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Zusammenfassung

In dieser Arbeit stellen wir die experimentelle Realisierung einer autonomen Uhr vor, die
auf einem von Strahlungsdruck getriebenen, gefangen Ion basiert – einem Phononen Laser.
Das vom Ion emittierte Fluoreszenzlicht ist mit der Schwingungsfrequenz modelliert.
Die Detektionszeiten der emittierten Photonen bilden daher ein ’klick’-Signal welches
zur Zeitmessung genutzt werden kann. Ein theoretisches Modell des Systems wurde en-
twickelt, welches die Herleitung eines Phasendiffusionskoeffizienten ermöglicht. Dieser
kann genutzt werden um die Stabilität der Uhr in Zusammenhang mit den Opera-
tionsparametern zu bringen. Die Allan-Varianz wird verwendet um die Uhrenstabilität
zu quantifizieren und wir präsentieren ein Verfahren um sie aus den gestreuten Pho-
tonen zu bestimmen. Neben der detaillierten Analyse der gemessenen Daten werden
wir Zusammenhänge zwischen der Stabilität und den thermodynamischen Ressourcen
untersuchen, die nötig sind um die Uhr zu betreiben. Die hier vorgestellten Daten stehen
zu großen Teilen in Konflikt mit der entwickelten Theorie. Im Laufe der Arbeit werden
wir mögliche Gründe dafür diskutieren und mögliche Verbesserungen vorschlagen.
Zusätzlich zu diesen Messungen der Uhrenstabilität werden wir Methoden einführen
um die Operationsparameter zu kalibrieren. Dies beinhaltet den Sättigungsparameter
und die Frequenzverstimmung der Laser, die für den Antrieb der Uhr genutzt werden
und die Messung der absoluten Streurate des Ions.
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Abstract

In this thesis, we describe the experimental implementation of an autonomous clock
based on a radiation-pressure driven trapped-ion phonon laser. The resonance fluorescence
emitted by the ion is modulated at the oscillator frequency, therefore the detection times
of the scattered photons provide a ’click’ signal which can serve for timekeeping. We
provide a theoretical analysis of this system, which includes the derivation of a phase-
diffusion constant, which serves to relate the clock stability to the operation parameters.
We describe the employed measurement protocol used to assess the clock performance in
terms of its Allan variance, and present a detailed analysis of acquired data. Furthermore,
we evaluate connections of the clock performance to the thermodynamical cost that is
required to drive it. The data acquired in the course of this thesis do exhibit qualitative
conflicts with the theoretical predictions. Possible reasons for this finding are investigated
and improved measurement schemes are proposed. Furthermore, we present auxiliary
measurement schemes employed for precise calibration the operation parameters, namely
the detunings and saturation parameters for the laser beams driving the autonomous
clock, and for measurement of the total photon scattering rates.
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1. Introduction

Laser cooled atomic ions in Paul traps [1, 2] are an ideal platform for numereous
experiments where a high degree of control over motional and internal degrees of
freedom is necessary. Laser cooling [3, 4] enables cooling to the motional ground state [5]
and coherent excitation can be used to achieve control over the internal quantum state
of the ion [6, 7]. These methods are widely used for quantum information, metrology,
simulation and computing [8, 9, 10]. In recent years trapped ions have also been used
to implement thermal machines on the quantum level [11, 12]. The validity of concepts
commonly known from macroscopic heat engines like heat, work, efficiency and entropy
can be investigated. It is a goal of the emerging field of quantum thermodynamics to
explore new features of these machines that arise due to their quantum character [13, 14,
15]. Erker et al. [16] have theoretically studied an autonomous quantum clock based on
a microscopic heat engine to investigate the connections between thermodynamics and
time.

In standard thermodynamics, time plays an important role through the concept of
irreversibility. If a process is irreversible, i.e. if the total entropy is increased, a direction
for the arrow of time is established. Thus there is already a quite fundamental connection
between time and thermodynamics in classical physics. Erker et al. have taken this
one step further and investigated connections between time measurement and entropy.
Regarding the periodic cycles of their autonomous heat engine as ticks of a clock, they
find that waste heat, i.e. entropy production, is a resource needed for accurate time
keeping. Initially, this is a result limited to their specific system. Their argument is then
extended to general clocks. They conjecture that entropy production is necessary for
arbitrary time measurement devices and that a fixed entropy production sets an upper
bound for the performance of the clock. This can be compared to other fundamental
limits as the Landauer limit [17] or the quantum speed limit [18]. Just as state-of-the-
art computers operate far away from these limits, common clocks are far from being
thermodynamically efficient and are not limited by entropy production. Finding a system
to test this conjecture is therefore not necessarily easy.

In this thesis, we propose that a single ion which is oscillating in an harmonic trap
driven by radiation pressure forces is a reasonable candidate. This system was first
implemented by Vahala et al. [19] 1. Due to its similarities to an optical laser it has
been named phonon laser by them. A laser beam blue detuned from an electric dipole
transition supplies energy to the ion in each oscillation cycle. This can be seen analogous
to a pendulum in a mechanical clock which is likewise supplied with energy during each
cycle to overcome losses through friction. The photons scattered by the ion are modulated

1A similar system was independently proposed by Kaplan [20]
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1. Introduction

with the oscillation frequency and can therefore be detected to obtain a periodic clock
signal. Additionally, the scattered photons are also our measure of waste heat as they
are scattered from the low entropy laser beam into random vacuum modes. In contrast
to the heat engine driven clock or frequency standards, the oscillation frequency of the
ion is fixed by the trapping potential. However, the radiation pressure of the driving
beams will have an effect on the oscillation phase and thus the oscillation stability. The
goal of this thesis will consequently be to investigate connections between the oscillation
stability and the scattering rate and to relate them to the work by Erker et al.

The aim of this thesis is not to construct an atomic clock using Ramsey interferometry or
to compete with the accuracy of such devices. In contrast to atomic clocks, our system
runs autonomous and the oscillation phase is not governed by any external control. Here,
the essential part of the clock is the ion itself and its motional degrees of freedom,
making it a “pendulum” clock in the microscopic limit.

Supplementing the oscillation stability measurements, we will introduce a scheme to
measure the photon detection efficiency of the setup. This is relevant as the photon
scattering rate will be our measure of waste heat and to quantify the amount of scattering
per oscillation period. Additionally, we present a method of calibrating the resonant
saturation parameter and the frequency detuning of a laser beam driving a certain
atomic dipole transition. This enables us to quantify the forces exerted on the ion by the
lasers and to relate measurements and theory.

Below, we will first give a short overview over the work on heat engines by Erker
et al. and introduce the proposed ion phonon laser clock. Then the required theoretical
foundations are discussed in Chapter 2. This will include a brief introduction into the
interaction between atoms and light and the theoretical model of the oscillating ion
in a trap, which has been developed in close collaboration with Nahuel Freitas. In
Chapter 3, the experimental setup including the actual ion trap, electronics and lasers are
reviewed. Subsequently, the two supplementary measurement schemes are introduced
in Chapter 4 and Chapter 5. Finally, the oscillation stability measurements are explained
and presented in Chapter 6 and then discussed in Chapter 7. In Chapter 8 we then
summarize the results of this thesis and give an outlook for future measurements and
improvements.

1.1. A Microscopic Clock Driven by a Heat Engine

In [16] Erker et al. show that for a microscopic clock increasing its performance in
terms of stability or resolution requires increased production of waste heat, i.e. entropy
production. They use the periodicity of an autonomous heat engine, based on a quantum
system, as a clock and show analytically and through simulations that such a connection
exists in this system. They conjecture that this is a fundamental connection between time
measurement and thermodynamics and that any clock will show such a behavior. In this
section, this heat engine model will be introduced before discussing their findings and
the connection to this thesis.

2



1.1. A Microscopic Clock Driven by a Heat Engine
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Figure 1.1.: Sketch of the theoretical model of a heat engine used as a clock in [16]. The system consists of
two main parts: The pointer and the register. The interaction of the pointer with the environment
is well defined and happens only through the qubits connected to the two thermal baths at
temperatures Tc and Th to allow rigorous bookkeeping of the heat flowing in and out of the
system. The two qubits with energy spacing Ec and Eh form a four dimensional product Hilbert
space of which the two middle levels are defined as the virtual qubit. Interaction with the baths
drives the transitions inside this Hilbert space (red and blue arrows). Additionally, the qubits
interact with an energy ladder which has an energy spacing Ew = Eh − Ec matching that of
the virtual qubit. If the virtual Temperature Tv is negative, a virtual qubit decay can drive the
ladder up by one rung (orange arrows). Coupling of the upmost and lowest levels of the ladder
leads to a decay which happens periodically each time the top is reached. This decay can now
be transmitted to the register where it is moves the hands of a clock forward.

1.1.1. The Clock

The clock used by Erker et al. [16] in their work is based on a minimal model of a
quantum heat engine first proposed in [21]. We will briefly discuss the fundamental
functionality of this system here and refer to the two aforementioned publications for a
thorough analysis. The idea is to use two thermal baths at different temperatures as an
resource to drive a load. If the evolution of the load is periodic it can be used as a pointer
that drives the register, i.e. the hands of the clock as illustrated in Figure 1.1. The heat
engine is called quantum, as the ladder itself and the coupling to the heat baths is realized
using quantum systems. The two baths at temperatures Tc and Th are connected to two
qubits with energy spacing Ec and Eh respectively. We define the temperatures such
that Tc < Th and demand Ec < Eh of the energy spacings. These two qubits form a four
dimensional product Hilbert space in which population transfer is driven by the thermal
baths, as depicted in Figure 1.1. We define two of the four states as a sub-Hilbert space
called the virtual qubit which has an energy spacing of Ew = Eh − Ec. At equilibrium
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1. Introduction

with the baths the population ratios of the two real qubits are

pe
c,h

pg
c,h

= e−βc,hEc,h , (1.1)

where pg
c (pe

c) and pg
h (pe

h) are the populations of the cold and hot ground (excited) qubit
states respectively and βc,h = 1/kBTc,h are the inverse temperatures. We define a virtual
temperature Tv through the population ratio of the virtual qubit

pe
v

pg
v
= e−βvEw , (1.2)

with βv = 1/kBTv, and find

kBTv =
Eh − Ec

βhEh − βcEc
(1.3)

by using pg
v = pg

h pe
c and pe

v = pe
h pg

c . The virtual temperature can therefore be positive
and negative. A negative temperature corresponds to a population inversion of the
virtual qubit. The virtual qubit is additionally coupled to a load, namely an energy
ladder, a system consisting of d levels with equal spacing Ew. If the virtual qubit is at a
negative temperature, energy can be transferred to the ladder by jumping from state n
to n + 1. The ladder system is chosen such that the highest lying level is coupled to the
lowest level, therefore the population can decay once the highest level has been reached,
emitting a photon of energy Eγ = (d− 1)Ew. This decay renders the climbing of the
ladder to be periodic as long as the energy transfer from the virtual qubit happens at
a constant rate. The emitted photon is now used as a tick of the clock which can be
detected by the register to advance the hands of the clock. The imperfection of the clock
comes into play as the evolution of the ladder is not deterministic and the ladder is
climbed only approximately at a constant rate. The objective is now to investigate the
stability of this clock in terms of the amount of heat that is “wasted” into the cold bath,
i.e. the amount of entropy increase that is caused by the clock.

1.1.2. The Result

First, we introduce the way clock performance is quantified by Erker et al. The two
figures of merit are resolution and accuracy. The resolution νtick is the number of ticks
the clock provides per unit time. The accuracy N is the number of ticks after which the
uncertainty of a tick equals the time between two ticks. If we assume the times between
ticks to be independently and identically distributed, the uncertainty of a tick after n
ticks is just

√
n∆ttick where ∆ttick is the uncertainty of a single tick and N becomes

N =

(
ttick

∆ttick

)2

. (1.4)

Erker et al. now perform a numerical simulation of the system and find interesting
behavior of these two quantities in dependence of the heat Qc dissipated into the cold

4



1.2. The Phonon Laser Clock

Figure 1.2.: Results of the numerical simulations taken from [16]. (a) Accuracy N over heat dissipated to the
the cold bath Qc for different resolutions. (b) Resolution over Qc for different accuracies. Both
cases show a similar behavior, accuracy and resolution first increase with Qc before saturating
at a constant value. (c) Trade-off between accuracy and resolution. For a fixed amount of Qc,
increasing N will lead to a decrease in resolution and vice-versa. Higher Qc will lead to higher
values for both accuracy and resolution if it is below the saturation threshold.

bath, the results of which are depicted in Figure 1.2. They found that both accuracy
and resolution increase for small values of Qc before saturating at a constant level. Also,
there exists a trade-off between accuracy and resolution. For a fixed amount of heat Qc
increasing the accuracy will lead to a decrease in resolution and vice-versa. In order to
increase both of these values at the same time, again Qc needs to be increased. This leads
us directly to the conclusion of these simulations: Entropy, here equivalent to the heat
dissipated into the cold bath, is a resource needed for time measurement. Obviously,
these results are obtained for a specific system and on first sight it is unclear if the
connection between entropy and time keeping is universal. Erker et al. however argue
that it is. The crucial aspect is the irreversibility of the pointer evolution. In order to get
continuous ticks, the periodic evolution of the pointer must be more probable in one
direction then its time inverse. An out-of-equilibrium resource must therefore supply
free energy to the pointer for continuous operation. As this is not possible with unit
efficiency, the total entropy of the system must be increased.

1.2. The Phonon Laser Clock

So far, the aforementioned connection between thermodynamics and timekeeping has
only been tested theoretically for a specific system. The motivation for this thesis is to
test it in an experiment and also to choose a completely different system to test the
conjectured universality of the findings described above. Following the requirements
established in [16], we require a system for which interaction with the environment is
well characterized to ensure fair bookkeeping of the heat and energy flow and therefore
of the entropy increase. We want to use the system as a clock and evidently need a
periodic signal which can be detected. Finally, one of the most important requirements
is the efficiency of the system. At least for the system discussed above, the connection
between heat and clock quality can only be observed for low heat dissipation and most
real-life clocks require power input for sustained operation which is orders of magnitude
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1. Introduction

red detuned beam: damping

blue detuned beam: amplification

ion

scattered light

harmonic trapping potential

Figure 1.3.: Sketch of the ion oscillator. A single ion is trapped in a harmonic potential. A red detuned
laser reduces the momentum of the ion and thus damps is motion, while a blue detuned laser
amplifies it. The beams are in resonance with the ion at different points of the oscillation cycle
due to the different frequency detunings and the Doppler shift. For well chosen combinations of
laser intensities, the oscillation will reach a steady state amplitude. Photons are scattered by the
ion with the same periodicity as the oscillation. This can be user to detect the oscillation phase.

higher then the minimal requirement for a microscopic clock proposed by Erker et al.
Consequently, we require a system that efficiently converts energy into clock ticks.

We propose that an ion in a harmonic potential, which experiences oscillation-phase
dependent damping and amplification forces for sustained oscillation as sketched in
Figure 1.3, is a suitable candidate for such an experimental test. This system is realized
with a 40Ca+ ion in a Paul trap, illuminated by laser beams red and blue detuned from
an electronic dipole transition, leading to damping and amplification of motion. A
mechanical pendulum which looses some energy through friction and is in turn supplied
with energy during every oscillation cycle is a suitable macroscopic analogy. This kind
of self-sustained ion oscillator has been implemented by Vahala et al. [19] 2 and coined
phonon laser due to its analogy to an optical laser 3. We will refer to the oscillating ion as
a “phonon laser” or an “ion oscillator” interchangeably in the following.

Even though this ion oscillator is quite different from the heat engine driven clock
introduced in Section 1.1, it has certain properties that make it a good candidate for such
a test. The first one being its simplicity: Laser-driven self-sustained oscillation is relatively
simple compared to an autonomous quantum heat engine. Also the detection of the
motion using the very same laser beams as for the drive, as discussed in Section 1.2.3,
adds to the appeal of the experiment. One of the important differences compared to
the heat engine driven clock, and to all common frequency standards, is the oscillation

2A related theory of a similar system was independently proposed by Kaplan [20]
3A threshold for the transition from thermal excitation to self-sustained oscillation and stimulated

emission of phonons are the key parallels to a laser. The reader is referred to [19] for further discussion on
this subject
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1.2. The Phonon Laser Clock

frequency. It is fixed for the ion by the confinement in the Paul trap. However, the
energy input from the lasers does not require any time dependent, external drive: The
ion is continuously illuminated by the lasers and no external control determines the
phase of the oscillation. Due to the stochastic recoil of the scattered photons the ion will
experience momentum kicks which in turn lead to jumps in the phase. The instability of
the oscillation caused by this phase noise will be the effect of interest in this thesis.

Additionally to the phase noise we need to measure the entropy production, or analo-
gously the waste heat production, of the system in order to relate the two quantities. Our
measure for waste heat is the amount of photons scattered by the ion. This is justified, as
every photon absorbed from the low-entropy, coherent and monochromatic laser fields
is later scattered, and thus “wasted”, into a random vacuum mode.

These considerations set the path for the experiment. For different parameters of the
driving laser fields the phase stability of the ion oscillation needs to be evaluated. Subse-
quently, connections between this stability and the amount of scattered photons can be
studied, possibly enabling an experimental test of the connection between thermody-
namics and time measurement.

We will discuss general considerations concerning this system in this section and leave
the thorough theoretical analysis to Section 2.2.

1.2.1. The 40Ca+Ion

To implement the ion oscillator we use 40Ca+ ions. A single valence electron leads to a
alkaline-like level scheme of which the relevant part is depicted in Figure 1.4. Due to
the short life time of the 4P1/2 state, driving of the 4S1/2 ↔ 4P1/2 transition will lead to
a large scattering rate. We will therefore use this transition to drive the oscillation. As
discussed above, two laser beams, red and blue detuned from this transition, will lead to
a self-sustained oscillation of the ion due to velocity dependent radiation pressure forces
as discussed in Section 2.1.1.

A magnetic field lifts the degeneracy of the magnetic substates of the 4S1/2 and 4P1/2

levels. Decay from both states of the excited 4P1/2 manifold is possible into both states
of the ground state. Consequently, we can not isolate a single two-level system (TLS)
using the 4S1/2 ↔ 4P1/2 transition. All four levels depicted in Figure 1.4(b) must be taken
into account. Depending on the polarization of the beams relative to the magnetic field,
different transitions are allowed. However, to simplify the analytical description, we will
assume a TLS in Section 2.2 and neglect the more complex structure. For low scattering
rates this is a good approximation as no level is depleted through optical pumping
during a single cycle. It remains however unclear how well the approximation holds for
higher scattering rates. We will propose how to realize a near-perfect TLS in Chapter 8

which could be implemented in future work.
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Figure 1.4.: Level scheme of the 40Ca+ ion. (a) The 4S1/2 ↔ 4P1/2 dipole transition is used to drive the
oscillation using a near 397 nm laser beam. Additional decay into the metastable 3D3/2 state
needs to be taken into account and a near 866 nm beam pumps the population back into the
cyclic transition. (b) The two levels used to drive the oscillation are each split due to a finite
magnetic field. All transitions between the magnetic substates need to be taken into account.
The fractions at the decay arrows denote the ratios at which the respective spontaneous decays
take place.
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Figure 1.5.: Sketch of the oscillating ion in the trap. The confinement in the radial direction is stronger then
in the axial direction. The projections of the laser beams on the axial directions have the same
directions while the projections on the radial direction have opposing directions. This both leads
to an axial oscillation of the ion. The magnetic field B encloses a angle of 45◦ with the trap axis
which will be important later for the polarizations of the beams.
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1.2. The Phonon Laser Clock

1.2.2. The Setup

A sketch of our experimental setting is shown in Figure 1.5. The ion is confined in a
Paul trap and the red and blue detuned beams illuminate the ion on a 45◦ angle to the
trap axis. The ion is confined by a harmonic potential in all spatial directions. Sustained
oscillation should consequently be possible in all directions onto which the projection of
the driving fields wavevectors are non-zero. In the Paul trap used in the experiments we
define an axial direction, in which the confinement is of purely electrostatic nature, and
two radial ones, where the confinement is of pondermotive nature. Sustained oscillation
is only possible in the plane defined by the two driving beams. The direction of the laser
beams will play an important role. As will be discussed in greater detail in Section 2.2.5,
the scattering rate caused by the two beams varies over the oscillation cycle (of course this
is the essential fact that leads to the oscillation). If the two beams are counter-propagating
with respect to a given oscillation direction, the scattering will occur at similar oscillation
phases due to the different detunings. If the beams are instead co-propagating with
respect to the direction under consideration, the scattering can take place at distinct
oscillation phases. It seems plausible that this will favor an oscillation direction for which
the beams are effectively co-propagating. This will lead to an axial ion oscillation in our
case which is indeed what can be observed in the measurements.

1.2.3. Detection

To detected the ion motion, and ultimately the oscillation phase stability, we exploit
the periodicity of the scattered light. As the ion oscillates in the trap it changes its
velocity sinusoidaly. Due to the Doppler effect the ion will therefore be in resonance
with each laser twice per oscillation period. The scattering rate will consequently be
modulated with the oscillation frequency. However, due to the two lasers that are being
used the strongest modulation component will be at twice the oscillation frequency. As
the rate of detected photons is low compared to the oscillation frequency, we can not
simply detect the scattered photons and infer the position of the ion. Instead we will
measure the arrival times of the photons at the detector and use a Fourier analysis of
these times to compute the underlying frequency. This frequency measurement can then
be used to collect frequency samples over time from which an Allan variance can be
computed. The Allan variance contains information about various noise contributions to
the oscillation phase and frequency and can be used to determine the phase stability of
the oscillation.
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2. Theory

2.1. Atom-Light Interaction

The experiments in this thesis are based on a laser-driven atomic two-level system
(TLS). In this section we will give a short overview on the most simple model for the
interaction between the light field and the atom. The atom is assumed to be a quantum
mechanical TLS which interacts with a classical electric field. We will not go trough
the full derivation but instead state the most important results and the approximations
needed to derive them. For a thorough treatment of this topic the reader is referred to
the standard text books of atomic physics [22]. After deriving the scattering rate of an
ion, we use this result to derive the expression for the radiation pressure force which an
electromagnetic wave exerts on an atom in Section 2.1.1.

The Hamiltonian of the laser-driven TLS reads

H = h̄ω1 |1〉 〈1|+ h̄ω2 |2〉 〈2|+ Hint , (2.1)

where |1〉 and |2〉 are the energy eigenstates of the atom and h̄ω1 and h̄ω2 their energy
eigenvalues. In the following, we will assume that ω2 > ω1, making |1〉 the “ground
state” with lower energy and |2〉 the “excited state” with higher energy. We now need to
determine the interaction term Hint. Classically, a dipole er in an electric field E has the
potential energy −erE and we therefore write

Hint = −dE(r̂, t) , (2.2)

with the dipole operator d = −er̂, where e is the electron charge and r̂ the position
operator. In the following, we will assume E(r̂, t) to vary negligibly over the extent of
the atom by making the dipole approximation E(r̂, t) = E(t). As we assume interaction
with a monochromatic electromagnetic wave, we can write E(t) = εE0 cos(ωLt). Using
these assumptions one can show that

Hint = −h̄Ω cos(ωLt)(|1〉 〈2|+ |2〉 〈1|), (2.3)

by introducing the Rabi frequency

Ω =
〈2| εE0d |1〉

h̄
. (2.4)

The Rabi frequency quantifies the strength of the coupling between the atom and the
electric field. By making an exponential ansatz, neglecting rapidly oscillating terms
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Figure 2.1.: Exited state population probability pex as a function of the pulse area Ωt. Left, without sponta-
neous decay for different detunings δ. Right, for two different values of the decay rate γ but
with zero detuning.

(rotating wave approximation) and transforming into a rotating frame one can now solve the
Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 (2.5)

and arrive at the time-dependent populations

p1(t) =
1
2
(1 + cos(Ωt))

p2(t) =
1
2
(1− cos(Ωt))

(2.6)

for the two states |1〉 and |2〉 respectively, if we choose δ = ωL − (ω2 − ω1) = 0
and the initial conditions p1(0) = 1 and p2(0) = 0. The population oscillates at the
Rabi frequency. By following the same derivation for finite detuning δ one obtains the
population dynamics depicted in Figure 2.1.

Spontaneous Decay

For now we have assumed an infinite lifetime for the excited state: If we would turn
off the electric field at any time, the populations would remain unchanged. Taking the
experimentally observed decay into account, we will assume a spontaneous decay rate
γ from the excited state and represent the state of the TLS by a density matrix. The
equation of motion for the density matrix ρ can be written in form of the optical Bloch
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−10 −5 0 5 10
δ [γ]

0.0

0.1

0.2

0.3

0.4

0.5

Γ
[γ

]

S0 = 100
S0 = 1
S0 = 0.1

Figure 2.2.: Steady state scattering rate Γ as a function of the frequency detuning δ for different values of
the resonant saturation parameter S0 (see Equations (2.14)).

equations in the rotating frame

ρ̇11 = γρ22 + i
1
2

Ω(ρ21 − ρ12)

ρ̇22 = −γρ22 + i
1
2

Ω(ρ12 − ρ21)

ρ̇12 = −
(γ

2
+ iδ

)
ρ12 + i

1
2

Ω(ρ22 − ρ11)

ρ̇21 = −
(γ

2
− iδ

)
ρ21 + i

1
2

Ω(ρ11 − ρ22)

(2.7)

Using the hermiticity and trace condition for the density matrix and by introducing the
inversion

w = ρ22 − ρ11 , (2.8)

one can simplify Equations (2.7) to

ρ̇21 = −
(γ

2
− iδ

)
ρ21 + i

1
2

Ω(ρ11 − ρ22)

ẇ = −γ(w + 1)− iΩ(ρ21 − ρ12) ,
(2.9)

which leads to decaying Rabi oscillations as depicted in Figure 2.1.

Steady State Solution and Scattering Rate

One can now solve Equations (2.9) for the steady state case ẇ = 0 and ρ̇21 = 0. For
a decay rate γ this state will be reached for times t � 1/γ. One obtains the simple
expression

w = − 1
1 + S

(2.10)
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2. Theory

for the inversion, using the saturation parameter

S =
2Ω2

γ2 + 4δ2 (2.11)

which has a very intuitive meaning: For S� 1 the atom will be mainly in the ground
state, for S � 1 the inversion is approximately zero and both states become equally
populated. In experiments, the inversion can not be measured directly, instead the rate Γ
at which photons are spontaneously scattered from the atom is more easily accessible.
Clearly, Γ must be the decay rate times the probability to be in the excited state:

pex = ρ22 =
1
2
(1 + w) =

S
2(1 + S)

=
1
2

S0

1 + S0 + 4 δ2/γ2
, (2.12)

using the resonant saturation parameter

S0 =
2Ω2

γ2 , (2.13)

leads us to

Γ = γpex

=
γ

2
S0

1 + S0 + 4 δ2/γ2

= γ
Ω2

4δ2 + 2Ω2 + γ2 .

(2.14)

Therefore the scattering rate is a Lorentzian when viewed as a function of δ with a full
width at half maximum (FWHM) of

√
γ2 + 2Ω2 as depicted in Figure 2.2. For small

light intensities, and thus small Ω and S0, the line will take the FWHM of γ, explaining
the alternative term natural linewidth for the decay rate γ. For increasing Ω the line
will broaden (Figure 2.2), an effect called saturation broadening. Also we note, that the
scattering rate has an upper bound of γ/2.

2.1.1. Light Pressure

If an atom absorbs a photon while undergoing an internal transition, as described
in the previous section, momentum is transferred from the photon to the atom. As
the photon with wavevector k has momentum h̄k, momentum conservation dictates
that this momentum must be transferred to the atom. On the other hand, momentum
is again transferred back to a photon if a spontaneous scattering event occurs. The
modulus of these two momentum transfers is equal, although their directions are not.
The momentum transferred to the atom for an absorption always has the direction of the
wavevector while the spontaneously scattered photon is emitted into a random direction.
The momentum transfer from the ion to the light field therefore averages to zero over
time. Consequently, for a scattering rate Γ an average force of

F = h̄kΓ (2.15)
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2.1. Atom-Light Interaction

will be exerted on the atom.

As shown above, the scattering rate depends on the detuning δ of the light frequency
from the resonant transition frequency. Furthermore, the effective detuning depends on
the atom velocity v through the Doppler effect. If the atom velocity is anti-parallel to the
wavevector, the effective detuning is shifted by kv to higher values while parallel velocity
has the opposite effect. The scattering rate Γ in Equations (2.14) will consequently take
the form

Γ =
γ

2
S0

1 + S0 + 4(δ− kv)2/γ2 , (2.16)

for finite velocity with modulus v and the projection of the wavevector onto the direction
of motion k. If the detuning is now shifted from the atomic resonance in the laboratory
frame, we can influence if the force on the atom will increase or decrease the modulus
of its momentum. If the rest frame frequency is red detuned (δ < 0) the atom is in
resonance with the light field if it moves towards it and will experience a force opposite
to its momentum, hence slowing it down. If the rest frame frequency is blue detuned
(δ > 0) the case is analogous but opposite and the atom velocity is increased. This effect
can be used, to cool down thermally excited atoms with a red detuned laser beam [23,
24]. In the experiments presented in this thesis, we will also use the opposite effect of a
blue detuned laser which increases the kinetic energy of the atom.
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2. Theory

2.2. Theoretical Analysis of the Ion Oscillator

In this section a theoretical model for the ion motion subject to trap potential and light
field interactions, i.e. for the phonon laser, will be established. This model was developed
in collaboration with Nahuel Freitas during joined work on the subject. It is similar to
the theory in [19] but also includes the oscillation phase and its stability. The general
case of a harmonic oscillator subject to velocity dependent and Langevin forces will be
discussed first. Subsequently, these results will be specifically evaluated and discussed
for the concrete system of an ion subject to light forces caused by frequency detuned
laser beams.

2.2.1. Equations of Motion, The General Case

In this section the equations of motion governing the ion motion in the trap will be
established and solved for a relatively general case, i.e. without using explicit expressions
for the relevant forces. Additionally to the harmonic forces of the trap potential, nonlinear
forces due to the laser field and stochastic forces due to spontaneous scattering need to
be taken into account. This leads to the need of stochastic calculus, i.e. Itôs calculus [25],
of which the main results will be used in the following without discussing them in great
detail.

In general, the differential equation describing the ions position x over time assumes the
following form

ẍ + ν(ẋ) + ω2x = λ(ẋ)χ(t). (2.17)

ν describes the light forces, which depend on the effective detuning from an electronic
transition and thus on the velocity ẋ trough the Doppler shift. λ(ẋ)χ(t) describes the
white noise contribution due to spontaneous scattering. χ(t) is a white noise Langevin
force with zero correlation time 〈χ(t)χ(t′)〉 = δ(t− t′) and λ(ẋ) its velocity dependent
amplitude. Finally, the confinement in the harmonic potential is included via the trapping
frequency ω.

As the ion will be approximately describing a sinusoidal motion, and phase and am-
plitude are the quantities of interest, it makes sense to transform into different coordi-
nates:

x = A sin(ωt + φ)

v = Aω cos(ωt + φ) ,
(2.18)

where we have defined the velocity v = ẋ, or equivalently

A =
√

x2 + (v/ω)2

φ = arctan (ωx/v)−ωt .
(2.19)
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2.2. Theoretical Analysis of the Ion Oscillator

Writing Equation (2.17) as a system of first order differential equations in differential
form leads to

dx = vdt

dv = (−ν(v)−ω2x)dt + λ(v)dW ,
(2.20)

where dW = dχdt is the differential of uncorrelated white noise 1. As this is a system
of stochastic differential equations, the transformation to the new coordinates Equa-
tions (2.19) needs to be done according to the rules of stochastic calculus. Following Itôs
formula we get

dA =
∂A
∂t

dt +
∂A
∂x

dx +
∂A
∂v

dv

+
1
2

∂2A
∂t2 dt2 +

1
2

∂2A
∂x2 dx2 +

1
2

∂2A
∂v2 dv2

+
1
2

∂2A
∂t∂x

dtdx +
1
2

∂2A
∂t∂v

dtdv +
1
2

∂2A
∂x∂v

dxdv

(2.21)

Note that A, contrary to φ, does not explicitly depends on t and partial derivatives with
respect to t in Equation (2.21) will vanish. Terms proportional to dt2 or dtdW vanish
when we integrate over Equation (2.21) and can therefore be dropped in the following.
However, one of the important result of Itô calculus is that dW2 = dt. Consequently,
contrary to regular calculus, the terms containing dx2 and dv2 do not vanish. By then
explicitly computing the partial derivatives of A and φ using Equations (2.19) and
plugging Equations (2.20) and Equations (2.18) into Equation (2.21) we get

dA =

[
λ2(v)
2Aω2 sin(ωt + φ)2 − 1

ω
cos(ωt + φ)ν(v)

]
dt +

λ(v)
ω

cos(ωt + φ)dW

dφ =

[
λ2(v)
A2ω2 cos(ωt + φ) sin(ωt + φ) +

1
Aω

sin(ωt + φ)ν(v)
]

dt− λ(v)
Aω

sin(ωt + φ)dW,

(2.22)

using an analogous approach for dφ and v = v(A, φ) = Aω cos(ωt+ φ). These equations
are completely general and do not involve any approximations. They are, however, too
complex to find an analytical solution. Therefore reasonable approximations will be
made in the following, for which solving of the equations becomes possible.

Small Noise Expansion

One approximation that can be made and that simplifies Equations (2.22) significantly is
to assume a small noise contribution. By assuming a noise intensity proportional to ε
and expanding A and φ in powers of ε, one can develop a perturbative theory for solving
Equations (2.22). For small ε terms of higher order can than be neglected, leading to an

1Note that strictly speaking the differential dW only makes sense in an integral as χ(t) is nowhere
differentiable. All differential equations that are used here need to be understood as the differential form of
integral equations
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2. Theory

approximated set of stochastic differential equations. First, we write Equations (2.22)
as

dA = a(A, φ)dt + εb(A, φ)dW +O(ε2)

dφ = c(A, φ)dt + εd(A, φ)dW +O(ε2)
(2.23)

using

a(A, φ) = − 1
ω

cos(ωt + φ)ν(Aω cos(ωt + φ))

b(A, φ) =
1
ω

cos(ωt + φ)λ(Aω cos(ωt + φ))

c(A, φ) =
1

Aω
sin(ωt + φ)ν(Aω cos(ωt + φ))

d(A, φ) = − 1
Aω

sin(ωt + φ)λ(Aω cos(ωt + φ))

(2.24)

Following the method presented in [25] it is assumed that following expansions in ε can
be made:

A(t) =
∞

∑
n=0

εn An(t)

φ(t) =
∞

∑
n=0

εnφn(t)
(2.25)

a(A, φ) = a

(
∞

∑
n=0

εn An(t),
∞

∑
n=0

εnφn(t)

)
(2.26)

= a0(A0, φ0) + εa1(A0, A1, φ0, φ1) + ε2a2(A0, A1, A2, φ0, φ1, φ2) + . . . (2.27)

The expansion for b, c and d are carried out analogously. Equation (2.27) follows by
doing a Taylor expansion around (A0, φ0) and sorting by powers of ε. This also yields
explicit expressions for the an, namely for the first two terms

a0(A0, φ0) = a(A0, φ0)

a1(A0, A1, φ0, φ1) =
∂a(A0, φ0)

∂A0
A1 +

∂a(A0, φ0)

∂φ0
φ1

(2.28)

Plugging in Equations (2.25) and Equation (2.27) into Equations (2.23) and equating
terms pertaining to identical powers of ε yields a system of equations for the different
components An and φn:

dA0 = a(A0, φ0)dt
dφ0 = c(A0, φ0)dt

(2.29)

dA1 =

(
∂a(A0, φ0)

∂A0
A1 +

∂a(A0, φ0)

∂φ0
φ1

)
dt + b(A0, φ0)dW

dφ1 =

(
∂c(A0, φ0)

∂A0
A1 +

∂c(A0, φ0)

∂φ0
φ1

)
dt + d(A0, φ0)dW

(2.30)

18



2.2. Theoretical Analysis of the Ion Oscillator

Hence, A0 and φ0 are just the unperturbed solutions not including any noise. The
advantage that has been gained here is that the equations can be solved sequentially.
Equations (2.29) can be solved by means of standard calculus. Using the resulting
functions A0(t) and φ0(t), Equations (2.30) can then be solved using stochastic calculus.
This is now possible as the coefficients of dW depend on time exclusively, contrary to
the original Equations (2.22) where they depended on the functions A(t) and φ(t).

Adiabatic Approximation and Timescale Separation

Even using the approximations introduced above analytical solutions for amplitude and
phase, or rather statistics like mean and variance, are still beyond reach. Separating
timescales of different quantities in the equations using an adiabatic approximation
further simplifies the evaluation. The important assumption to be made is that phase and
amplitude vary on much slower timescales then a period of the oscillation, i.e. Ȧ/A� ω
and φ̇ � ω. This enables the evaluation of the coarse grained evolution of A(t) and
φ(t) to lower order in this adiabatic limit. First, the solution of A0(t) will be considered.
Integrating Equations (2.29) over one oscillation period τ = 2π/ω yields

A0(t + τ)− A0(t) =
∫ t+τ

t
dt′a(A0(t′), φ0(t′))

= − 1
ω

∫ t+τ

t
dt′ cos(ωt′ + φ0(t′))ν(A0(t′)ω cos(ωt′ + φ0(t′)))

≈ − 1
ω

∫ t+τ

t
dt′ cos(ωt′ + φ0(t))ν(A0(t)ω cos(ωt′ + φ0(t)))

= − 1
ω

∫ t+τ

t
dt′ cos(ωt′)ν(A0(t)ω cos(ωt′))

(2.31)

where the adiabatic approximation has been introduced in the third line by replacing
A0(t′)→ A0(t) and φ0(t′)→ φ0(t) in the integral. The integrand is periodic with respect
to τ and the φ0(t) terms can therefore be omitted in the third line. A differential equation
for A0 is required, so the equation above is rewritten in a way that gives a coarse grained
approximation to the time derivative of A0

Ȧ0 ≈
A0(t + τ)− A0(t)

τ
≈ − 1

2π

∫ t+τ

t
dt′ cos(ωt′)ν(A0(t)ω cos(ωt′))

= − 1
2πω

∫ 2π

0
dθ cos(θ)ν(A0(t)ω cos(θ))

= −A0(t)
2π

∫ 2π

0
dθ sin2(θ)ν′(A0(t)ω cos(θ))

(2.32)

The second line follows from the transform θ = ωt′ and the third using integration by
parts 2. ν′ = dν

dv is the derivative of ν. A first order integro-differential equation in A0,

2There is no particular reason why one should use the form in the third line rather than the one in the
second. Later on, however, we will use it to be consistent with the notation of [19].
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independent of φ0, has thus been obtained:

Ȧ0 = −A0

2
ν̄(A0) (2.33)

ν̄ is a damping or gain coefficient, “averaged” over one oscillation cycle

ν̄(A0) = −
1
π

∫ 2π

0
dθ sin2(θ)ν′(A0(t)ω cos(θ)) (2.34)

Proceeding analogously for φ0 by integrating Equations (2.29), we obtain that to zeroth or-
der in the small noise expansion and the adiabatic approximation φ0(t + τ)− φ0(t) = 03

which of course makes sense intuitively as the phase should remain constant for zero
noise. To analyze the phase stability we will go to first order in the small noise approxi-
mation but remain in the lowest order of the adiabatic approximation. By integrating
Equations (2.30) for φ1 and using φ0(t) = φ0 we find that

φ1(t + τ)− φ1(t) ≈
φ1(t)

A0(t)ω

∫ t+τ

t
dt′ ν(ωA0 cos(ωt′ + φ0)) cos(ωt′ + φ0)

− φ1(t)
∫ t+τ

t
dt′ ν′(ωA0 cos(ωt′ + φ0)) sin2(ωt′ + φ0)

− 1
A0(t)ω

∫ t+τ

t
dW(t′) λ(ωA0 cos(ωt′ + φ0)) sin(ωt′ + φ0)

(2.35)

= − 1
A0(t)ω2

∫ 2π

0
dW(θ) λ(ωA0 cos(θ)) sin(θ) (2.36)

Again, the terms containing A1 vanish due to symmetry reasons and the first two
lines cancel each other which can be easily seen by integrating the second line by
parts. We now have an expression for the phase increment over one oscillation period
φ1(t + τ)− φ1(t) which is purely stochastic and of which the mean and variance can be
evaluated. The fact that the integral is purely stochastic directly leads to the conclusion,
that the mean must vanish

〈φ1(t + τ)− φ1(t)〉 = 0. (2.37)

Further, since φ1(t+ τ)−φ1(t) does not depend on φ1(t) it follows that 〈φ1(t+ τ)φ1(t)〉 =
0. By squaring Equation (2.36) and taking the mean we then arrive at 4

∆σ2
φ := 〈φ2(t + τ)〉 − 〈φ2(t)〉 = 1

A2
0ω3

∫ 2π

0
dθλ2(ωA0 cos(θ)) sin2(θ) (2.38)

Where ∆σ2
φ is defined as the increase in phase variance over one period. Starting with a

perfectly defined phase at t = 0, we then obtain the phase variance after n oscillation
cycles

〈φ2(nτ)〉 = 2Dφnτ (2.39)

3It can be easily seen, that the integral vanishes due to symmetry reasons.
4We use the result of Itôs calculus: 〈

(∫
dW(s) g(s)

)2〉 =
∫

ds g2(s) for a Wiener process W(s).
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with the phase diffusion coefficient

Dφ =
∆σ2

φ

2τ
=

1
4π

1
A2

0ω2

∫ 2π

0
dθλ2(ωA0 cos(θ)) sin2(θ) (2.40)
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2.2.2. Explicit Expressions for the Light Forces

So far, we have analyzed the equation of motion for a nonlinear, dissipative oscillator
using the general expressions λ(v) and ν(v) for the Langevin force due to spontaneous
scattering and the deterministic forces due to light pressure. Now, we want to find
explicit forms for these for the case of an ion in an harmonic trap, subject to two
laser beams blue and red detuned from an electronic dipole transition. Here, we will
consider the case of an ideal two level system. The red detuned laser will decelerate
the ions motion, leading to a ν that is negative for negative v (hence leading to force
in positive x-direction). Analogously, the blue detuned laser will act in an opposite
manner (see Section 2.1.1 for a discussion on radiation pressure forces). The damping
and amplification forces caused by these two laser fields will therefore counteract each
other. In the following we will see in which cases they cancel and a stable oscillation is
possible.

Using Equations (2.14), assuming a small resonant saturation parameter S0 � 1 and
taking the Doppler shift into account yields the scattering rates

Rj(v) =
γ

2
Sj

1 + (2δj/γ− 2kv/γ)2 (2.41)

for the cooling (j = c) and amplification (j = a) laser. k is the projection of the wavevector
onto the axis of motion, v the ion velocity, δa,c the detunings from resonance and Sa,c
the resonant saturation parameters of the two beams. As described in Section 2.1.1, the
absorption of photons by the ion from the light field leads to a net force of

Fj(v) = h̄kRj(v) , (2.42)

which yields the velocity dependent, deterministic term in Equation (2.17)

ν(v) = − h̄k
m

[Rc(v) + Ra(v)] . (2.43)

The interaction with the light field will lead not only to deterministic forces for each
photon absorption but also to stochastic ones due to spontaneous scattering. Spontaneous
scattered photons are emitted in random directions and at random times, yielding a
white noise Langevin force with intensity λ. Each scattered photon will lead to a change
in velocity of h̄k/m. As the photons are emitted uniformly in all directions, the effective
change in velocity per photon will have zero mean and the variance (h̄k/m)2. Using the
geometric factor z that describes the projection of the photon emissions onto the axis of
oscillations we obtain

λ2(v) = z
(

h̄k
m

)2

[Rc(v) + Ra(v)] . (2.44)

To follow the notation established in [19], we introduce the functions

κ(v) = − 1
mSc

dFc(v)
dv

g(v) =
1

mSa

dFa(v)
dv

(2.45)
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Figure 2.3.: Effective powers of cooling and amplification beams (see Equation (2.47) and Equation (2.49))
over the dimensionless amplitude β for Sa = Sc = 0.1, αc = −1, αc = 0.5. The intersection of
the two curves corresponds to the steady state oscillation amplitude βOP (dashed line).

and the cycle averaged versions

G(v) =
1
π

∫ 2π

0
dθ g(v cos(θ)) sin2(θ)

K(v) =
1
π

∫ 2π

0
dθ k(v cos(θ)) sin2(θ) ,

(2.46)

with which the deterministic part of the equation of motion for the oscillation amplitude
becomes

Ȧ0 =
1
2

A0 [SaG(ωA0)− ScK(ωA0)] . (2.47)

Analytical solutions of the integrals in Equation (2.46) can be calculated and are discussed
in appendix A. Also we can write the phase diffusion coefficient by using Equation (2.44)
in Equation (2.40), as

Dφ =
∆σ2

φ

2τ

=
z

4π

(
h̄k/m
ωA0

)2 ∫ 2π

0
dθ [Rc(ωA0 cos(θ)) + Ra(ωA0 cos(θ))] sin2(θ)

(2.48)

2.2.3. Operating Point

We will first look at the behavior of the steady state solution for the the oscillation ampli-
tude to gain insight on the stability and the amplitude of the oscillation in dependence
of the operation parameters Sa, Sc, δa, δc. For a steady state oscillation, i.e. Ȧ0 = 0,

ϑ ≡ SaG(ωA0)− ScK(ωA0) = 0 (2.49)
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Figure 2.4.: ϑ as a function of the amplification detuning αa and the velocity amplitude β for different

saturation parameter ratios. αc = −1 for all cases. Positive ϑ means net amplification and
negative ϑ net damping of the oscillation amplitude. Stable steady state amplitudes are those
for which ϑ = 0 (white lines) and ∂ϑ/∂β < 0.
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Figure 2.5.: ϑ as a function of the amplification saturation parameter ratio Sa/Sc and the velocity amplitude
β. Stable steady state amplitudes are those for which ϑ = 0 (white lines) and ∂ϑ/∂β < 0.
Therefore only a limited region of Sa/Sc is stable, as can be seen from the plot. (a) and (b)
differ only in their value of Sc. For larger Sc the effective force restoring the operating point is
stronger.

0.00 0.25 0.50 0.75 1.00
Sc

0.0

0.2

0.4

0.6

0.8

1.0

S a

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

β
O

P

Figure 2.6.: Oscillation amplitude βOP as a function of the saturation parameters (αc = −3, αa = 2). One
can easily recognize the threshold behavior of the oscillation depending on the laser intensities.

25
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must hold. In the following we will use the dimensionless expressions

αa = 2δa/γ αc = 2δc/γ

β =2kωA0/γ
(2.50)

for the detunings and the oscillation amplitude. Using the solutions for the integrals G
and K provided in appendix A we can numerically evaluate ϑ for different operation
parameters. For fixed Sa, Sc, αa, αc we get a dependence of the effective powers of the
cooling and amplification beams on the amplitude β as depicted in Figure 2.3. We see
that in this specific case a root of ϑ, marked by a dashed line, exists. Furthermore, at
this point dϑ/dβ < 0 which means that the oscillation is amplified below this point
and is damped above it. The oscillation will consequently be stable and we call the
corresponding amplitude βOP the operating point. If no root of ϑ exists or if dϑ/dβ|βOP > 0
the oscillation will not be stable. We will now discuss how this operating point behaves
for general combinations of the operation parameters.

We first consider the case of identical saturation parameters Sa = Sc and plot ϑ in
Figure 2.4(a) versus the blue detuning αa and the velocity amplitude β, for a fixed values
of αc and the saturation parameters. For αa < |αc| there is a transition from ϑ > 0
to ϑ < 0 for increasing β, yielding stable oscillations. The oscillation amplitude will
assume a value for which ϑ = 0, which defines the operating point of the oscillation.
For αa > |αc| excursions to increased amplitude lead to increased amplification (and
vice versa for small amplitudes) prohibiting stable oscillation. Additionally, there is a
threshold value for αa below which ϑ is always negative and only damping is possible.
We also discuss the case of unbalanced saturation parameters Sa 6= Sc which is depicted
in Figure 2.4(b) and Figure 2.4(c). For Sa < Sc the stability region is smaller as compared
to the balanced case. For Sa > Sc the amplitude diverges for αa approaching |αc|.
Alternatively, we can investigate the stability in terms of the ratio of the saturation
parameters. In Figure 2.5 ϑ is plotted as a function of Sa/Sc and β and for fixed detunings.
Again there is a threshold of Sa/Sc below which no stable oscillation is possible. Also, an
upper bound of the stability region in terms of Sa/Sc can be seen. Inside this region the
oscillation amplitude increases with increasing Sa/Sc. Additionally, the stable amplitude
β does not depend on Sc but will be confined tighter for larger Sc.

For equal saturation parameters Sa = Sc = S and detunings αa / αc (the oscillation is
not stable for αa ≥ αc) convenient approximations can be made that allow for derivations
of analytic expression that would otherwise be hard or impossible. In the following we
will partly use this specific case of operation parameters to derive analytic expressions,
e.g. for the phase diffusion coefficient. To gain insight into more general cases we will
use numerical methods.

The first expression we can find in this case, is one for the operating point βOP. Using the
analytical expressions for G and K derived in appendix A one can show that for large
|αc| (and Sa = Sc, αa / αc) the operating point amplitude becomes approximately

βOP = |αc|+
1√
3

(2.51)
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2.2. Theoretical Analysis of the Ion Oscillator

Alternatively, βOP can be numerically evaluated for arbitrary values of the operation
parameters by finding roots of ϑ.

2.2.4. Phase Diffusion Coefficient

As already discussed, the phase stability determines the quality of the clock. Due to the
spontaneous emission events, the ion experiences random momentum kicks that lead to
phase diffusion, i.e. a random walk of the oscillation phase. To quantify the dephasing
rate, we will use the phase diffusion coefficient Dφ which has already been introduced in
Equation (2.39). Starting from the integral expression Equation (2.48) for Dφ and using
ID introduced in appendix A we get

Dφ =
z

4π

(
h̄k/m
ωA0

)2 γ

2
[Sc ID(αc, β) + Sa ID(αa, β)] . (2.52)

Equation (2.52) holds generally for arbitrary values of the saturation parameters, de-
tunings and amplitude. We can therefore calculate the stable oscillation amplitude
numerically by finding the root of ϑ (Equation (2.49)) and then compute Dφ using
Equation (2.52).

For the aforementioned case Sa = Sc = S, δa / δc, we can also find an analytical
expression for Dφ. If we use the approximate expression Equation (2.51) to eliminate β
and the explicit expression for ID we obtain

Dφ = z
(h̄k2/m)2

γ/2
S 31/4 |αc|−7/2 . (2.53)

In this case, and for the used approximation, the phase diffusion therefore becomes
larger with increasing light intensity or decreasing detuning. We will see however below
that this does not hold for arbitrary operation parameters.

2.2.5. Scattering During an Oscillation Cycle

The amount and distribution of scattered photons during an oscillation cycle are im-
portant for several reasons: First, the distribution of photon scattering events over the
oscillation cycle determines the ability to measure the phase via the scattered photons: If
the scattering rate is not sharply peaked around a certain phase, the detected phase will
have a large uncertainty. Instead of a random walk in phase for the phase diffusion case,
this will lead to white noise in phase. Second, the total amount of scattered photons
during a cycle is important as it determines the phase diffusion coefficient.

In the unsaturated case (Sa, Sc � 1) and for a small change in the Doppler shift during an
emission event (kA0ω2/γ2 � 1), the total scattering rate for the instantaneous velocity v
is the sum of the rates of the two beams

R(v) = Rc(v) + Ra(v) . (2.54)
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Figure 2.7.: Scattering rate during a cycle over the oscillation phase φ for Sa = Sc = 0.1. Scattering rate of
the cooling beam Rc in blue and of the amplification beam Ra in red. (a) For large detunings
αc = −5, αa = 4.9. (b) For small detunings αc = −1, αa = 0.5.
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Figure 2.8.: Different behavior of the oscillation for different phases of a scattering event. In both cases,
the scattering of a photon (black arrow, exaggerated in the figure) changes the instantaneous
velocity v by the same amount. (a) If the scattering occurs at a point of maximum velocity, the
change in velocity will lead to change in amplitude but the oscillation phase will be unchanged.
(b) If the scattering occurs for zero velocity, the amplitude will stay unchanged while the change
in phase will be maximal. The horizontal dashed line simply marks v = 0.

28



2.2. Theoretical Analysis of the Ion Oscillator

For a sinusoidal oscillation v = ωA0 cos(φ) we can describe the total scattering rate as
a function of the oscillation phase φ. An exemplary plot of R versus φ is depicted in
Figure 2.7. We can observe that during a full oscillation cycle two main peaks, one for
each beam, are present. As v = ωA0 cos(φ), resonant velocity is reached twice per cycle
for each of the two beams resulting in two sub-peaks for each beam. The separation
of these sub-peaks evidently depends on the detuing from resonance. For the equal
intensities and detunings approximation and for large αc we can express the width at
half height of the resonance peaks as a function of αc

δφ = 2
√

2(1 + 1/
√

3) |αc|−1/2 . (2.55)

Larger detunings will therefore lead to a more narrow peak. Also higher intensities will
lead to saturation broadening and a wider peak (this is outside the large αc approximation
and therefore does not appear in Equation (2.55)).

We can also derive an expression for the total amount of scattered photons during a cycle
by integrating the scattering rate over one cycle. By again using the integral expressions
from appendix A we get the total number of photons

Nc =
γ/2
ω

[Sc IN(αc, β) + Sa IN(αa, β)] . (2.56)

Within the equal detuning and intensities approximation, this leads to

Nc =
γ/2
ω

Sπ33/4|αc|−1/2 . (2.57)

For this particular case, we can relate the two quantities and get the phase diffusion
coefficient in terms of Nc:

Dφ =
zω

π
√

3

(
h̄k2/m

γ/2

)2

Nc |αc|−3 (2.58)

It is noteworthy that the maxima of the scattering are always close to the maxima of
the velocity (see Figure 2.7). This leads to the conclusion that the photon scattering
event will mainly lead to a change in oscillation amplitude rather than in a change
in oscillation phase as can be easily comprehended from Figure 2.8. This makes the
oscillation inherently phase stable.

2.2.6. Measure of Oscillator Stability

Analogously to the definition of the clock accuracy introduced in Section 1.1 we define
the accuracy NA as the number of cycles at which the uncertainty of the start of the cycle
equals a cycle duration, i.e. ∆φ(t = NAτ) = 2π for τ = 2π/ω. Using the equal intensities
and detunings approximations Equation (2.39) and Equation (2.58) we get

Nc NA =

√
3π2

z

(
γ/2

h̄k2/m

)2

|αc|3 . (2.59)
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Figure 2.9.: (a) ϑ is used to numerically find the operating point amplitude βOP depicted in (b) (Sc =
0.1, αc = −1, αa = 0.5). (c) Number of the scattered photons per oscillation cycle for the cooling
beam Rc in blue and for the amplification beam Ra in red. (d) Phase diffusion coefficient Dφ in
units of x = (g/(4π)) (h̄k2/m)2 1/(γ/2) versus Sa/Sc. For small Sa the amplification is below
the oscillation threshold. Above the threshold, Dφ is large and then decreases rapidly with Sa.
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2.2. Theoretical Analysis of the Ion Oscillator

We immediately see that the accuracy is inversely proportional to the number of scattered
photons.

The result obtained within the approximation is therefore in direct contrast to the
conjecture made by Erker et al. [16], that the clock accuracy improve is accompanied by
increased generation of waste heat. This can lead to the following conclusions:

• The conjecture by Erker et al. was verified for a specific clock implementation, but
does not hold in general.
• Our specific implementation can not be seen as an autonomous clock operating in

the thermodynamic limit.
• Our clock is not driven by thermal resources, but rather by low-entropy resources,

and the conjecture does not hold for this case
• The model we use for our clock is incomplete or the approximations that have

been made in Section 2.2.1 mask the connection between accuracy and waste heat.
• The contrast appears only within the approximation, which does not necessarily

yield optimum operation parameters, and the conjecture only hold for optimium
operation.

Therefore, a more thorough investigation of the relation between clock accuracy and
operation parameters is necessary. The simplest way to extend Equation (2.59) to a more
general case is to abandon the equal intensity and detuning approximation. In this
general case we obtain behaviors contradicting Equation (2.59) as depicted in Figure 2.9.
For a given set of Sc, Sa, αc, αa, the oscillation amplitude βOP is numerically computed by
finding roots of θ (Equation (2.49)) as depicted in Figure 2.9(b). Dφ can then be computed
using Equation (2.52). Leaving Sc, αc, αa fixed, and varying Sa yields the phase diffusion
coefficient plotted in Figure 2.9(d). We see again the threshold behavior of the oscillation:
Below a certain Sa, the oscillation amplitude is zero and displays an increase beyond this
threshold. At the threshold, Dφ assumes diverging values, while it decreases towards
larger values of Sa. At the same time the scattering rates increase with increasing Sa as
depicted in Figure 2.9(c). Consequently, we have a quite similar situation as depicted in
Figure 1.2. In both cases the accuracy of the clock increase with the entropy production
(quantified by heat in one and scattering rate in the other case) before reaching an
approximately constant plateau. It is important to note, that this behavior depends on
the way the scattering rate is increased. If we hold Sa fixed and increase Sc, we will find
an increase in the phase diffusion coefficient instead of a decrease, as can be seen in the
plot depicted in Figure B.2. A plot of Dφ over both Sa and Sc can be found in Figure B.1.
It is therefore not completely clear how this result can be compared to those presented
in Section 1.1.
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3. Experimental Apparatus

The experimental apparatus consists of a Paul trap [1, 2] inside a vacuum chamber and
laser optics that enable control over the ions internal and motional states. Figure 3.2
depicts a sketch of the setup. In Section 3.1 we will discuss the trap itself, in Section 3.2 the
lasers and optics needed for the experiment and finally various electronics in Section 3.3.
For more details see the work of Kaufmann [26] and Ruster [27].

3.1. The Ion Trap

The trap consists of two gold coated chips that form the DC and radio frequency (RF)
electrodes separated by an insulating layer as depicted in Figure 3.1. The RF electrodes
are supplied at a trap drive frequency of 2π × 33 MHz and a peak-to-peak voltage
of about 320 V, leading to a radial confinement corresponding to trap frequencies of
ωx ≈ 2π × 3.8 MHz and ωy ≈ 2π × 4.6 MHz. Axial confinement corresponding to a
trap frequency of ωz ≈ 2π × 1.5 MHz is generated by a DC voltage of −6 V at one trap
segment. The trap is wire-bonded to a filter board, where low-pass filters suppress
RF pickup from the RF to the DC electrodes and electrical noise. The trap consists of
32 independent segments between which ions can be shuttled by controlling the axial
confinement through the DC voltages. In the experiments presented in this thesis, we
will however only use a single segment.

Together with the filter board, the trap is mounted into a ultra high vacuum chamber. To
provide a well defined quantization axis and for energetically splitting of degenerate
states of the ion, an external magnetic field of ≈ 340 µT gives rise to a Zeeman splitting of
2π × 10 MHz between the sublevels of the S1/2 electronic ground state. Ions are trapped
via resonantly enhanced photoionization of neutral Ca atoms from an effusive beam
emanated from an oven [28].

3.2. Optics and Lasers

Lasers and various optical components are used in the experiment. Loading ions, cooling,
coherent manipulation and of course sustained harmonic oscillation of the ion in the
trap all require lasers resonant or near resonant to some electronic transitions of the
ion. All of these lasers and some important components will be briefly discussed in this
section. An overview on the relevant lasers and their orientation relative to the trap and
the magnetic field is given in Figure 3.2.
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(a) (b)

Figure 3.1.: Pictures of the segmented Paul trap used in the experiment (taken from [26]). (a) Trap chip
mounted to the filter board for electronic filtering, connected to the vacuum flange both
mechanically and electronically. (b) Closeup of the trap chip wirebonded to the filterboard. The
tube on the right is the calcium oven approximately 1 cm away from the trap surface.

Detection

Photons scattered by the ion need to be detected both to distinguish between magnetic
substates in Chapter 5 and to detect the oscillation in Chapter 6. In our setup we use
an objective 1 mounted inside an inverted viewport to decrease the distance to the ion
and thus increase the covered solid angle. Of the light collected by the objective 10 % is
split of to the EMCCD camera using a beamsplitter. Most of the emitted light is focused
onto a PMT 2 for detection. In both cases a narrow bandpass filter 3 transmits only light
around 397 nm.

397 nm: Light Forces

A 396.959 nm laser near resonant to the S1/2 ↔ P1/2 transition is employed to generate
radiation pressure forces depending on the detuning from resonance. If it is red detuned
it decreases the ions velocity, if it is blue detuned it increases it. For the measurements in
Chapter 4 and Chapter 5 a single red detuned, vertical and thus π polarized beam is used
for Doppler cooling [23, 24] and fluorescence detection. To drive the spatial oscillation
of the ion, a red detuned σ+ polarized and a blue detuned π polarized beam are used.
These two beams will consequently be called “Sigma” and “Doppler” or “cooling” and
“amplification” beams in the following. Both of the beams are derived from a diode laser
source 4. Subsequently, two independent acousto-optical modulators (AOMs) shift the
light frequency in a double pass configuration and are used for turning the beams on
and off. A single mode fiber then guides the light to the trap. Using a Pound-Drever-Hall
type locking technique [29] the laser frequency is stabilized to a cavity. The π polarized

1 f ≈ 67 mm, do = 45 mm, l = 192 mm, S6ASS2241/045 SILL 132177, Sill Optics GmbH & Co. KG
2Photon counting head H10682-210, Hamamatsu Photonics K.K.
3Semrock FF01-395/11

4DL 100 Pro (TOPTICA Photonics)
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Figure 3.2.: Sketch of experimental setup. The segmented trap is depicted in gold in the middle. Inside
an inverted view port an objective collects the fluorescence light from the ion and guides it to
the photomultiplier tube (PMT) and the electron multiplying charge-coupled device (EMCCD)
camera. The signal from the PMT is transmitted to a counter which can be read out using a
personal computer. The Doppler beam, which is π polarized, is used for Doppler cooling and
detection for some measurements while it is used as the amplification beam for the sustained ion
oscillation. The Sigma beam, which is σ+ polarized, is used for damping of the ion oscillation.
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beam is polarized parallel to the magnetic field using a polarizing beam splitter (PBS)
just before the vacuum chamber. A Glan-Taylor polarizer and a subsequent λ/4-plate
produce the right circular light needed for the Sigma beam.

866 nm & 854 nm: Repumping

During illumination of the ion with 397 nm or 729 nm light, the dark, metastable D3/2

and D5/2 states become populated. 866.451 nm (repump) and 854.443 nm (quench) light 5

is used to transfer the population back into the P1/2 or P3/2 states respectively, from where
rapid decay into the S1/2 ground state is possible. Both of these lasers are stabilized in
frequency using the measurement from a wavelength meter 6. Both beams are shifted
in frequency using AOMs and are then overlapped on a PBS before being coupled into
a single-mode fiber. After the fiber, the polarization is rotated to be diagonal to the
magnetic field to drive ∆m = 0,±1 transitions and thus address all possible sublevels.

729 nm: Shelving and Pumping

729.347 nm7 light drives the S1/2 → D5/2 electric quadrupole transition. It is used both
for optical pumping and for shelving of individual Zeeman S1/2 states for state detection
which is necessary for the experiments in Chapter 5. The diode laser frequency is
stabilized relative to a high-finesse Fabry-Perot cavity 8 using a Pound-Drever-Hall
technique. Its frequency is shifted using an AOM and it is guided to the trap using a
single mode fiber where the beam is focused on the ion using the same objective as for
imaging.

3.3. Electronics

For some of the experiments presented in Chapter 4 and Chapter 5, multiple electronic
components like AOMs or a PMT for fluorescence detection need to be controlled
synchronously and on the timescale of sub-microseconds. A custom-made arbitrary
waveform generator based on a FPGA can be programmed to address those components
and to run complex experiment sequences. For the oscillation measurement in Chapter 6,
continuous laser beams are used and such well timed control is not necessary. However,
we need to calibrate the intensities and frequency detunings of the beams and have higher
requirements on the detection of the scattered light as discussed in the following.

5both DL 100 (TOPTICA Photonics)
6Wavelength Meter WSU, HighFinesse Laser and Electronic Systems, ≈ 10 MHz accuracy.
7TA 100 (TOPTICA Photonics)
8ATFilms 6020 notched cavity, finesse F ≈ 140 000 [30]
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Lase Intensity and Frequency Calibration

For driving the trapped-ion phonon laser, two laser beams are employed as descibed
above in Section 1.2. For the experiments presented in thesis, the existing control
infrastructure for these lasers was modified. Each of the double-pass AOMs controlling
the frequency and intensity of these beams is now individually driven by a voltage-
controlled oscillator (VCO), where the frequency is tuned within the range between
80 MHz and 150 MHz via an analog voltage derived from the experiment control system.
To calibrate the voltage supplied to the VCOs to a frequency, the frequency was measured
once versus the voltage using an oscilloscope. This calibration measurement was then
used to determine the actual AOM frequency in the measurements.

The efficiency of the AOMs depend on their driving frequency, such that the laser
intensity arriving at the ion varies correspondingly. Consequently, a system is needed to
maintain constant intensity at varying optical frequency. This is done by adjusting the
RF amplitude of the signal going into the AOMs using a variable attenuator. A small
part of the beam is split of before the trap and is focused onto a photo diode which
outputs a voltage proportional to the intensity. We then use a simple search algorithm
that finds the correct RF amplitude for the AOM that leads to the desired intensity.
Obviously, this enables us to calibrate intensities in terms of the photo diode voltage
but not in absolute terms relative to an atomic transition. This already motivates the
measurements presented in Chapter 5 that aim at calibrating intensities in units of the
resonant saturation parameter of a transition.

In some of the measurements, laser intensities are required that are significantly smaller
then the common intensities used for fluorescence detection or Doppler cooling. To
attenuate the 397 nm laser, an electro optical modulator (EOM) 9 was installed which,
together with a λ/2-plate, reduces the intensity of both the Doppler and the Sigma beam.
The EOM can be switched between two states during experiment sequences which is
used in the measurements presented in Chapter 5.

Detection

For fluorescence detection, two different schemes are used in this work. For the mea-
surements presented in Chapter 4 and Chapter 5, a custom-made counter based on a
micro controller is connected to the PMT output and the number of measured photons
can be read out using a computer. This allows for the discrimination of the two mj = ±1
ground level states after shelving to the dark D5/2 state as described in Section 5.2. For the
oscillation stability measurement in Chapter 6, measurement of an averaged count rate
is not sufficient. Here it is necessary to measure arrival times of photons on timescales
much shorter then one oscillation period of about 0.6 µs. For this purpose, a PicoQuant
PicoHarp 300 time tagging module is used. It supplies time stamps with a resolution of
4 ps and a dead time of < 95 ns, surpassing the requirements for the resolution by orders
of magnitude. The same PMT is used in that case for the detection of the photons

9Linos LM0202
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For multiple reasons the amount of scattered photons and its distribution over time
is a crucial quantity in this thesis. The amount of photons scattered from the ion is
our measure of waste heat, i.e. the entropy produced by the system as described in
Section 1.2. Its distribution is important to infer the oscillation stability of the ion as
explained in Chapter 6. Finally we want to measure the total amount of scattered photons
to approximate the degree certain magnetic sublevels are depleted during scattering to
estimate how good our approximation of a two level system in Section 2.2 actually is.
Due to numerous imperfections in the experimental system, not all photons emitted by
the ion are detected by the photomultiplier tube (PMT). Combining the efficiency of
the involved components yields an estimate for the total detection efficiency. Previous
measurements [31] however show that the actual measured count rates are significantly
lower then the expected values. In this chapter we present a simple and accurate method
to measure the photon detection efficiency without any previous knowledge about any
of the involved components.

For the experimental setup described in Chapter 3 we can summarize the different effects
that lead to a count rate at the PMT which is lower then the scattering rate of the ion:

• Collection of the scattered light with an objective from one side at a finite distance
from the ion leads to a covered solid angle of Ω/4π ≈ 2.48 % (lens diameter
d = 38 mm, distance to ion g ≈ 60 mm, g is not known very well however) [32].

• The objective 1 has a transmission of 96 % [32].
• The fluorescence light is filtered before the PMT using a bandpass filter 2 with a

transmission of > 85 % at 397 nm.
• The PMT 3 has a quantum efficiency of about 20 %. This is however only a very

rough estimation as no specific value for used PMT is known.
• Only about 90 % of the light is detected by the PMT, the rest is directed to the

electron multiplying charge-coupled device (EMCCD) camera using a beamsplitter.

Multiplying these contributions yields an expected efficiency of 0.36 %. As the value of
the solid angle and the PMT quantum efficiency is not very well known, this result can
only be seen as a rough estimate.

To measure the actual detection efficiency, a simple experiment sequence is used, which
is depicted in Figure 4.1. The goal is to extract exactly one photon from the ion per
experimental run and then count the photons using the PMT. The number of measured
photons divided by the number of experiments then directly gives the detection efficiency.

1 f ≈ 67 mm, do = 45 mm, l = 192 mm, S6ASS2241/045 SILL 132177, Sill Optics GmbH & Co. KG
2Semrock FF01-395/11

3Photon counting head H10682-210, Hamamatsu Photonics K.K.
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Figure 4.1.: Schematic steps in the process to extract exactly one photon from the ion to then measure the
detection efficiency of the setup. (a) First the ion is illuminated with a 397 nm beam, which
drives transitions to the P1/2 state from which population can decay into the metastable D3/2

state. (b) After all population has been transferred, a 866 nm repump beam drives the transition
to the P1/2 state from which decay back into the S1/2 ground state is again possible. Exactly one
397 nm photon will then be emitted on this transition.

In order to get exactly one scattered photon from the ion, a meta-stable dark state is
used. After Doppler cooling, only the 397 nm cooling beam is switched on without the
866 nm repump beam. Consequently, after a time much larger than the P1/2 life time, the
ion will be pumped to the meta-stable D3/2 state (lifetime 1.18 s [33]). The time needs
to be large compared to the lifetime, as the decay to the D3/2 state is suppressed by a
factor of 15.88 [34] as compared to the decay into the P1/2 state. If the 866 nm repump
beam is now switched on, population will be transferred from this state back to the P1/2

state. Now either a 866 nm photon can be emitted, leaving the ion in D3/2 again or a
397 nm emission transfers the ion to S1/2. In any case, after sufficient 866 nm irradiation,
exactly one 397 nm photon will be emitted. Here, an irradiation duration of a few P1/2

lifetimes is sufficient, as the branching ratio favors the 397 nm decay. In the ideal case,
longer times should not change the result.In practice however, it should be chosen as
small as possible to minimize the effect of stray light and dark counts.

To correct for detected photons due to dark counts and stray light we also measure the
background count rate and subtract it from the value measured using the scheme above.
We measure the background by detecting the photons while illuminating the ion with
the 866 nm light, exactly the same as in the actual measurement, just without transferring
the population into the D3/2 state first with the 397 nm light. To eliminate systematic
drifts in the background count rate the background is measured in an interleaved fashion
between the experiment runs. Using the number of detected photons from 3.6 · 106
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experiment runs, we get a value for the efficiency of

η = 0.1243(21)% .

For these measurements, the ion was first illuminated with 397 nm light for 10 µs before
switching on the 866 nm light and simultaneously detecting the scattered photons for
2 µs.

This value is about half the expected efficiency computed from the individual efficiencies.
Keeping in mind that the individual efficiencies are not very well known, the difference
between the values is not unreasonably large.
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For the oscillation stability measurements presented in Chapter 6 it is necessary to know
the laser operation parameters in terms of units of the atomic dipole transition, i.e. the
resonant saturation parameter S0 and the frequency detuning δ from resonance. In the
lab however, we set those quantities using voltages of photo diodes for the laser intensity
and acousto-optical modulator (AOM) frequencies for the detuning. In this chapter
we will present a method to measure saturation parameters and detunings relative to
an atomic transition which enables the calibration of the values set in the lab to these
quantities. These calibrations are then used in Chapter 6 to determine the operation
parameters of the cooling and the amplification beams, i.e. the 397 nm Doppler and
Sigma beams.

In principle, one could simply measure the rate of photons scattered by the ion for
different laser frequencies. Using Equations (2.14) along with the measured photon
detection efficiency η, the detuning δ and the Rabi frequency Ω could be determined.
However, there are several problems to this approach. First, for low laser powers the
count rates would be quite low and the measurement time to acquire sufficiently good
statistics would be relatively high. This is especially important, as the photon detection
efficiency is quite low (see Chapter 4). Second, for continuous illumination by the laser,
radiation pressure forces will have a significant impact on the motional state of the
ion and therefore on the scattering. Only the red detuned side of the resonance can
be easily measured as the ion heats up for blue detuned radiation. But also on the
red detuned side of the resonance will radiation pressure effects distort the line shape
compared to Equations (2.14). Additionally, Equations (2.14) holds only for an ideal
two-level system. For our particular problem, four subtransitions can be driven, and
using a sum Lorentzians given by Equations (2.14) requires additional assumptions on
the laser polarization components.

Here, a different technique is used that is based on the measurement of spin-flip rates.
By spin-flip we understand the transfer of population between the |42S1/2, mj = −1/2〉
and |42S1/2, mj = +1/2〉 states (further denoted as |↓〉 and |↑〉 respectively) as depicted in
Figure 5.1. Depending on the polarization direction of the laser relative to the magnetic
field at the ion, ∆m = 0,±1 transitions can be driven, effectively transferring population
between the two spin states. Evidently, the amount of this transfer depends on the rate
at which photons are scattered by the ion and thus on the detuning from the transition
and the Rabi frequency, i.e. the light intensity. Measuring spin-flip rates can therefore be
used to infer these quantities. This method has the distinct advantage that the amount of
scattered light can be extremely low (only a few photons are necessary) and therefore
the influence on the motional state of the ion is small.
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|↓〉
4S1/2

4P1/2

mj = −1/2 mj = +1/2

2/3

2/3

1/3

1/3

gj = 2

gj = 2/3

3D3/2

R+

R−

4S1/2

|↑〉

|↓〉

|↑〉

Figure 5.1.: Illustration of the population transfer between the two Zeeman sublevels (spin-states) |↑〉 and
|↓〉 of the |4S1/2〉 state. 397 nm light drives the |4S1/2〉 ↔ |4P1/2〉 transition (blue arrows) inducing
a change in the magnetic quantum number mj by excitations and decays with ∆mj = ±1.
The allowed excitations depend on the polarization of the light field. Here all possibilities are
depicted. As the Landé factors gj are different for the two levels, all four transitions have different
energies, this needs to be considered for the detuning δ in Equation (5.6). As represented in
Equations (5.12), the branching to the |3D3/2〉 state needs to be taken into account (red, wiggly
arrows). The rates R± then describe the rates at which population is transferred between the
states spin-states (orange arrows).

The idea for this method is inspired by work conducted by Hettrich et al. [35]. There, the
measurement of spin-flip rates is used for precise measurements of the dipole matrix
elements of the S1/2 ↔ P1/2 transition. Contrary to the work presented in that publication,
the approximation of large detunings does not hold for the experiment presented here.
This is the main difference, otherwise the theoretical model is essentially the same as the
one presented in the following.

We will first establish the theory needed to find analytical expressions for these rates de-
pending on the Rabi frequency and the detuning in Section 5.1. Subsequently, we briefly
discuss in Section 5.2 how spin state populations can be measured in an experiment,
before finally presenting experiments to calibrate Rabi frequency and the detuning for
the 397 nm laser beams via these rates in Section 5.3.

5.1. Spin-Flip Rates

In this section the rates of population transfer between spin states will be derived. We will
find expressions for these rates in the case of constant driving of the |42S1/2〉 ↔ |42P1/2〉
transition as a functions of the laser intensities and frequency detunings. R+(R−) is
defined as the rate at which population in transferred from |↓〉 to |↑〉 (|↑〉 to |↓〉) as
depicted in Figure 5.1. We will first extend the theory of a two-level system (TLS)
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summarized in Section 2.1 to multilevel systems in Section 5.1.1 before analyzing
the rates R± and the resulting state populations in Section 5.1.2. We will restrict this
derivation to the case of pure σ+ and pure π polarization as the two beams used in the
experiments have those polarizations. The case of σ+ polarization will be discussed in
detail before reviewing the essentially analogous derivation for π polarization.

5.1.1. Rabi Frequencies for Multiple Transitions

For a TLS there is simply one matrix element of the dipole operator D = 〈e| d |g〉. If,
however, more energy levels are involved, dipole matrix elements will depend on the
chosen final and initial states and they become Di f = 〈 f | d |i〉. A simple and elegant
way to compute these matrix elements for angular momentum eigenstates |j, m〉 is
through the Wigner-Eckert theorem [36] which separates D into the reduces dipole
matrix element D̃, which is independent of j and m, and a Glebsch-Gordon coefficient:

D = 〈j′, m′| d |j, m〉 = D̃ 〈j, m; 1, q|j′, m′〉 . (5.1)

For the sake of simplicity we will use the spherical basis

e± = ∓ 1√
2
(ex ± iey)

e0 = ez .
(5.2)

In which the electrical field components −, 0,+ in

E = (e−ε− + e0ε0 + e+ε+)|E| (5.3)

correspond to σ−, π, σ+ light. Evidently the polarization vector ε must be normalized to
one: ε2

− + ε2
0 + ε2

+ = 1.

In the following, we will discuss transitions with ∆m = 0,±1, which are allowed only
for exactly one of the above polarization components. To calculate the Rabi frequency
for those individual transitions we can consequently restrict ourself to one of the electric
field components and for k = ±, 0 the corresponding Rabi frequencies become

Ω =
〈 f |Ed |i〉

h̄

⇒ Ωk =
|E|
h̄

εk 〈 f | dk |i〉 .
(5.4)

And using Equation (5.1)

Ωk =
|E|
h̄

εkD̃ 〈j, m; 1, q|j′, m′〉
= Ω̃ εk 〈j, m; 1, q|j′, m′〉

(5.5)

with the base Rabi frequency Ω̃ = |E|
h̄ D̃. Equation (5.5) has the distinct advantage over

Equation (5.4) that we can separate a part common to all field components (Ω̃) and a part
that is specific to each individual one. The individual part can additionally be evaluated
straightforwardly using a Glebsch-Gordon coefficient.
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5.1.2. R± and Spin State Populations

As shown in Equations (2.14), the probability to find the system in the excited state of a
two level system is given by

pex =
Ω2

4δ2 + 2Ω2 + γ2 (5.6)

if the system is in an equilibrium. Here, transitions of the form |42S1/2, mj = ±1/2〉 →
|42P1/2, mj = ±1/2〉 are of interest. The excitation probabilities and Rabi frequencies are
defined as pex

− , pex
0 , pex

+ and Ω−, Ω0, Ω+ for ∆mj = −1, 0, +1 transitions respectively.
Using Equation (5.5), we get

pex
k =

Ω̃2ε2
kc2

k

4δ2 + 2Ω̃2ε2
kc2

k + γ2
(5.7)

with k = −, 0,+, c2
+ = c2

− = 〈1/2,−1/2; 1, 1|1/2, 1/2〉2 = 2/3 and c0 = 〈1/2, 1/2; 1, 0|1/2, 1/2〉2 =
1/3.

The rate in which population in transferred from the mj = −1/2 to the mj = +1/2

(mj = +1/2 to the mj = −1/2) state R+ (R−) is

R+ = γPS(pex
+ pdec

0 + pex
0 pdec
− )

R− = γPS(pex
− pdec

0 + pex
0 pdec

+ ) .
(5.8)

The decay probability pdec
k is also proportional to the dipole matrix element so we get

pdec
± =

c2
±

c2
± + c2

0
= c2

± =
2
3

pdec
0 =

c2
0

c2
± + c2

0
= c2

0 =
1
3

.
(5.9)

We will first restrict ourselves to the case of pure σ+ polarization. This simplifies the
expressions above to

R+ = γPS
Ω̃2c2

+c2
0

4δ2 + 2Ω̃2c2
+ + γ2

R− = 0
(5.10)

as ε+ = 1 and ε0 = ε− = 0 in this case.

Additionally to the 4S1/2 ↔ 4P1/2 transition the decay channel 4P1/2 → 3D3/2 needs to be
taken into account. The rate RD at which population is transferred from |42S1/2, mj = −1/2〉
to the D3/2 manifold can be derived completely analogous to the case discussed above
for the S→ P transition. We then get

RD = γPD pex
+ = γPD

Ω̃2c2
+

4δ2 + 2Ω̃2c2
+ + γ2

(5.11)
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The total rate at which population is transferred away from the |42S1/2, mj = −1/2〉 is
then

Rtot = R+ + RD

=
(
γPSc2

0 + γPD
) Ω̃2c2

+

4δ2 + 2Ω̃2c2
+ + γ2

= (1 + b) R+

(5.12)

with the branching ratio b = γPD
γPSc2

0
.

State Population

The rates determined above, can now be used to set up rate equations for the state
population p↓ (p↑) of the |42S1/2, mj = −1/2〉 (|42S1/2, mj = +1/2〉) state

ṗ↓(t) = −Rtot p↓(t)
ṗ↑(t) = R+p↓(t)

(5.13)

which can easily be solved for the starting conditions p↓(0) = 1 and p↑(0) = 0:

p↓(t) = e−Rtott (5.14)

p↑(t) =
R+

Rtot

(
1− e−Rtott

)
=

1
1 + b

(
1− e−Rtott

) (5.15)

Pure π Polarization

The case of pure π polarized light driving ∆mj = 0 transitions can be derived essentially
analogous to the case of σ+ polarized light discussed above. The two possible π tran-
sitions have different resonant frequencies ω+ and ω− for the mj = +1/2 → +1/2 and
mj = −1/2→ −1/2 transition respectively. The spin-flip rates become

R± = γPS pex
0,∓pdec

±
= γPS pex

0,∓c2
± ,

(5.16)

where pex
0,∓ is the probability for being in the excited mj = ∓1/2 level. By again using

Equations (2.14) we obtain

R± = γPS
Ω̃2c2

+c2
0

4(ω−ω∓)2 + 2Ω̃2c2
0 + γ2

(5.17)

and for the branching rate in to the D3/2 state

RD,± = γPD pex
0,∓ = γPD

Ω̃2c2
0

4(ω−ω∓)2 + 2Ω̃2c2
0 + γ2

, (5.18)
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which yields the total spin-state depletion rates

Rtot,± = R± + RD

=
(
γPSc2

+ + γPD
) Ω̃2c2

0

4(ω−ω∓)2 + 2Ω̃2c2
0 + γ2

=
(
1 + b′

)
R± ,

(5.19)

with the branching ratio

b′ =
γPD

γPSc2
+

. (5.20)

The rate equations for the two spin-states

ṗ↓(t) = −(1 + b′)R+p↓(t) + R−p↑(t)
ṗ↑(t) = −(1 + b′)R−p↑(t) + R+p↓(t)

(5.21)

can then be solved for the probability to be in the |↑〉 level after a scattering time t and
the initial condition p↑(0) = 0 and p↓(0) = 1:

p↑(t) =
2
R̃

e−R̄t/2R+ sinh(R̃t/2) (5.22)

where the new quantities

R̄ = Rtot,+ + Rtot,−

and R̃2 = R̄2 − 4b′(2 + b′)R−R+

(5.23)

have been introduced.

5.2. Spin State Detection and Preparation

To be able to measure the populations p↑ and p↓ for the two levels of the 4S1/2 groundstate,
population shelving and fluorescence detection are used. The objective is to transfer
the population from only one of the two levels into a meta-stable state (shelving) and
subsequently detect fluorescence upon driving the 4S1/2 ↔ 4P1/2 transition, as depicted
in Figure 5.2. In this experiment we use the 729 nm quadrupole transition from |4S1/2〉
to |3D5/2〉 for the shelving process. Due to the long life time of the |3D5/2〉 state, the
transitions are sufficiently narrow in frequency to address the two magnetic sublevels
separately, which have a Zeeman splitting of approximately 10 MHz. Using RAP pulses
[37] the population from the |4S1/2, mj = +1/2〉 state is transferred to the mj = +1/2 and
mj = −3/2 states of the |3D5/2〉 state. RAP pulses are used as the population transfer
is significantly less sensitive to laser power and frequency fluctuations as compared
to e.g. simple π-pulses. We can now drive the |4S1/2〉 ↔ |4P1/2〉 transition using a
397 nm laser and detect the fluorescence light using a photomultiplier tube (PMT). If the
population was in mj = +1/2 before, no resonance fluorescence will be detected, while
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4S1/2

4P1/2
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Figure 5.2.: Illustration of the spin state detection. First, population from the mj = +1/2 state is transferred
(“shelving”) to the |3D5/2〉 state (to mj = −3/2, +1/2) using rapid adiabatic passage (RAP) pulses.
Second, fluorescence on the |4S1/2〉 ↔ |4P1/2〉 is measured. Only if the mj = −1/2 state has been
populated fluorescence will be detected. The spin state measurement has therefore been mapped
to a dark-bright measurement. Finally, after the detection, 854 nm light transfers the shelved
population to the |4P3/2〉 state where it decays back to the |4S1/2〉 ground state.

emitted photons will be detected if it was in mj = −1/2. Thus, the spin discrimination
measurement has been mapped to a simple dark-bright discrimination. Resetting of the
state before the subsequent measurement cycle is accomplished by illuminating the ion
with 854 nm light, driving the population to the |4P3/2〉 state from where it can decay
back to |4S1/2〉. This measurement is repeated e.g. 100 times for fixed parameters such as
scattering pulse time or detuning to infer the occupation probabilities of the spin levels
after the scattering pulse. Obviously, the more measurement repetitions the smaller the
uncertainty of the population (uncertainty ∝ 1/

√
repetitions).

For initialization of the spin at the beginning of a measurement cycle, we use optical
pumping. By subsequently driving the 729 nm quadrupole transition and the 854 nm
repumping (see Figure 5.2) we systematically deplete one of the |4S1/2〉 mj levels and
pump population into the other one. As above for the detection, RAP pulses are used for
robust transfer to |3D5/2〉. Occupation probabilities above 99.9 % can be achieved by this
pumping scheme [27].

5.3. Measuring Spin-Flip Rates - Calibrating Laser Parameters

In this section, we will use the spin-flip rates derived in Section 5.1 to measure the
intensity and detuning of the 397 nm beams. The goal of this measurement is to calibrate
the values of the beams set in the lab, i.e. the intensity via photo diode voltages and the
detuning via AOM frequencies, to resonant saturation parameters and detunings relative
to the atomic dipole transition. The experiment sequence is depicted in Figure 5.3. After
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∆t

state
detection

Doppler
cooling

spin
Initialization

scattering shelving

Figure 5.3.: Sequence to measure the spin-flip rate. After Doppler cooling and spin initialization to the |↓〉
state, the laser of which detuning and power need to be calibrated, is switched on. During this
scattering time, population is transferred to |↑〉. Spin dependent shelving to a metastable state
and subsequent fluorescence detection then determines the probability to be in the |↑〉 state and
thus the amount of scattered light.

δ[MHz]
-8.96
-33.01
17.62
fit

(a)

0.2

0.4

0.6

0.8

d
a

rk
p

ro
b

a
b

il
it

y

0 2 4 6 8 10

Δt [μs]

Δt[μs]
0.5

1

4

fit

(b)

0.2

0.4

0.6

0.8

1.0

-50 -25 0 25 50 75 100

f-f0 [MHz]

Figure 5.4.: Measurements of laser-induced spin population depletion for the Sigma beam, the dark prob-
ability is equal to p↑. Both panels show the population in |↑〉 after initialization in |↓〉 and
exposure to the Sigma beam. (a) shows populations versus the scattering time ∆t for different
AOM frequencies and at fixed intensity, while (b) shows the populations versus AOM frequency
for different scattering pulse times and fixed intensity ( f0 is the fitted resonance frequency). The
vertical dashed lines in (a) correspond to the pulse times ∆t which are used in (b). The black
dashed curves are fits to Equation (5.24). The data in panel (b) allows for accurate calibration of
the laser detuning δ in terms of the AOM frequency.
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Figure 5.5.: Measurements of laser-induced spin population depletion for the Doppler beam, the dark
probability is equal to p↑. As the Doppler beam is used for detection, the frequency can not
be easily scanned as compared to the measurements in Figure 5.4(b). Using the detuning
determined from spectra of the Sigma beam, the Rabi frequency of the Doppler beam can be
computed using a fit to Equation (5.22) (dashed curve). An additional offset t′ in ∆t was used to
fit the data.
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Figure 5.6.: Calibration of the saturation parameter S0 versus the voltage UPD of the photo diode for the
Sigma beam in (a) and the Doppler beam in (b). Note that UPD is not the voltage during the
scattering pulse, the intensity is first set to the given voltage before the electro optical modulator
(EOM) attenuates the intensity for the experiment. (a) Relative uncertainty of the slope 1.6 % and
the y-axis intersection 2.8 %. (b) Relative uncertainty of the slope 28 % and the y-axis intersection
11 %.
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Doppler cooling [23, 24] on the 397 nm S1/2 ↔ P1/2 transition, the spin is initialized as
described in Section 5.2. In all experiments discussed here, pumping to |↓〉 is used.
Starting in |↓〉, the laser, of which detuning and power need to be calibrated, is switched
on for some time ∆t, leading to population transfer to |↑〉. The spin populations can
subsequently be measured using the method described in Section 5.2.

As derived in Section 5.1, the probability to be in |↑〉 after initialization to |↓〉 and
scattering with a σ+ polarized light field for a time ∆t with the reduced Rabi frequency
Ω̃ and detuning δ is

p↑ =
1

1 + b

(
1− e−Rtot∆t

)
, (5.24)

with the rate

Rtot = (1 + b) γPS
Ω̃2c2

+c2
0

4δ2 + 2Ω̃2c2
+ + γ2

, (5.25)

at which population is depleted from the |↓〉 state. If p↑ is now measured versus ∆t for
fixed laser intensity and detuning, we observe an exponential behavior as depicted in
Figure 5.4 (a). The larger the detuning from resonance δ, the smaller Rtot and hence the
depletion of the initial spin level. We can therefore choose an appropriate ∆t and scan the
detuning to obtain the line shape as depicted in Figure 5.4 (b). By fitting Equation (5.24)
to the measured data the reduced Rabi frequency Ω̃, and therefore the resonant scattering
parameter S0, and the AOM frequency corresponding to δ = 0 can be determined.

The ion oscillator clock is driven by two laser beams (Doppler and Sigma), both of which
have to be calibrated. Their frequencies are controlled with two different AOMs and have
different polarization. The Sigma beam is σ+ polarized and therefore drives ∆mj = +1
transitions as discussed above. The Doppler beam is π polarized and therefore drives
∆mj = 0 transitions. The cooling and detection are done using the Doppler beam. The
Sigma beam can therefore be easily characterized, as the Doppler settings (i.e. frequency
and intensity) can remain fixed throughout the sequence. For characterizing the Doppler
beam however, its frequency and intensity would need to be changed between the
detection and characterization settings which is not possible with the current control
infrastructure. To avoid this issue, the scheme to calibrate both beams consist of two
steps: First, the Sigma beams intensity and frequency are determined as discussed above.
As both beams are derived from the same laser and are detuned from the original laser
frequency with different AOMs, the detuning calibration is identical for both beams.
Second, p↑ is measured versus ∆t as depicted in Figure 5.5. With the known detuning
this data can then be fitted to Equation (5.22) in order to determine the Doppler beam’s
Rabi frequency.

One difficulty we encounter when fitting the measured data to Equation (5.24) is the
fact that the measured linewidth is broader then the natural linewidth. The the FWHM
of the ∆t = 1 µs line depicted in Figure 5.4 (b) is 2π × 32.30(55)MHz and thus much
broader than expected due to saturation broadening alone 1 . However, the data matches

1The natural linewidth is γ = 2π × 21.578 MHz and the saturation broadened full width at half
maximum (FWHM), using the measured Ω, is

√
γ2 + 2Ω2 = 2π × 21.999 MHz.
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a Lorentzian line (reduced R2 = 0.996) which eliminates Doppler broadening as a cause.
Doppler broadening, and all other Gaussian broadening mechanism, would lead to a
change in line shape to a Voigt profile which could be distinguished from a Lorentzian
at the amount of broadening present in the data. So far, no satisfactory explanation for
this line broadening could be found.

In the following, we will assume a Lorentzian broadening mechanism with a FWHM
of 2ξ, which simply adds to the FWHM of Equation (5.25). Instead of the Lorentzian
in Equation (5.25) with a FWHM of

√
γ2 + 2Ω2 we will therefore us a Lorentzian of

FWHM
√

γ2 + 2Ω2 + 2ξ. It is important to note that this purely phenomenological.

Using this method, the saturation parameter for the Doppler and the Sigma beam can be
measured versus the voltage of a photo diode as depicted in Figure 5.6. The photo diodes
can only measure light intensities above a certain threshold. As we want to use light
intensities below this threshold, an EOM is used together with a λ/2 plate to attenuate
the beams. The intensities are first set using the unattenuated beams before switching on
the attenuation for the scattering measurement.

The connection between the two quantities is linear in good approximation, which is
to be expected as both the voltage of the photo diode and the saturation parameter are
proportional to the light intensity. The data is therefore fitted to a linear function. For the
Sigma beam the calibration works relatively well, the relative uncertainties for the fitted
slope and y-axis intersection are in the order of few percent. The uncertainties of the
individual points for the Doppler calibration are significantly larger and also the fitted
parameters have relative uncertainties of well above 10 %. This can be attributed to the
different methods that have been used for the two beams as described above.

The fitted photo diode calibration can then be used in further experiments to determine
the saturation parameter for arbitrary photo diode voltages. Different EOM attenuations
have been used in some cases. There, the calibration is simply extended by multiply-
ing the saturation parameter with the ratio of the attenuation used in the calibration
measurement and the current one.

To determine the detuning of a beam using a calibration measurement one has to be
aware of the different transitions, and therefore the different resonance frequencies,
which are involved. The frequency calibration is done using spectra of the Sigma beam
as depicted in Figure 5.4 (b) and consequently we obtain the resonance frequency of the
σ+ transition which we are going to call ωσ+ in the following. For the Doppler beam
there are two involved transitions with the resonant frequencies ω+ and ω− for the
mj = +1/2→ +1/2 and mj = −1/2→ −1/2 transition respectively. They are different due
to the different Zeeman splittings of ground and exited states ∆g and ∆e which are given
by

∆g,e = gg,e
µB

h̄
B (5.26)

where gg and ge are the Landé factors of the ground and exited states and B is the
magnetic field (see also Figure 5.1). ∆g is known to be approximately 2π × 9.6 MHz for

53



5. Dipole Transition Calibration

the used magnetic field. Therefore we can calculate ∆e = ge/gg ∆g = 1/3 ∆g and find the
two π transition frequencies relevant for the Doppler beam 2

ω+ = ωσ+ − ∆g

ω− = ωσ+ − ∆e .
(5.27)

For the measurements in Chapter 6 we want to determine the dimensionless detunings
as defined in Equations (2.50) which become

ασ+ = 2
ω−ωσ+

γ

α+ = 2
ω− (ωσ+ − ∆g)

γ

α− = 2
ω− (ωσ+ − ∆e)

γ

(5.28)

In Chapter 6 we will talk about cooling and amplification beams rather then Doppler
and Sigma beams and therefore we will use different terms with the corresponding
indices αc = ασ+, αa+ = α+ and αa− = α−.

2For the σ− transition the frequency is ωσ− = ωσ+ − ∆g − ∆e, this transition will however not be
needed in the following.

54



6. Oscillation Stability Measurements

In this chapter we will discuss the measurement of the stability of the phonon laser clock.
Viewing the ion as a pendulum of a clock, we want to measure the oscillation stability
to infer its capability to serve as a time keeping device. Using the amount of scattered
photons as our measure for waste heat production of the system, we then can investigate
connections between the oscillation stability and the scattering rate and compare it to
the findings discussed in Section 1.1.

We will discuss the experimental implementation of the ion oscillator in Section 6.1.
In Section 6.2 we will describe how the oscillation of the ion can be detected via the
scattered photons and subsequently in Section 6.3 how we can use these measurement
to evaluate the oscillation stability of the ion. Finally in Section 6.4, measurements of the
oscillation stability and connections to the laser operation parameters and the scattering
rate are presented.

6.1. The System

In the experiment presented here, the 40Ca+ 4S1/2 ↔ 4P1/2 electric dipole transition is
used to drive the oscillation. A 397 nm laser beam (Section 3.2) is split into two individual
beams which are each shifted in frequency using a double pass acousto-optical modulator
(AOM) configuration. The red detuned beam is σ+ polarized and is therefore called
Sigma or cooling beam. The blue detuned beam is π polarized and is called Doppler
or amplification beam in the following 1. The components of the wave vectors of these
two beams have equal sign along the trap axis and opposite sign perpendicular to the
trap axis (see Figure 1.5 and Figure 3.2 for the beam geometry). This beam geometry
excludes undesired oscillation on the radial modes of vibration.

Ideally, one would use an isolated two-level system or at least a closed transition where
no additional decay channels are present. This case is considered in the theory in
Section 2.2. Unfortunately, this is not possible using the 4S1/2 ↔ 4P1/2 transition, as both
levels are split into two Zeeman substates. In total we have thus four levels and due to
the light polarizations three driven transitions (two π transitions and one σ+ transition).
For arbitrary operation regimes it is not completely clear how this deviation from the
model system will affect the measurements. However, we assume that the system is
still qualitatively similar to the idealized case discussed in Section 2.2. The difference
is particularly small if the number of scattered photons per oscillation cycle is� 1. In
this case none of the sublevels are depleted by optical pumping and the scattering rates

1This beam is used for Doppler cooling in other experiments, hence the name.
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Figure 6.1.: Power spectral density as computed from the photon time stamps measured during ion
oscillation. f0 is the frequency of maximal power spectral density, determined from this data, it
is f0 = 2× 1.484 89 MHz (two times the axial trap frequency). The three panels correspond to
different acquisition times ∆t. (a) For small ∆t, the peak is Fourier limited with a full width at
half maximum (FWHM) of ≈ 1/∆t = 100 Hz and the peak is not very well distinguishable from
the noise floor. (b) For medium ∆t in the range of seconds, the peak becomes well pronounced
and narrow (FWHM≈ 10 Hz at ∆t = 1 s). (c) For large times technical noise will lead to a
broadening of the peak. Note: The power spectral density scale is chosen differently for the three
plots, it decreases rapidly with ∆t.

on the different transitions are independent, effectively giving similar behavior as for a
two-level system. In the outlook in Chapter 8 we will propose a possibility to prevent
those problems in future experiments.

Additionally to the decay into different Zeeman substates, decay into the metastable
3D3/2 state is possible from 4P1/2. It is therefore necessary, to use an additional 866 nm
repumping laser (Section 3.2) driving the 3D3/2 ↔ 4P1/2 transition.

6.2. Detecting the Oscillation Frequency

We investigate the phonon laser oscillation stability by detecting the photons scattered
by the ion. The 397 nm light does not only serve the purpose of supplying the energy
needed for sustained oscillation but also enables the detection of the velocity modulation
via the scattered photons. As the lasers are resonant with the dipole transition only for
a certain velocity due to the Doppler shift, photons will only be scattered if the ion is
at a certain point in its oscillation cycle. There will thus be two points per oscillation
period for each laser for which the light is in resonance with the transition as depicted
in Figure 2.7. The scattering rate will therefore have the periodicity of the ion oscillation
and a Fourier analysis of the scattering rate will show components at the oscillation
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6.3. Quantifying Oscillation Stability

frequency and its integer multiples. There is one main peak for each beam per oscillation
cycle which makes the Fourier component at twice the oscillation frequency the most
pronounced as can be observed in Figure C.1

The scattered photons are measured using a photomultiplier tube (PMT) connected to a
time tagging module (see Section 3.3). The acquired data are time stamps of the photon
arrivals at the PMT. The simplest approach to compute the frequency spectrum of the
ion oscillation is to perform a Fourier transform of these time stamps.

For a continuous signal f (t) in the time domain the Fourier transform is defined as

f̂ (ω) = F ( f )(ω) =
∫ ∞

−∞
dt f (t)e−iωt (6.1)

The problem in our case, is that the signal consists of discrete time stamps instead of
an continuous signal or a discrete signal at equally spaced points in time. To get an
estimator for the Fourier transform of our time stamps we will use the (mathematically
not so rigorous) assumption that the signal consists of δ-peaks at the the time stamps. If
the signal consists of time stamps ti, i = 1, . . . , N our continuous signal then becomes

f (t) =
N

∑
i=1

δ(t− ti) (6.2)

for which the Fourier transform is

f̂ (ω) = F ( f )(ω) =
∫ ∞

−∞
dt f (t)e−iωt

=
N

∑
i=1

∫ ∞

−∞
dtδ(t− ti)e−iωt

=
N

∑
i=1

e−iωti .

(6.3)

Example plots of spectra obtained by this method are depicted in Figure 6.1. Computing
the Fourier transform of the time stamps in this manner becomes particularly useful later
on, when we perform computations on subsets of the acquired data, i.e. for different
count intervals ∆t or count event numbers N. Here, we compute the complex numbers
exp(−iωti) once for a given data set, and then compute Fourier transforms for a given
subset by summing over it.

6.3. Quantifying Oscillation Stability

Up until now, we have discussed how we can determine the frequency spectrum of
the ion’s motion via the spectrum of the photon time stamps. Our goal is however, to
quantify the oscillation stability in order to get a measure of the system’s ability to
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6. Oscillation Stability Measurements

measure time. The most common way of quantifying the stability of clocks is to use
frequency samples fn, n = 1, . . . , K over time and compute the Allan variance [38]

σ2
y (τ) =

1
2
〈(ȳn+1 − ȳn)

2〉 , (6.4)

where ȳn are the clocks fractional frequencies defined as

ȳn ≡
f̄n − f0

f0

f̄n ≡ 〈 f 〉τ
(6.5)

with the time average 〈·〉τ over the n-th interval of duration τ. The Allan variance
quantifies the variation of the frequency samples as a function of the averaging period
τ. It can not just be viewed as a single value for the frequency stability but rather as a
whole function characterizing the noise sources affecting the clock. An exemplary Allan
variance is depicted in Figure 6.3. We can clearly see that the Allan variance decreases
for increasing τ up to some minimal value τmin before it increases approximately linearly.
This can be explained with different frequency components of the noise: For small τ the
Allan variance is dominated by high-frequency noise. In our case, this consists of shot
noise, i.e. the Fourier limit arising from the limited number of detection events during
the respective time interval, in combination with the finite emission phase windows (see
Section 2.2.5) and technical noise at high frequencies. If the averaging time τ increases,
this high frequency noise is averaged out and the Allan variance decreases. For large τ
low frequency noise is dominant and the Allan variance will increase for increasing τ.
We will now define more precisely what we mean by low and high frequency noise and
how the Allan variance behaves for different types of noise.

6.3.1. Allan Variance for Different Noise Components

In the course of evaluating the oscillation stability of the ion we want to separate different
sources of noise. The Allan variance is a suitable tool to achieve this, as different types
of noise will lead to different behavior in its scaling as already outlined above. We will
use a power law as an approximation of the power spectral density Sy of the frequency
noise:

Sy( f ) =
2

∑
α=−2

hα f α (6.6)

The scaling of the Allan variance for these five components are summarized in Table 6.1.
We furthermore refer the reader to [39] for a more thorough discussion on the subject.
FPM and WPM have very similar scaling and are therefore difficult to distinguish 2. As
we are mainly interested in WPM noise, we will simply assume one component ∝ τ−2

and neglect FPM. In the following, we will qualitatively investigate the dependence of

2The modified Allan variance [40] can be used to for enhanced distinguishability of these components.
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Table 6.1.: Scaling of the Allan variance σ2
y for different noise types. Sy( f ) is the power spectral density of the

fractional frequency. We define new coefficients kn for qualitative analysis of the noise intensities.
Note, that flicker phase modulation (FPM) and white phase modulation (WPM) have very similar
scaling behaviors and are therefore difficult to distinguish using the Allan variance. fh is a cutoff
frequency that is defined to limit the non-physical infinite power of white noise. See [39] for a
more thorough discussion of this table. For FPM we define C1 = (1.038 + 3 ln(2π fhτ))/(4π2) .

Sy( f ) Noise Source σ2
y (τ) kn

h−2 f−2 random walk frequency modulation
(RWFM)

slow trap frequency drift k−2τ1 k−2 = 2π2h−2
3

h−1 f−1 flicker frequency modulation (FFM) n/a k−1τ0 k−1 = 2h−1
ln2

h0 f 0 white frequency modulation
(WFM)/random walk phase
modulation (RWPM)

fast trap frequency noise/
photon recoils

k0τ−1 k0 = h0
2

h1 f 1 flicker phase modulation (FPM) n/a h1 C1τ−2

h2 f 2 white phase modulation (WPM) finite phase emission window,
shot noise

k2τ−2 k2 =
2h2 fh
4π2

certain noise types and will simply use the coefficients kn as defined in Table 6.1. To
determine these different noise coefficients we will use the model function

σ2
y (τ) = k2τ−2 + k0τ−1 + k−1 + k−2τ , (6.7)

which we can later fit to the measured data.

6.3.2. Computing the Allan Variance from Time Stamps

To compute the Allan variance we use the method described in Section 6.2 to compute
frequency samples from the photon time stamps. We need a sequence of time-ordered
frequency samples fn, each pertaining to an interval of duration τ. We therefore divide
a measurement of time stamps into intervals of equal duration τ and compute the
spectrum for each interval by computing the Fourier transform. The task is now to infer
an estimate of fn from the spectrum. To that end, we choose the frequency pertaining
to the maximum power spectral density. This has proven to be a simple, yet reliable
method.

For the measurements discussed below, we use photon time stamps acquired over a time
in the order of a few minutes (5 min for almost all measurements) and partition them into
varying intervals in the range of τ = 1 . . . 500 ms, for which the oscillation frequencies
are computed. As can be seen from the frequency samples depicted in Figure 6.2, these
frequencies contain numerous outliers. If the Allan variance would be computed directly
from these unfiltered frequency samples it would be dominated by these instead of
reflecting a valid measure of the ion’s oscillation stability.

There are several reasons for frequency outliers: Depending on the operation parameters,
i.e. laser intensities and detunings, the oscillation is so unstable that the ion stops
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Figure 6.2.: Example plot of the inferred oscillation frequency during a 300 s measurement and the out-
lier filtering. The data is partitioned in chunks of 40 ms, for each of which the frequency is
determined (blue dots). First, areas with exceptionally high standard deviation are removed to
exclude chunks where the ion has not been oscillating (red area). Second, interquartile range
(IQR) filtering is applied to remove further outliers (blue area) which can be repeated a second
time (orange area). 100 frequency samples around an individual point are used to calculate the
IQR in this case. f0 is the mean of the filtered data.

oscillation for some periods of time. Additionally, the method of determining the
ion’s oscillation frequency is prone to outliers, as the spectral density of some random
frequency can exceed the one pertaining to the actual oscillation frequency due to noise.
This effect is particularly pronounced for short acquisition times as can be seen from the
spectra depicted in Figure 6.1. Evidently, it is necessary to filter these frequency samples
to retain only samples corresponding to the actual ion oscillation and consequently an
Allan variance that is a satisfactory representation of the oscillation stability.

Time intervals in which no ion oscillation can be detected are filtered out by computing
the standard deviation of the frequencies in an appropriate range around this interval.
Only if the standard deviation is below a well chosen threshold, the interval will be used
for further evaluation. This method filters out contiguous intervals of times where the
ion is not oscillating properly (red areas in Figure 6.2). Subsequently, interquartile range
(IQR) filtering is used to exclude isolated outliers. This filtering technique is commonly
used in different scientific fields. It has the major advantage over methods using mean
and standard deviation, of being less dependent on the outliers themselves, the size of
the data set and the distribution of the outliers [41, 42]. The latter property is especially
important for our case, as the outliers are rather uniformly then normal distributed.
The IQR is computed by subtracting the first quartile Q1 of the data from the third Q3.
We then reject all data points that lie below Q1 − 1.5 IQR or above Q3 + 1.5 IQR 3. The

3The value of 1.5 for the IQR coefficient is relatively arbitrary but widely used in the literature [41].
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Figure 6.3.: Allan variance of frequency samples generated from photon time stamps during ion oscillation.
Error bars are standard errors from the mean of squared frequency differences. The data points
are fitted using the model function Equation (6.7) (red curve).

quartiles, and therefore the filtering, are very robust to the values of the outliers and
make for a reasonable approach in this case as can be appreciated from the exemplary
measurement in Figure 6.2. To account for drifts in frequency, the IQR is computed only
in an appropriate range around each point instead of the whole data set.

Once the frequency samples are free from outliers, they can directly be used to compute
fractional frequencies, where the nominal frequency f0 is taken to be the mean of
the frequency samples. The Allan variance can then be computed directly from these
fractional frequencies. To save computation time, the Fourier transform is not computed
independently for every partition of the time stamps into different values of τ. Instead,
the Fourier transform is computed once for a partition into intervals of sufficiently
small size τ0. The Fourier transform of intervals of integer multiple lengths of τ0 can
then be efficiently computed by simply taking the sum of the Fourier transform of the
subintervals before taking the squared modulus to arrive at the power spectral density.

6.3.3. Evaluating the Allan Variance

When frequency samples fn over time for different averaging times τ have been acquired,
the Allan variance can be computed. We want to evaluate the Allan variance to gain
knowledge about the stability of the oscillation. Therefore we use Equation (6.7) to fit the
data and infer the noise power coefficients kn. An exemplary fit is depicted in Figure 6.3.
Uncertainties of the Allan variance values are approximated by the standard uncertainty
of the mean in Equation (6.4), and the uncertainties of the Allan variance parameters are
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computed by the fitting algorithm 4. In the following section we will use this method
to evaluate the different noise components for different operation parameters of the
phonon laser clock.

6.4. The Phonon Laser Clock at Variable Operation Parameters

In this section, we will discuss the main measurements of this thesis. Time stamps of
the photons scattered by the ion during oscillation are measured for different operation
parameters. We evaluate the different noise components for these operation parameters
and investigate the relation to the total scattering rate. In the experiments, the detun-
ings and the saturation parameters of the amplification (Doppler) and cooling (Sigma)
lasers are calibrated using the method described in Chapter 5. As the amplification
beam is π polarized, the two transitions |4S1/2, mJ = −1/2〉 ↔ |4P1/2, mJ = −1/2〉 and
|4S1/2, mJ = +1/2〉 ↔ |4P1/2, mJ = +1/2〉 are driven at the same time. We therefore
specify the detunings αa− and αa+ for these two transitions as defined in Section 5.3. In
the experiments presented here, we keep the detunings fixed and vary the intensity of the
lasers and thus the saturation parameters. We will present the different measurements
and their results in this section and discuss them further in Chapter 7.

Linear Scan of the Amplification Saturation Parameter

Figure 6.4 shows the result of a measurement for which the cooling laser power was
held fixed, while the amplification power was varied. The power of the laser beams was
set during the measurement by adjusting the radio frequency (RF) power supplied to the
acousto-optical modulator (AOM) such that the desired intensity, measured via a photo
diode, was reached as described in Section 3.3. After the measurement, the voltages of
the photo diodes can be converted to the resonant saturation parameters Sa and Sc using
the calibration curves depicted in Figure 5.6. An additional spectrum of the cooling
(Sigma) beam, analogous to the one depicted in Figure 5.4 (b), was measured to infer the
zero detuning AOM frequency for the σ+ transition which can then be used to calculate
the detunings relative to all other relevant transitions as described in Section 5.3. We
find that the cooling detuning was αc = −6.4 and the amplification detunings where
αa− = −0.47 and αa+ = 0.12 for the two π transitions. Hence the amplification laser was
blue detuned relative to only one of the two transitions.

The plots show the values of the different noise coefficients of the Allan variance defined
in Table 6.1. Each point in the plots corresponds to a 5 min acquisition of photon detection
times for a given value of the amplification laser power. These time stamps are then
partitioned into 15 000 intervals of 20 ms duration from which a time series of oscillation
frequencies is obtained according to Section 6.2. After removing outliers as described in
Section 6.3.2 the Allan variances are computed and fitted to Equation (6.7), analogous

4Mathematicas NonLinearModelFit function was used. Weights are taken to be 1/uncertainty2 for the
individual points and using the correct VarianceEstimatorFunction yields faithful uncertainties for the
fitted parameters.
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Figure 6.4.: Evaluation of a single Sa scan (Sc = 0.13, Sa = 0.06 . . . 0.7, αc = −6.4, αa− = −0.47, αa+ =
0.12). The intensity of the amplification beam was scanned while the intensity of the cooling
beam was held fixed. (a) Shows the scattering rate over the resonant saturation parameter
Sa. Due to the long acquisition times the uncertainties are small and are not depicted in the
plot. The number of photons scattered by the ion is additionally calculated as described in
the text and the theoretical curve is computed using the operation parameters. (b)-(e) Show
the fit parameters of the Allan variance to the model Equation (6.7), the inset τ dependencies
are the scalings of the Allan variance for the corresponding coefficients. (f) and (g) are the
minimal value of the Allan variance (min σ2

y (τ)) and the value of τ at that point (arg min σ2
y (τ))

respectively. (measurement from 05.11.2018)
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to Figure 6.3. This yields the coefficients kn which are plotted versus the scattering rate
to investigate connections to the waste heat production. In addition, the mean number
of photons scattered by the ion per oscillation cycle is computed by taking the detected
scattering rate, dividing it by the detection efficiency and multiplying it with the duration
of one cycle.

We now discuss the different panels in Figure 6.4:

(a) shows the scattering rate versus the amplification saturation parameter Sa over
which it increases monotonously. Also the corresponding number of photons that
are scattered by the ion per oscillation cycle are depicted. To compare this measure-
ment to the theory we compute the operating point amplitude βOP numerically
from the saturation parameters and detunings as described in Section 2.2.3 and cal-
culate the number of scattered photons per oscillation cycle using Equation (2.56).
Obviously, the measurement fits the theory reasonably well.

(b) shows k2 which is the coefficient of the 1/τ2 component of the Allan variance. It is
proportional to white phase modulation (WPM), which we connected to the finite
width of the scattering peak in Section 2.2.5. From the theory we would expect
the intensity of the WPM to increase with the scattering rate due to a broader
scattering peak at higher saturation parameters. Obviously, this is not the case in
the measurement, where k2 decreases approximately linearly over the scattering
rate.

(c) shows k0 which is the coefficient of the 1/τ component of the Allan variance.
This coefficient is proportional to the random walk phase modulation (RWPM)
intensity, which is equal to white frequency modulation (WFM). There should
consequently be a contribution due to technical white noise on the trap frequency
leading to WFM and a contribution due to phase diffusion leading to RWPM. The
part corresponding to the technical noise should be independent of Sa and, up to
a constant, the behavior we observe in the measurement should be only due to
the phase diffusion. We see from the plot that after a relatively constant region, k0
increases approximately linearly with the scattering rate. This directly contradicts
the prediction of the theory depicted in Figure 2.9, where the phase diffusion
coefficient decreases with increasing Sa. Consequently, in this case higher waste
heat production corresponds with an increase in phase diffusion.

(d) shows the part proportional to flicker frequency modulation (FFM) for which we
do not have an immediate source. The values are however significantly different
from zero. Also they do not change much with the scattering rate which could
point to a purely technical source of FFM which is not connected to the phase
stability of the ion oscillation.

(e) shows k−2, the part proportional to the random walk frequency modulation
(RWFM) intensity, which should corresponds to long term drifts in the trap-
ping frequency due to technical imperfections. However, k−2 strongly depends
on the scattering rate, and therefore on Sa in this measurement. Furthermore, it
behaves very similarly to k0. This must mean that not only technical sources of
noise contribute to the value of k−2.

(f) shows the minimum of the Allan variance. It can be seen as a general measure of
the frequency stability. Just like k−2 it behaves very similarly to the k0 part and
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6.4. The Phonon Laser Clock at Variable Operation Parameters

increases with the scattering rate. The clock stability consequently decreases with
the scattering rate.

(g) shows the value of τ at which the minimum occurs. It decreases slightly with the
scattering rate.

2D Scan of Saturation Parameters

In this measurement, we characterize the oscillation stability versus varying amplification
and cooling saturation parameters, at fixed detunings as depicted in Figure 6.5. The
measurement and parameter calibration was performed identically to the measurement
presented above. Here, the cooling detuning was αc = −6.3 and the amplification
detunings where αa− = −0.81 and αa+ = −0.21 for the two π transitions. According
to this calibration the amplification laser was therefore red detuned. According to the
theoretical model no stable oscillation should be possible in this case. We attribute the
fact that stable oscillation can nevertheless be observed to the discrepency between the
theoretetical model and the actual system which will be further discussed in Chapter 8.
Also we observe striking similarities between this measurement and the one discussed
above for the linear scan of the amplification intensity for which one of the amplification
detunings was positive and therefore blue detuned. Points for which the fit of the Allan
variance failed or the oscillation was extremely unstable have been filtered out and
are marked by grey squares (see also Figure C.3 to get an impression of the frequency
stability).

The interpretation of the results is rather complicated using the heatmaps in Figure 6.5.
We will therefore discuss the plots in Figure 6.6 and Figure 6.7. Here, specific regions of
saturation parameters have been selected, for which the coefficients kn are plotted over
the corresponding scattering rate. See also Figure C.2 for analogous plots over the entire
region of saturation parameters.

Figure 6.5 (a) depicts the scattering rate during oscillation over Sa and Sc. As in Figure 6.4
(a), it increases monotonously with the saturation parameters. Using the grey, filtered
out points we can observe the region of stable oscillation similar to the one predicted by
the theory and depicted in Figure 2.6.

The plots in Figure 6.6 correspond to a region of scattering parameters which is restricted
in Sc (see rectangle in Figure 6.6 (g)). This case is therefore similar to the one shown in
Figure 6.4 where Sc is held fixed while Sa was varied. The different kn behave similar
to that case. The main difference is k0, which does not show the clear increase with
the scattering rate here. It needs to be noted that Sc is significantly higher in this case
(Sc = 0.2 . . . 0.25) as compared to Figure 6.4 (Sc = 0.13).

Figure 6.7 depicts essentially the same plots as Figure 6.6 but for a different region of
saturation parameters. Here, the amplification intensity is restricted and the behavior
of the kn is significantly different from the one for fixed or restricted cooling intensity.
In this case k2 stays approximately constant over the scattering rate, meaning that the
WPM of the oscillation does not depend on the scattering rate in this case. In contrast
to Figure 6.4 (c), k0 decreases with the scattering rate before reaching a approximately
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constant plateau, and so does the minimum of the Allan variance. Again k−2 behaves
similarly to k0 but the correlation is not as strong as for the case in Figure 6.4.

We can therefore conclude, that the behavior of the different noise components strongly
depends on the chosen region of saturation parameters. For a restricted region of the
amplification saturation parameter Sa, the phase diffusion (proportional to k0) and the
minimum of the Allan variance decrease over the scattering rate if the cooling saturation
parameter is varied. This can be interpreted as an increase in clock performance with an
increase in waste heat production. However, we observe the opposite case if we restrict
Sc and vary Sa.
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Figure 6.5.: Evaluation of a scan of both cooling (Sc) and amplification (Sa) saturation parameters (αc =
−6.3, αa− = −0.81, αa+ = −0.21 (?)). (a) Scattering rate over resonant saturation parameters.
(b)-(e) Fit parameters for the Allan variance fit (model depicted above). (f), (g) The minimal value
of the Allan variance (min σ2

y (τ)) and the value of τ at that point (arg min σ2
y (τ)) respectively. The

grey squares correspond to measurements that have been identified as outliers. (measurement
from 02.11.2018)
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Figure 6.6.: Same data as in Figure 6.5. For a selected region of resonant saturation parameters (depicted by
the white rectangle in (g)) the fit parameters for the Allan variance fit versus the corresponding
scattering rates are depicted in (a)-(d). (e) and (f) are the minimal value of the Allan variance
(min σ2

y (τ)) and the value of τ at that point (arg min σ2
y (τ)) respectively. See also Figure C.2 for

plots of the full region. (measurement from 02.11.2018)
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Figure 6.7.: Completely analogous to Figure 6.6 but for a different region of resonant saturation parameters.
For this region the behavior of the plotted parameters is significantly different from the case
depicted in Figure 6.6. (measurement from 02.11.2018)

69





7. Discussion

Here we will further discuss the measurements presented in Chapter 6. The goal will
be to compare the results to the theory that has been developed in Section 2.2.2 and to
investigate possible connections between oscillation stability and waste heat production.
Unfortunately the measurement results are not conclusive and difficult to interpret. We
will therefore discuss multiple interesting aspects of the data.

The saturation parameter region of stable oscillation can be seen both in Figure 6.5 by the
points filtered out as outliers and in Figure C.3 by the stability of the frequency. In both
cases this region qualitatively fits the theoretical prediction as depicted in Figure 2.6.
There is a threshold behavior for both the amplification and the cooling intensity, below
the threshold no stable oscillation is possible, and there is a triangular stability region.
Quantitatively however, the stability region does not fit the theory. Theoretically, the
stability region should be symmetrical in Sa and Sc (see Figure 2.6) for equal detunings.
If one of the detunings is larger than the other, the stability region will be shifted such
that the corresponding saturation parameter is also larger on the symmetry axis of this
region 1 . In the measurement the case is however the opposite: The cooling detuning is
significantly larger then the amplification detuning, and still Sa is about two times larger
then Sc on the symmetry axis.

To judge the validity of the assumption that our system behaves like a two-level system
(TLS), we evaluate the number of scattered photons per oscillation cycle. The detected
scattering rates in the measurements depicted in Figure 6.4 and Figure 6.5 are in the
range of 2 . . . 9 kcps which corresponds to a mean value of ≈ 1 . . . 5 scattered photons
per oscillation cycle. This means that on the order of one or more photons are scattered
per cycle and consequently, that the two magnetic sublevels of the S1/2 ground state
can be depleted during a cycle by one of the beams which would change the scattering
behavior of the other one. In order to get as close to the behavior of a TLS as possible, we
would need to use even lower scattering rates such that the number of scattered photons
per cycle is� 1. Nevertheless, the scattering rate predicted by the theory for the values
of the saturation parameters and detunings in Figure 6.4, fit the measurement relatively
well.

The measurement of the different noise components however do not agree with the
theory. The random walk frequency modulation (RWFM) intensity, corresponding to
the linear part of the Allan variance k−2, should be independent of the the saturation
parameters of the laser as only technically induced noise should lead to a random walk
in frequency. This is not the case in the measurements. It is also interesting to note, that
k−2 behaves similarly to k0 which is proportional to the random walk phase modulation

1By symmetry axis we understand the bisection of the triangular stability region.
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7. Discussion

(RWPM). From the theoretical model it is unclear why these two quantities should be
connected. Furthermore, the white phase modulation (WPM) part k2 should increase
with the scattering rate rather then decrease due to broadening at higher saturation
parameters. However, only in the selected region in Figure 6.7 can a slight increase be
observed, while it decreases significantly over the scattering rate in the other cases.

The k0 component is proportional to the RWPM intensity and therefore to the phase
diffusion coefficient. Its behavior depends strongly on the chosen region of saturation
parameters. If Sc is held fixed and Sa is varied, it increases with the scattering rate
as depicted in Figure 6.4 (c). In the opposite case it decreases with the scattering rate
as depicted in Figure 6.7 (b). This contradicts the theoretical predictions. Using the
theoretical model, we see in Figure 2.9 that for fixed Sc the phase diffusion coefficient
rapidly decreases with increasing Sa (and thus increasing scattering rate) once the
oscillation threshold has been reached.

These results make it difficult to give a final statement about the connection of oscillation
stability and waste heat production in this system. Clearly, we can not just arbitrarily
increase the waste heat production by increasing any laser intensity and expect the clock
accuracy to go up. But for certain cases, an increase in scattering rate coincides with an
decrease in certain noise components. Furthermore, the measurements show that our
theoretical model does not fit our system very well. While the scattering rate could be
reproduced relatively well, the measured noise components and the region of stable
oscillation largely contradict the theoretical predictions.
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8. Conclusion & Outlook

During the course of this thesis theoretical models have been derived, measurement
schemes where presented and the resulting data was thoroughly discussed. In this
chapter we will give a summary over these achievements and their relation to each other
and discuss remaining problems and possible improvements.

We have presented a concept to implement an autonomous clock based on a trapped
40Ca+ ion phonon laser. This system can be seen as the microscopic limit of a pendulum
clock. We have implemented this phonon laser in a Paul trap in which the sustained
oscillation of the ion is driven with two lasers, damping (cooling) and amplifying the
motion by exciting the 4S1/2 ↔ 4P1/2 transition. In order to obtain a better understanding
of the stability of this clock, we have derived a theoretical model which allows for
characterization of the phase stability of the oscillation via the phase diffusion coefficient
Dφ. We can evaluate Dφ in terms of the operating parameters of the clock and found
interesting behaviors in connection with the rate of photons scattered by the ion, our
measure of waste heat production of the ion oscillator. To evaluate the stability of the
clock we have developed a method to compute the Allan variance of the oscillation
frequency using the detection times of the scattered photons during oscillation. This
required well chosen methods for the outlier removal from the frequency samples to
obtain a faithful measure of the Allan variance. The Allan variance was used to evaluate
different noise components that can be connected to quantities from the theoretical model
and to technical sources of noise. Measurements have been presented which connect
these noise components with the intensities of the two driving lasers and therefore to the
scattering rate of the ion. These measurements show systematic dependencies of the noise
components on the scattering rate and the laser intensities which however contradict the
theoretical model in large parts. Solely the measured scattering rate predicted by the
theory was reproduced in relatively good agreement in the measurement. The behavior
of the noise intensity corresponding to long term phase stability (random walk phase
modulation (RWPM)) is strongly dependent on the way the scattering rate in increased.
By increasing the amplification intensity, we found an increase of the noise with increas-
ing scattering rate while the phase stability improved with increasing scattering rate if
the cooling intensity was increased. The latter case can be interpreted as an argument for
the conjectured connection between time measurement and thermodynamics by Erker
et al. presented in Section 1.1. However, this connection is evidently neither universal
nor well understood for our system at hand.

Additionally to these measurements on the autonomous ion clock, we have presented
a novel scheme to calibrate the parameters of a laser beam driving an electric dipole
transition of an atomic multilevel system. In contrast to existing approaches, the one
presented here is less sensitive to radiation pressure effects, as very few scattered photons
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Figure 8.1.: Level scheme and transitions for the proposed change to the 4S1/2 ↔ 4P3/2 transition. By using
σ+ polarized light, the population will be pumped into the 4S1/2, mj = 1/2 state from which
only the transition into the mj = 3/2 state is possible. Decay back into mj = −1/2 is prohibited
as ∆mj = −2. Due to the branching into 3D5/2, other mj states can become populated. However,
these states are then again depleted due to the pumping and additionally the effect is small as
the branching is strongly suppressed.

per experimental run are sufficient. This method enables the calibration of the saturation
parameter and the frequency detuning relative to the dipole transition to values which
are readily accessible in the lab, i.e. photo diode voltages or power meter readings and
acousto-optical modulator (AOM) frequencies. Furthermore, we introduced a technique
to measure the photon detection efficiency of our setup by extracting a known amount of
photons from the ion. In the measurements of the clock stability we use the calibration
to determine the operation parameters which can in turn be connected to the theoretical
model, and the detection efficiency to compare the measured and expected scattering
rates.

We can summarize, that the presented experimental platform and the method to detect
and analyze the oscillation stability of our clock is principally suited to address the
fundamental question of this thesis: “Does thermodynamics limit our ability to measure
time?” [16]. The stability of the clock can be measured using the Allan variance and
the thermodynamical cost for running the clock is given by the waste heat in terms
of scattered photons, which can easily be measured. However, multiple problems still
persist. The theoretical model we have used does assume an ideal two-level system which
is not given for the dipole transition we have used. This might lead to fundamentally
different behavior which could explain the deviations of the measurements from the
theoretical predictions. Even though the measured scattering rate fits the theory relatively
well, we find that the average number of scattered photons per oscillation cycle is > 1.
This means that the involved levels can be depleted during a single cycle, further
enforcing the thesis that a two-level system is not a good approximation. Additionally,
strong technical noise could dominate the oscillation stability which would make it

74



impossible to detect the phase stability intrinsic to the driven ion oscillator.

Multiple methods to approach these problems are conceivable. To reduce the effect of
technical noise, a trap with stronger filters could be used. To eliminate the discrepancy
between the experimental system and the theoretical model, the model could be extended
to a multilevel system. While this would be possible, it would be tedious and we would
still be left with a relatively complex system. The alternative solution is to use a different
transition which approximates the ideal two-level system better. Such a candidate could
be the 4S1/2 ↔ 4P3/2 transition as depicted in Figure 8.1. Here the highest mj state of the
excited level is 3/2 and thus greater by one then the highest mj state of 1/2 of the ground
state. If we drive the transition with σ+ polarized light, we will pump the population
into the 4S1/2, mj = 1/2 state. From there, only transitions into the mj = 3/2 state are
possible from where decays are only allowed back into the mj = 1/2 state. We thus
have a closed transition between two levels. The only imperfection is caused by decay
into the metastable D5/2 state. Population needs to be repumped which in turn leads to
repopulation of the 4S1/2, mj = −1/2 state. As the branching to the D5/2 state is suppressed
by a factor of 17.6 [34] this can be seen as a small perturbation. Plans to implement this
configuration in an existing experiment are under discussion at the moment.
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Appendix A.

Evaluation of Integral Expressions

Here we evaluate the integral expressions needed for the derivations in Section 2.2.2.
These derivation have been developed by Nahuel Freitas during joined work on the
subject.

First we derive the expressions for G and K defined in Equation (2.46). We use integration
by parts to obtain:

G(v) =
1
π

∫ 2π

0
dθ

1
mSa

dFa

dv
(v cos(θ)) sin2(θ)

=
1
π

1
v

∫ 2π

0
dθ

1
mSa

Fa(v cos(θ)) cos(θ)

=
1
π

1
v

h̄k
m

γ

2

∫ 2π

0
dθ

cos(θ)
1 + (2δa/γ + 2kv/γ cos(θ))2 .

(A.1)

Using the tangent half-angle substitution the last integral can be rewritten as:

G(αa, β) =
1
π

2k
βγ

h̄k
m

γ

2

∫ +∞

−∞
dt

2(1− t2)

(1 + t2)2 + (αa(1 + t2)− β(1− t2))2 (A.2)

where we have defined the dimensionless parameters αa = 2δa/γ and β = 2kv/γ.
This integral can be solved using the residue theorem. The integrand has four poles tk
(k = 1, · · · , 4), which can be chosen so that t1 = −t∗2 = −t3 = t∗4 . Using these symmetries,
the result of the integral can be expressed in terms of a single pole and its residue and
reads:

G(αa, β) =
1
π

h̄k2

m
1
β

1
1 + (αa + β)2

2πi
(t1 + t∗1)(t1 − t∗1)

[
1− t2

1
t1

+
1− t∗1

2

t∗1

]
, (A.3)

where t1 is a solution of

t2
1 =
±2iβ− (1 + α2

a − β2)

1 + (αa + β)2 (A.4)

with positive real and imaginary parts. Using the last two equations the following closed
expression can be derived:

G(αa, β) =
h̄k2

m
1
β

√
2/
√

1 + (αa − β)2 −
√

2/
√

1 + (αa + β)2√
1 + (αa − β)(αa + β) +

√
1 + (αa − β)2

√
1 + (αa + β)2

(A.5)
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A similar expression is obtained for K(v), where K(αc, β) = −G(αc, β), with αc =
2δc/γ < 0.

Two other integrals are relevant. First, to calculate the phase diffusion constant we need
to evaluate

ID =
1

Sjγ/2

∫ 2π

0
dθ Rj(ωA0 cos(θ)) sin2(θ)

=
∫ 2π

0
dθ

sin2(θ)

1 + (2δj/γ + 2kv/γ cos(θ))2

(A.6)

Using the same kind of procedure as before, we obtain

ID(αj, β) =
π
√

2
β2


√

1 + (αj + β)2 +
√

1 + (αj − β)2√
1 + (αj − β)(αj + β) +

√
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−
√

2

 ,

(A.7)

and the phase diffusion coefficient reads

Dφ =
z

4π

(
h̄k2

m

)2 1
γ/2

1
β2 [Sc ID(αc, β) + Sa ID(αa, β)] . (A.8)

Finally, the total number of scattered photons during a cycle is:

Nc =
1
ω

∫ 2π

0
dθ [Rc(ωA0 cos(θ)) + Ra(ωA0 cos(θ))]

=
γ/2
ω

[Sc IN(αc, β) + Sa IN(αa, β)] ,
(A.9)

where IN(α, β) is given by:

IN(α, β) = π

√
2/
√

1 + (α− β)2 +
√

2/
√

1 + (α + β)2√
1 + (α− β)(α + β) +
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1 + (α− β)2
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1 + (α + β)2

. (A.10)
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Appendix B.

Theoretical Analysis of the Ion Oscillator

Here, we summarize various plots relevant for the theoretical model of the ion oscillator
discussed in Section 2.2. Their context is explained there and in the corresponding
captions of the figures.
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Figure B.1.: (a) Phase diffusion coefficient Dφ in units of x = (g/(4π)) (h̄k2/m)2 1/(γ/2) over amplification
saturation parameter Sa and cooling saturation parameter Sc for αc = −1, αa = 0.5. (b) depicts
the total scattering rate R and (c) the operating amplitude βOP.
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Figure B.2.: (d) Phase diffusion coefficient Dφ in units of x = (g/(4π)) (h̄k2/m)2 1/(γ/2) over amplification
saturation parameter for Sa = 0.1, αc = −1, αa = 0.5. (b) the total scattering rate R and (c) the
operating amplitude βOP. These plots are analogous to the ones in Figure 2.9 with the difference
that here Sa is held fixed instead of Sc. The behavior of Dφ with respect to the scattering rate is
opposite to the case in Figure 2.9. Here, it increases for increasing scattering rate.
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Appendix C.

Oscillation Stability Measurements

Here, we summarize various plots relevant for the measurements discussed in Chapter 6.
Their context is explained there and in the corresponding captions of the figures.
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Figure C.1.: Power spectral density of the photon time stamps. These spectra have been computed using the
Fourier transform of the autocorrelation function, a method, that has not been discussed above.
Upper panel for odd multiples of the trap frequency ( f0 = 1.484 89 MHz). Lower panel for even
multiples of the trap frequency.

83



Appendix C. Oscillation Stability Measurements

(a)

-1

0

1

2

3

4
k

2
/1

0
-

1
5
[s

2
] (b)

0

1

2

3

4

k
0
/1

0
-

1
4
[s
]

(c)

-5

0

5

10

15

20

25

k
-

1
/1

0
-

1
3

(d)

0

2

4

6

8

10

12

k
-

2
/1

0
-

1
2
[1
/s
]

(e)

0

1

2

3

4

m
in
σ

y2
(τ
)/

1
0
-

1
2

4 5 6 7 8

scattering rate [kcps]

(f)

0.10

0.15

0.20

0.25

0.30
a

rg
m

in
σ

y2
(τ
)[

s]

4 5 6 7 8

scattering rate [kcps]

0.2

0.3

0.4

0.5

S
a

0.05 0.10 0.15 0.20 0.25

Sc

4

5

6

7

8

9

sc
a

tt
e

ri
n

g
ra

te
[k

c
p

s]

(g)

Figure C.2.: Fitted coefficients of the Allan variance over the saturation parameters Sa and Sc. Completely
analogous to Figure 6.6 and Figure 6.7, but including all data points. Systematic behavior is by
far not as evident as in the aforementioned figures. (measurement from 02.11.2018)
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Figure C.3.: Plots of the resonance frequencies over time (analogous to Figure 6.2 before the outlier removal)
over saturation parameters of the measurements depicted in Figure 6.5. Each inset plot is over
a 5 min measurement and the y-axis range is 1.5 kHz. (measurement from 02.11.2018)
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Figure C.4.: Completely analogous to Figure C.3 but after the outlier removal. Here the frequency (x-axis)
range of the inset plots is adjusted for each plot individually.
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