys. Rev.
Lett. 104, 010503 (2010).

[8] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y.
Miroshnychenko, P. Grangier, and A. Browaeys, Phys.
Rev. Lett. 104, 010502 (2010).

[9] C. Gross and I. Bloch, Science 357, 995 (2017).
[10] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,

H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V.
Vuletić, and M. D. Lukin, Nature (London) 551, 579 (2017).

[11] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T.Macrì, T.
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